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able for def ect calculations. The lattice-statics
method is often referred to as exact without an ap-
propriate qualifier for the harmonic approximation.
The present comparison (and indeed earlier com-
parisons) does not bear this out. This is admittedly
a subjective judgement-Flocken and Hardy consider
a 5-10% disagreement in displacements to be un-
satisfactory, while the present author considers
this to be a good agreement.

At the present time, it would seem that the most
reliable method of calculation would be to use a

real-space lattice approach near the defect but to
replace the elastic continuum component of the
calculation with a lattice-statics calculations. The
flexibility to investigate nonsymmetric configura-
tions would be impaired by such a program, how-
ever, and the computer time to carry out such a
calculation would be much greater than with other
methods. The reliability of interatomic potentials
is not sufficiently good at the present time to war-
rant such an approach except as an occasional check
on more approximate methods.
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An error in keeping track of diagrams in the paper by Aiyer, Elliott, Krumhansl, and Leath
is reported and corrected and a general rule for avoiding this kind of problem for larger clus-
ters is presented. The recent work of Nickel and Krumhansl is shown to be in agreement with
the corrected formula.

In a paper' (hereafter referred to as A) of a few
years ago a general diagrammatic procedure for
calculating configuration-averaged properties in
disordered alloys was presented. In a recent paper
Nickel and Krumhansl2 have calculated the effects
of the self-consistent scattering by pairs of defects
in a generalization of the coherent-potential approx-
imation which was in disagreement with the pair
formula calculated in the last section of A. The
purpose of this paper is to point out the omission in
diagram counting that was made in that section, to
show that, when corrected, there is full agreement
with Ref. 2, and to emphasize that the diagrammatic
technique presented in A, although at times tedious,
is in fact correct and straightforward in its pre-
scription for getting the proper generalization of
the coherent-potential approximations.

We assume the reader's knowledge of the methods
and notation of A and first point out the errors in
Sec. VI of that paper. Then we show how this re-
sult could have been more simply obtained. Finally,
we point out the equivalence of this work with that
of Ref. 2.

The scattering by a pair of defects, which are a

distance R apart, is calculated with the restriction
8+0 strictly maintained so that there are no pair
corrections to the single-site terms Zs = v

' in Eq.
(47) of A. [This statement is in contrast to the
statement above Eq. (53). ] We note that Eq. (47)
can be written in the form

c7'[(G(0) &] = 7' '[G '(0)]/(1 —w [G (0)] (G(0) &], (I)

where

G "(0)= «(o) &/(I — '[(G"(o)&]«(o)&]

The pair terms summed in A were just those dia-
grams shown below in the first column of Fig. 1
where the double horizontal line represents the full
off diagonal propagat-or (G(R) &, the wide solid hori-
zontal line represents the full diagonal propagator
(G(0) ), and the open-circle vertex represents the
bare vertex, uncorrected for multiple occupancy.
The higher columns contain the multiple-occupancy
corrections (the solid circle represents the fully
corrected vertex).

We now come to the basic omission in Sec. VI of
A. In Eq. (58), which should have been the sum of
all the columns of Fig. 1, the correction terms
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The irreducible partw„can be evaluatedby consider-
ing it to be made up of T'[G '(0)], the single-particle
self-energy with all insertions, but where one of
the (G(0) ) lines in T'[G' (0)] is replaced by all parts
containing two (G(R)) propagators; namely, re-
placed by

(G(R)) T [G (0)]/jl —T' [G (0)](G(0))]

="[«(0»]«(R)&', (3)

where the equality follows from Eq. (1). Thus, we
find

I II
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FIG. l. Bare self-consistent self-energy diagrams
(open vertices) containing scattering by a pair of sites
t'column 1) and their multiple-occupancy corrections (the
black vertices indicate fully corrected values) with ~ ir-
reducible parts [(n + 1)st column]. The double horizontal
line indicates (G(R)), whereas the wide single line repre-
sents (G(0)). The sum of all columns gives Eq. (6).

indicated by the examples in Fig. 2 should have
been included. These terms contain just two (G(R))
factors, both of which lie inside a single irreducible
part (let us call it Ts). Since the irreducible part
vR is enclosed between all possible single-particle
scatterings, the sum of these diagrams is

