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High-Field Isothermal Currents and Thermally Stimulated Currents
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J. G. Simmons and G. W. Taylor
E/ect~ica/ Engineering Depa&~ent, University of Toronto, Toronto, Canada
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The theory is developed for the isothermal and thermally stimulated currents (TSC) which
flow in optically excited insulators that are subjected to high fields. The conditions for high-
field and low-field TSC are defined. The high-field process is theoretically attractive since
only first-order kinetics are required to describe the dynamics involved. In addition, the
boundary conditions for TSC have been clear y defined for the first time. The isothermal cur-
rent for a discrete trap is shown to be an exponential decay in time. The transcendental
equations that result for the TSC are analyzed in considerable detail, with the result that corre-
sponding approximate analytical expressions have been deduced which will considerably ex-
pedite the analyses of experimental data. A detailed discussion is given of the application of
the theory to experimental data.

I. INTRODUCTION

The study of thermally stimulated currents (TSC)
in solids is potentially a powerful method of deter-
mining the defect nature of semiconductors and in-
sulators. However, the complete description of
TSC, for an arbitrary distribution of trapping levels
and recombination centers, has produced differen-
tial equations that have proved intractable. As a
result, workers in the past have resorted to various
approximations and very simple insulator models.
These assumptions and models have now become,
more or less, the foundation of current theoretical
studies. Thus the more recent treatments' of the

subject differ only in detail rather than principle
from earlier work.

The assumptions regarding the physical model
are severely restrictive because they are applicable
only to the simplest of trapping conditions, which

can seldom, if ever, be related to a real material.
Saunders' has summarized and discussed these as-
sumptions in detail. For even the simplest of mod-

els, it is extremely difficult to correlate theory and

experiment with any degree of confidence, because
of the intractability of the pertinent theoretical
equations and the number and uncertainty of the
physical parameters involved. Indeed, Kelly and

Braunlich have very recently noted that "simul-
taneous experiments on TSC (and thermally stim-
ulated luminescence) do not yield sufficient informa-
tion to determine the kinetical mechanism of the
thermally stimulated recombination process without

a Priori knowledge of most of the trapping param-
eters. "

The object of this paper is to treat the problem
of thermally stimulated currents, in the presence
of high fields, in insulators with blocking contacts.
The theoretical advantages of the high-field TSC
treatment over that of the conventional low-field,

Ohmic-contact case is that retrapping can be cer-
tainly ignored; that is, first-order kinetics apply.
The method is applicable to reverse-biased P-n
junctions, metal-oxide-semiconductor interfaces,
and to thin insulating and semiconducting films.

II. GENERAL KINETIC EQUATIONS

A. Initial Conditions

s+ 00

enp+ no+ ~s+ epp

p = vopPq y

n, = vo„n, ,

(2)
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where n, is the free-electron density in the steady
state, v is the thermal velocity of an electron, o„
is the capture cross section of the trap for elec-
trons, p, is free-hole density in the steady state,
o~ is the capture cross section of the trap for free

Consider an insulator containing an arbitrary
distribution of discrete trapping levels throughout
its band gap. When the solid is in thermal equilib-
rium, traps below the equilibrium Fermi energy
Egp are essential. ly full and those above it are es-
sentially empty. Consider the case when the traps
are excited by optical stimulation when the solid
is at a constant low temperature Tp. We will as-
sume that the illumination source intensity and

wavelength are selected to produce a uniform ab-
sorption of light throughout the region of the sol.id

to be investigated. In the past, the initial boundary
condition (i.e. , the excitation of the traps) has been
assumed to be quite arbitrary. In actual fact the
excitation of the traps is determined essentially by
nonequilibrium steady-state statistics. 7 It can be
shown that the initial occupancy of a trapping center
under steady-state conditions such as those de-
scribed above is given by
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FIG. 1. (a) Energy diagram for an insulator with an
arbitrary distribution of discrete trapping levels. (b)
occupancy function for the insulator after optical stimula-
tion. Trapping levels are assumed to be members of a
species (Ref. 7) B(=0„/cr&).