T'[G"(0)]'T[(G(0))](G(R))',

c'(1 -c)T [(G(0))l' (G(R)&' (5)

for the contribution of the diagrams shown in Fig.
2. The value of these correction diagrams, since
they do not appear anywhere in Fig. 1 but were in-
cluded in Eq. (58) of A, should be subtracted with
the corrected result

since

T [G"(0)]= c V/[1 —(1 —c)V(G(0))]

The insertion of Ts into Eq. (2) leads immediately,
with simplifications from Eq. (1), to the simple
result

Z,'[r(0), 1(R)]
[(G(0)), (G(R))] = c f —

I ] (G(0) ) + (G(R)))ps [I (0) I'(R)1 ~ [(G(0)), (G(R))] —cT[(G(0))]

-e'r](a(o))]'(a]a)) -e'v I]a(o))]'(a(II))' -e'(I -e}v]]a(o))I'&a(II))'), (6)

where

I;,[r(0), r(R)]= 7 '[r(0)]+g'[r(0) I'(R)]

as in A, and Eq. (1) has been used to simplify the
last four terms. [I'(0) rather than G' (0) appearing
in Eq. (58) of A in these terms was also in error,
although this didn't affect the final answer ]This.
immediately leads to the result

T, [r'(0), r'(R)]
I —[r'(O)+ I'(R)] T, [r'(0), I'(R)] '

where

!

of Eq. (f) by 1-cT[I"(0)]l'(R), can be put into the
form [Eq. (63) of A]

cT+c (1-e)7]a
2

1+cTI''(0)+c (I-c)tl [r'(0)+ I '(R)] '

where T=T[I' (0)], but where tie now has the value

tis = Tar'(R)'/[I —7 r'(R)], (10)

in contrast to Eq. (64) of A. This is precisely the

T,[r'(0), r'(R)]=cT[r'(0)] c'T[r'(0)]' r'(R)
1-T [r'(0)]r '(R)

4,
+ ,

~ ~, +
I I ! I I ~ I

+ ~ ~ ~

(8)
which, by multiplying numerator and denominator

FIG. 2. Those diagrams containing two (G(N) factors
both of which are within a single irreducible part.
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2 c(1-c)~'I"(0)'
Z~~(R) = c& 1+eel" (0) —

( ) ~(g) ~ (12)

which is precisely the formula derived in Eq. (42)
of A for the non-self-consistent pair scattering, but
with the propagator replacement

(13)

t tt tgt
I I ]I ]il ) ) ) &) ~ ~

FIG. 3. Repeat of Fig. 1 for the case of those diagrams
(column 1) which would appear in the t matrix for scatter-
ing by an isolated pair of defects. The sum of all columns
gives Eq. (15).

form derived by Nickel and Krumhansl using both
a similar diagrammatic and the coherent-potential
methods which, as they have pointed out, has the
proper limit at low concentration.

At this point it is, perhaps, worth noting that by
dividing the numerator and denominator by the fac-
tor

1+c(1—c)r I' (R)'/[1 —vi'(R) j,
Eq. (9) above can be put in the form

Clearly this result is physically what one would
have expected and is the simple generalization of
that which happened in the single-site case; namely,
in g-cluster scattering going over from the direct
to the self-consistent expression, one does not re-
place P by the full (G) but by a I"= (G)/1+ Z(G),
where the terms are n xn matrices in the sense de-
fined in A. Also it should be pointed out that Eq.
(65) in A is simply wrong, although it did not affect
any of the results, since I' (0) as defined in Eq. (54)
not only has scattering by site 0 excluded but also
that by site R.

The mistake in A is now clearly seen although it
was rather subtle and not at all trivial to correct.
Therefore, a simplified way of calculating the dia-
gram which avoids these subtleties seems in order.
Consider for the moment summing those diagrams
D shown in the first column of Fig. 3. These dia-
grams are not only double counted in places, but a
few of them are not even irreducible. Neverthe-
less, the sum of the first column, the bare contri-
bution, is

(14)

Thus the full value D is determined by subtracting
all the higher columns from D„„„

(i6)

where Z& is precisely the set of diagrams identified
as Z2~ in Eq. (6) above and is just the full self-en-
ergy for scattering by single and pairs of defects.
But, since D cancels out of (15) and since f ' cancels
out of (6), this is just a simple rederivation of Eq.
(6) and leads to Eq. (9) as above. In fact, it is not
necessary to put precisely the diagrams one wants
to sum in the first column of bare diagrams (since
the D always cancels out of the calculation) but only
necessary to recognize the correct class of dia-
grams in the correction columns. As a general
rule, it seems one should, for the most simplicity
of calculations, always sum the diagrams which
would appear in the f, matrix for scattering by an
isolated cluster of size yz.