holes, e„0=vo~, e's~ s'~~ro is the emission coef-
ficient for electrons out of the trap at temperature
To, e~o= vo~N„e' & ~' () is the emission coeffi-
cient for holes out of the trap at temperature To,
and E, is the energy of the trap. Immediately after
the light is turned off, there occurs a rapid decay
of the free carriers in the conduction and valence
bands. Since the free-carrier density is much
smaller than the trap density, we assume that the
capture of the free carriers by the traps does not.

significantly perturb the steady-state occupancy
of the traps as given by (1). Thus, the initial con-
ditions at the starting temperature To can be ade-
quately described by (1) (see Fig. 1). The impor-
tance of (1) in relation to the filling of the traps has
been described in the previous paper, to which the
reader is referred for further details. However,
it will be noted that the energy E,= E~, satisfying
the relationship

e„=n,+P,

or

(4)

defines a quasi-Fermi level for trapped electrons.
This is because trapping levels positioned above

E~, are essentially empty and levels positioned be-
low E~, are substantially occupied to a occupancy
level given by

n, /(n, +p, ).
In a similar manner, the energy E~~, determined by

(&fI-E & jAT
p v Sg+ P~

defines a quasi-Fermi level for trapped holes. Lev-
els positioned below E~~, are essentially devoid of

holes and those above E~, are substantially occupied
with holes to an occupancy level of

pg(i, +p, ) .
We assume that immediately after the collapse

of the optically generated free carriers, a high field
is applied to the insulator. This field is assumed
to be sufficiently high so that the free carriers ther-
mally excited out of the traps are pulled out of the
insulator without being retrapped; that is, the life-
time of the carrier is greater than its transit time
through the insulator. Furthermore, it is assumed
that the applied field is sufficiently high so that any
space-charge fields may be neglected; that is, the
field in the insulator is essentially uniform. It is
assumed that the contacts at the cathode and anode
areblocking to electrons Bnd holes, respectively, so
that they are noninjecting. Thus the current flowing
in the system is proportional to the rate of release
of carriers from the traps.

B. General Current Equations

We will consider first a single trapping level and
go on to generalize the results later. The rate of
emission per unit volume of electrons to the con-
duction band is

dn,
gt =en&~ ~

where n, is the number of electrons in the trapping
level positioned at an energy E„and

&st s, i/~

is the rate of emission of electrons from a level at
energy E, and temperature T. Hence the contribu-
tion to the current of electrons emitted from an
incremental thickness dx of the insulator is

5I„=qe„n, x dx/I,

where the distance x is measured from the cathode
and L is the thickness of the insulator (see Fig. 2).
Simarily, the contribution to the current by holes
emitted to the valence band from dx is

&I,= q8, (Iq, n, ) (I, x) -dx/L, -
where N, is the trap density of the trapping level
positioned at energy E, and

e = va X e'~~ ~&'"'

is the rate of emission of holes from the trapping
level at temperature T. Thus the total contribution
to the current of carriers emitted from the incre-
mental strip dx is, from (9) and (10),

6I= 5I„+hI = (q/L)[e„n, x+ e (Iq, -n, )(L —x)] dx.

The total current flowing in the solid is therefore
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given by

I= (q/L) f [e„n,x+ e4 (N, —n, ) (L —x}]dx

,'q[e„n—,+ e4(N, -n, )]I..
Although I is the current per unit cross-sectional
area of the solid, it is not to be confused with cur-
rent density, which is independent of the length of
the solid.

The rate of change of the number of electrons in
the trapping level is equal to the rate of emission
of electrons to the conduction band minus the rate
of emission of holes to the valence band. That is,
we have

I
ng = —e„nt+ ep (N4 —ng )

III. ISOTHERMAL CURRENT DECAY

A. Singie Discrete Trap

At a constant temperature, for which e„and 8~

are constant in time, (14) is evaluated as

t 8-(erat+ eP) t 0 t8N 8N
t to 8„+8p 8 +80

From (16), we have

n — + t--- 8-++0~+ ~" 1'7
8N 88N

n t n to 8 +8P n 8+8n P

Using a similar procedure to that used in obtaining
(17), one may derive the analogous equation for
holes:

or
I

n, + (e„+e4) n, = e4Nt, . e (N —n)=e (P
— " ' 8 +"&"+

8N 8 8-~
P t t P to 8 +8n P 8+8n P

The solution to (13) is

n, =e g" 8~Nt8 dt+ C,-h t't h

0

where

P~+ 8n

e„+n,+0, +e~)
'

(16)

n ~+ 8p'nt0 t 4

8„+n,+p, + 8~
(15)

From (14) and (15), we have

C= n, o.

2acuum
and Level

where h= fo(e„+e4)dt. In (14), C is an arbitrary
constant determined by the boundary condition that
at t=0 the number of electrons in the traps is n, o

=ufo; thus from (1)

Thus, from (11), (17), and (18) the current flowing
in the system is given by

28„8~Nt & e„+e&&t 28„8&NtI= —,qL l ennto+e~Pto 8 ~ +
8„+8~ 8p+ 8q

(i9)
It is apparent from (19) that the current decays ex-
ponentially with time, with a time constant equal
to (e„+e4) '. The second term on the right-hand
side of (19) is simply the constant generation cur-
rent flowing in the solid in the unexcited state.

B. Set of Discrete Traps

If a set of discrete levels exists in the insulator,
the total current consists of the sum of the currents
from each trapping level. When dealing with more
than one trapping level it is convenient to reduce
(19) to a simpler, more manageable form as fol-
lows. For levels such that e„»e4 (that is, levels
above the intrinsic Fermi energy E,), we have

I= —,Iq 8„n,o 8 +'1
(2o)

Eg ~Fer mi
Level

and for levels such that e4» e„(that is, levels be-
low Ei)

t

X

Valenc
I

Cathode
L

Insulator Anod~

FIG. 2. Energy diagram for an insulator with an arbi-
trary distribution of discrete trapping levels subjected to
a high field.

I= —,'I.q 8„n,oe '~'

Consider the case of an insulator containing two

trapping levels, one positioned at an energy E,
(& E,) and of trap density N«per unit volume, and
the other positioned at an energy Ez (& E,}and of
trap density N, ~ per unit volume. (This two-level
system contains a11 the essential features of a
more general system containing-several discrete
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1.2

1.0

o8

& 0.6

ship provides values of &E which are accurate to
within 2%%uo of the true values obtained from solving
the transcendental expression (36).

B. Occupancy Functions

From (1) (1,5), and (24) the non-steady-state
statistic of occupancy, at a temperature T, of any
trapping level above the intrinsic Fermi level E,
(that is, for e„»e~) is

0A

0.2
f„(E,T) =f, (E) exp(- P

' f e„dT). (38)

I

'loo
I

200
I

300
'K)

I

400

From (1), (15), and (26) the electron occupancy for
energy levels below E, is given by

FIG. 6. Family of ~ vs Tm for three values of heating
rate: 0. 01, 0. 1, and 1.0 deg/sec.

f„(E,T) = 1 —[1—fo(E)] exp (- P
' f e~dT) (39)

0

or, in other words, the hole occupancy below E; is

where B (= l. 92 &&10 ) is the slope of the line and
Z(= 0. 32 &&10 ~) is the intercept of the line on the
(AE+ D)/T„axis. Thus, within these approxima-
tions, 4E, expressed in electron volts, is given
by

f~(E, T)= [1 —fo(E)] exp(- P
' f e+T),

The exponents

exp(- p-' f'e„dT),

(40)