Finally, let us briefly discuss the various recent

i

attempts to generalize the coherent-potential ap-
proximation to the case of scattering by pairs of
defects. From the diagrammatic method one can
see that the proper generalization of the coherent-
potential approximation to pairs is that of Eq. (33)
of Ref. 2 where the I; matrix for the scattering by
each pair of defects embedded in the effective me-
dium was set equal to zero. Recently Cyrot-Lack-
mann and Ducastelle have attempted a generaliza-
tion of the coherent-potential approximation essen-
tially by setting

(T„+~+~ ('r„(G)7'~+7'„(G)T~(G)7'„+ ' ' ')) =0, (16)

where v„ is the single-site scattering at site n.
This formula is not equivalent to the diagrammatic
formula (12) above because of the summation. over



1646 P. L. LEATH

m. If they had set the scattering by the two general
sites n and m to zero,

Tg' =(r„+r„(G)r„+r„(g)r„(G)+ ~ ~ ~ ) = P,

formula (12) above would have been obtained. This
could, perhaps, be done by modifying their tech-
nique only slightly. The generalization of Freed
and Cohen4 also is improper because they also did
not set the average scattering by a pair of defects
in the medium to zero. In this case they do not
even get the proper limit at low concentrations.
The generalizations to larger n clusters than two
now also seems to be that clearly the average t
matrix for scattering each particular g cluster
must be set to zero as suggested also in Ref. 2.

The way to perform the formal calculation of
scattering by pairs and larger clusters of defects
now seems clear, at least within this model con-
taining only diagonal randomness. It would be very

useful to see numerical calculations to check the
properties of these formulas with regard to the
physically expected qualitative features.

Finally, the effect of the disorder at high concen-
tration is becoming quite well understood now, with-
in the model of only diagonal randomness. This
model can, however, only be of limited use in real
systems, ' so that more sophisticated physical
models, including off-diagonal disorder, should be
considered within the spirit of the configuration-
averaging techniques now developed for the diagonal
model. Some attempts have recently been made
along these lines' which are useful in certain cir-
cumstancess.
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A. Krumhansl, Dr. B. Roulet, and Dr. T. D.
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for communicating his result that the last section
of Ref. 1 was in error.
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It is found that the contributions of both nonlocality in the pseudopotential and exchange cor-
relation in the screening reduce the cutoff radius of the strong screened Coulomb repulsion be-
tween ions in metals, thus revealing extra oscillations at short range in the effective interionic
interaction. This analysis of the situation resolves some previous puzzles, and lends support
to arguments about structural stability based on rearrangements of near neighbors.

Though the interatomic spacing in simple metallic
systems is determined primarily by the volume-de-
pendent contributions to the total energy, ' it is the
small structure-dependent contributions which gov-
ern many of the physically interesting properties of
metals and their alloys, including phonon frequen-
cies, elastic constants, and the relative energies of
different crystal structures. ' The structure-de-
pendent part of the energy, U„can be expressed as
a sum over reciprocal lattice vectors g involving
the "energy-wave-number characteristic" C'&, (g),
or alternatively, as a sum of effective screened in-
terionic potentials 4'(x) in real space. While numer-
ical calculations have almost invariably been done

in terms of reciprocal space because the convergence
is better, they have often been interpreted with
semiquantitative arguments involving the real-space
picture of the interaction potential 4(r). The latter
was found in early work to have a sharp minimum in
the region of the nearest-neighbor position. Nat-
urally, this was an appealing result because it sug-
gested correlations between crystal structure and
the position of the minimum. Several such inter-
pretations and arguments in terms of C(v) may be
found in the recent review article by Heine and
Weaire.

Structural arguments based on real-space inter-
atomic potentials are attractive because of their