(41)

&E= T [l.92&10 'log»(s/p)+0. 32 &&10-']

—0. 0155. (37)
For practical values of hE, s, and p this relation-

1013

exp(- p
' f e~dT)

0

(42)

are the kernels of the high-field TSC solutions [see
(23)-(27) and (38)-(40)], but unfortunately they are
complicated and intractable. However, they may

12

I—.
w 0.6—

1 01

90 100
T('K)

110 120

10
I

2A
I i I

2.5 (nE, D)) 2.8 (X10 )

FIG. 7. Plot of (E&+D)/Tm vs log~o(s/P) for several
members of the family shown in Fig. 6.

FIG. 8. Plot of the occupancy functions for a TSC curve
using (a) transcendental expression (41); (b) approximate
expression (43); and (c) modified Fermi-Dirac occupancy
function (48).



1626 J. G. SIMMONS AND G. W. TAY LOR

be expressed in the following approximate analytical
forms (see Fig. 8):

exp( —P
' e dT)=e» n~»~scT 2

T0
(43)

n-1 /'T mme -&T &p II& &g-~g)exp&- p g e&uTj = e
TQ

(44)

From (38), (43), and (30) the occupancy of an elec-
tron-emitting level at the temperature T is

(45)

Similarly, from (40), (44), and (30) the occupancy
of a hole-emitting level at the temperature T is

fp(Ec) =fo(Ec) e ~

Hence, within the approximation of (43) and (44)
any trapping level, regardless of the energy or elec-
tron and hole-capture cross sections of the l.evel
or of the heating rate, is occupied at the tempera-
ture T for that level with the fraction e ' of the
original occupancy.

C. Quasi-Fermi-Level Concept

The expression (41) behaves very much like a
Fermi-Dirac function (see Fig. 8) in that below a
certain energy Er(T) the function takes the value
unity, and above Ez(T) it falls rapidly to zero. In
fact (39) may be approximated by the modified
Fermi-Dirac function (see Fig. 8)

(I+ I 7 ea'PEP«T& Ec &l»)- (47)

in which ET(T) is a parameter, the significance of
which is to be discussed a little later. From (38)
and (47) the temperature [or time-, -see (22)] de
pendent occupancy of an electron-emitting trapping
level positioned at an energy E, is given by

f(E) =f (E)/(1+ 1 7 e2&»& &-e&»») (48)

Equation (48) does not provide as accurate an ap-
proximation to (41) as (43), but it furnishes some
useful physical concepts and a simple analytical
expression for the TSC curve, as we shall see
shortly.

It will be noted from (48) that the trap occupancy
has fallen approximately to e ' of its original oc-
cupancy when E&, (T) coincides with the energy (E,)
of the emitting trap level, which from (48) is also
the condition for the TSC maximum to occur. This
conclusion could also have been reached, by an in-

where the temperature dependence of Ez(T) is given
by [see Eq. (37)]

E,—Ez(T) = T[1.92 &&10 'log, o(s/P)+ 0. 32 &&10 ]

—0.0155. (49)

spection of (37) and (49), since substituting T= T
in (49) yields E,—E, = E, —Er (T), that is, E, = Er(T).
Thus, it will be apparent that EF(T) has the char-
acteristics of a non-steady-state quasi-Fermi level
because when E~(T) &E, the level is substantially
occupied and when E~(T) & E, the level is essentially
empty.

D. Ha1f-Width and Points of Inflection of TSC Peak:
.Discrete Trap

or

b T= Tq —Tq ——2kT /t&, E.
(50)

This relationship was found to hold extremely well
for all TSC curves as shown in Fig. 9. This rela-
tionship provides a simple test for the existence of
a discrete peak and is a particularly useful one be-
cause of its independence of both cross-section and
heating rate. Qn the other hand, if the trap level
has already been determined to be discrete, then
this relation in conjunction with (37) provides a
means of finding the trap cross section for elec-
trons. It will be noted that the temperature inter-
val

& T= Tb —T„ (51)

corresponding to the temperatures T, and T, at
which the current attains half its peak value, cor-
responds reasonably well to the temperature inter-
val T2 —T„and this provides a rapid first-order
evaluation for TSC curves.

VI. DISCUSSION

A. Identification of Discrete Peak

Existing theories for thermally stimulated cur-
rents have dealt almost exclusively with a model
whichconsiders only one active discrete trap as an
emitting center, together with several "deep traps"
and "recombination centers. " The latter are intro-

Qne of the criteria that may be used for deter-
mining whether an experimental TSC curve is due
to a single trap or to several traps is the tempera-
ture interval T2- T, separating the points of inflex-
ion of the TSC peak (see Fig. 3). Because of the
intractable nature of (41), it is not possible to ob-
tain an exact analytical expression for this tempera-
ture interval. However, it will be noted (see Fig.
8) that virtually all the change in the Fermi function
[occupancy-see (48)] occurs in an energy interval
2kT, centered about the trap energy E,. This en-
ergy interval corresponds to the temperature in-
terval. between the points of inflection. In order to
relate 2kT to the temperature range T2 —T„we
note that AE is proportional to T [see (37)]. Thus
we may write

(Ta —T,)/2kT = T /hE,
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FIG. 9. Plot of QT for a TSC curve obtained {a) nu-
merically from the transcendental expression {25) and
{b) from approximate formula {50).

Using this equation, a value of E, may be obtained
on the assumption that a measured TSC peak cor-
responds to a discrete trap; also a value of the trap
parameter (s= vo„N,) and hence the cross section
o„may be determined from (37). Using these pa. —

rameters, a TSC curve may be constructed accord-
ing to (29). If the measured TSC peak and the con-
structed curve (judiciously adjusted so that the two
peaks coincide) correlate to a reasonable degree,
then one can conclude that a discrete trap level is

duced merely as an artifice to give an air of reality
to an otherwise idealistic system. However, in a
real crystal the existence of a distribution of trap-
ping centers is more often the case than not. ~

A group of trapping levels positioned energetically
close to each other [see Fig. 5(c)] will often yield
a TSC curve manifesting only a single peak and thus
can be mistakenly identified as a TSC curve cor-
responding to a single trapping level. However, it
is possible to distinguish between the two types of
curves because those due to several trapping levels
will be much broader than those corresponding to
any of the levels existing individually. In fact a
good criterion for establishing that a discrete trap
level is responsible for a TSC peak is the half-width
of the current peak, defined by [see (50) and (51)j

responsible for the current; otherwise, the curve
is due to a number of discrete trap levels or a dis-
tribution of trap levels. If the trap level is discrete,
and if the initial conditions were exactly reproduced,
then the initial filling of the trap ~«may be deter-
mined from (31) using two values of I corresponding
to two values of P.

The analysis of the rising portion of the curve
also provides information on the energy depth of
the trap and its capture cross section. During the
initial rise of the curve, the occupancy of the trap
is essentially constant (see Fig. 8), and the current
is dominated by, and hence essentially proportional
to, e„ for the level. Thus [see (25)j the measure-
ment of the current at two different temperatures
in this region of the curve will yield e„and n, o.

8. Initial Conditions

Unless the same steady-state condition is ensured
before each measurement, it is very difficult to
correlate successive TSC measurements. The ini-
tial boundary conditions are related to the steady-
state photocurrent that flows in the system just
prior to the termination of the excitation. Thus,
careful control of the steady-state photocurxent can
ensure reproducible boundary conditions.

It is interesting to note that, because of the dif-
ferent occupancy functions (7) associated with dif-
ferent species, ~ it is quite possible to have a shal-
low trap belonging to one species B, occupied and
a deeper trap belonging to another species Rz (& R,)
essentially empty for the same illumination inten-
sity. As a result, contrary to what is normally
expected, the peak of the TSC curve corresponding
to the deeper trap appears only for higher-illumina-
tion levels than that corresponding to the shallower
trap. This again emphasizes the necessity of cor-
relating the illumination intensity with the initial
trap occupancy.

C. Temperature Bependenee of Parameters

To this point, we have ignored any temperature
dependence of the capture cross sections, the ther-
mal velocity, or the effective densities of states
(N„N„). Although it is relatively simple to include
these dependences in the theory, it will be noted
that these parameters always appear together as
the product vo„N, or vol„and have the following
typical temperature dependences:

~~pi/2 pf ~z S/2 g ~T'-2
7 n, P

(The cross-section temperature dependerce assumed
here applies to a Coulombic type of energy barrier. )
Hence, the temperature dependence of their prod-
ucts is negligible. The trap depths (E, —E,) dis-
cussed in the text have been taken as their zero-
field values. In actual fact, in the presence of a
high field, the energy barrier to electrons and holes
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trapped in the bulk will be less than the above due
to the Poole-Frenkel lowering effect. ' If the
Poole-Frenkel effect does play a role, and this may
be clarified by measuring the TSC at different ap-
plied voltages, it may be taken into account through
the equation

E = E —8'~' (q'/7tffe )'~'

where E,p is the trap energy barrier with no applied
field, g is the applied field strength, ep is the per-
mittivity of free space, and A" is the high-frequency
relative dielectric constant. It will be noted that
in the above discussion no mention is made of the
mobility of electrons and holes and their tempera-
ture dependence. The mobilities are not required
in the interpretation of HFTSC (high-field thermally
stimulated currents).

D. Generation Statistic

Because of the absence of recombination and re-
trapping the occupancy function of a particular trap
decays from the initial nonequilibrium statistic

f(E) = (n, + e~)/(e„+ n, + p, + e~)

to the high-field trap-occupancy function

f(E) = e,/(e„+ e,).
The latter result may be deduced from the fact that
the system is decaying to the state where the rate
of emission of holes is just equal to the rate of
emission of electrons from all trapping levels.
Thus, if N, is the trap density at an energy E, and

f is the occupation function then the rate of emission
of electrons equals the rate of emission of holes
or

e„N, f= ega, (I-f);
hence,

Consider the integral

f ax/aT d~
TQ

(Al)

where hE= E, —E,. This may be integrated by
parts in two ways. The first of these is performed
directly to yield

d T = T e-'""'
~

TQ 0

—f (b,E/kT) e ~ ~ dT. (A2)
Tp

The second of these requires a change of variables

x= AE/kT, dx= —(hE/kT ) dT,

and the transformation

e d T= —(AE/k) (e "/x ) dx .

(A3)

(A4)

Substituting (A3) and (A4) into (Al) and integrating
by parts, (Al) may now be expressed as

AE e" k7
k TQ x +E

hole-emitting traps. Because of the indistinguish-
ability between the electron and hole TSC peaks,
an observed peak could arise from either an elec-
tron- or a hole-emitting trap. A TSC peak due to
a group of traps may be produced by a combination
of electron- and hole-emitting traps. The capture
cross section determined from the measurement
may be an electron-capture cross section or a hole-
capture cross section, and the energy determined
for the level may be with respect to the conduction-
band or the valence-band edges.

APPENDIX

f= e,/(e„+ e,). (52)
' 2k' e"

+
k gE 2 dx

Equation (52) is not the thermal-equilibrium statistic
tic, i. e. , Fermi-Dirac statistic, since from the
definitions of e„and e~ given in Sec. IIA, (52) may
be written as follows:

f I/(I 2(Et-E;) lkT)

This statistic is simply the electron-hole non-equi-
librium steady-state-generation statistic. The
statistic is symmetric about the intrinsic Fermi
energy E; (where e„=e~) where it takes the value
of —,'.

E. Importance of Hole Kinetics

Because of the symmetry of the electron and hole
kinetic processes and the similarity between the ap-
propriate equations, remarks similar to those con-
cerning electron emission may be applied to the

Now when 2kT«E, a good approximation to (Al)
from (A5) is

-hE /kT dy y e-h, E/kT y -5 E /kTQ
T

Qe
Tp

(A7)

On the basis of (A6) and (AV) a general approxima-
tion to (Al) for all values of T can be written as

f e ~E ' dT= [ST /(&E+kT)]e ~E "
TQ

(A6)

kT l W2-LEIS dT
kT -hElkT k+0 e kE/l!TO-
4E ~E

TO

(A6)
On the other hand when kT» E, then a good approxi-
mation to (Al) from (A2) is



HIGH-FIELD ISOTHERMAL CURRENTS. . . 1629

where the value at the lower limit To has been
dropped in comparison to the value at the upper
limit. The accuracy of the approximation is illus-

trated in Fig. 5 where both (A8) and (A8) are com-
pared with a numerical calculation of the integral
(Al).
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Photoconductivity measurements in uncolored single crystals of NaCl, KCl, and KI are re-
ported. The exciting source is the beam of a Q-switched ruby laser (her= I.78 eV) and its
second harmonic (A~=3. 56 eV}. The experimental results show clear evidence of multiphoton
absorption processes. The nonlinear cross sections y„of two-, three-, four-, and five-
photon transitions have been measured and compared with the cross sections predicted by the
exis ting theories.

INTRODUCTION

In the present work we report the results of a
study of multiphoton optical transitions in alkali
halides.

The absorption process has been detected by means
of the associated photocurrent. This method is in-
deed the only one capable of measuring absorption
coefficients as low as 10 ' cm ' or less. It may be
noted that even with a flux of 10~6 (photons/cm2)/sec
(which corresponds to about 30 MW/cm~ of ruby
light), the three-photon absorption coefficient is
only 10 5 cm ' and decreases very rapidly for higher-
order transitions.

Other investigations of multiphoton transitions
utilizing this technique are reported in the litera-
ture'~ with experimental results which differ marked-
ly. Our aim was to determine the order of the tran-
sition (i. e. , the number of photons which participate
in the absorption process) and to evaluate the non-
linear cross section y„which can be compared with
the cross section predicted by existing theories.

EXPERIMENTAL PROCEDURE

The experimental apparatus has been previously
described. 3

A Q-switched ruby laser (h~= 1.78 eV) with a
pulse duration of 20 nsec at half-power and 200-MW

peak power was used to induce the photoconductivity.
The maximum beam cross section was about 1.5
cm~. The energy of every pulse was monitored with
a photodiode intercepting a small fraction of the.
beam. The photocurrent pulse is integrated and
the resulting voltage pulse is sent to a 556 dual-
beam Tektronix oscilloscope with a 1AVA plug-in.

The absolute calibration of the measuring system
has been obtained injecting aknown amount of charge
at the input and recording photographically the vol-
tage output. A linearity test has been performed
in the range of interest. The photodiode pulse is
also integrated and displayed simultaneously on the
other oscilloscope beam, thus giving the energy cor-
responding to the single photocurrent pulses. The
photodiode has been calibrated and tested for line-
arity by measuring the energy of the laser pulses
with a thermocouple calorimeter and the intensity
was obtained approximating the photodiode pulse
with a square pulse of 20-nsec duration.

To produce a different photon energy a LiNbO3
second-harmonic generator (SHG) has been used in
conjuction with the ruby laser. The SHG gives out
about 10-MW maximum power at Sj''=3. 56 eV aqd
the residual ruby light is filtered out using a cell
filled with an aqueous solution of CuSO, .

Undoped monocrystals of NaCl, KC1, and KI,
with typical dimension 0. 8 & 0. 2 & 1 cm3, were placed


