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The theory is developed for the isothermal and thermally stimulated currents (T'SC) which

flow in optically excited insulators that are subjected to high fields.

The conditions for high-

field and low-field TSC are defined. The high-field process is theoretically attractive since
only first-order kinetics are required to describe the dynamics involved. In addition, the

boundary conditions for TSC have been clear!y defined for the first time.
rent for a discrete trap is shown to be an exponential decay in time.

The isothermal cur-
The transcendental

equations that result for the TSC are analyzed in considerable detail, with the result that corre-
sponding approximate analytical expressions have been deduced which will considerably ex-

pedite the analyses of experimental data.
the theory to experimental data.

I. INTRODUCTION

The study of thermally stimulated currents (TSC)
in solids is potentially a powerful method of deter-
mining the defect nature of semiconductors and in-
sulators. However, the complete description of
TSC, for an arbitrary distribution of trapping levels
and recombination centers, has produced differen-
tial equations that have proved intractable. As a
result, workers in the past have resorted to various
approximations and very simple insulator models.
These assumptions and models have now become,
more or less, the foundation of current theoretical
studies. Thus the more recent treatments! of the
subject differ only in detail rather than principle
from earlier work. 28

The assumptions regarding the physical model
are severely restrictive because they are applicable
only to the simplest of trapping conditions, which
can seldom, if ever, be related to a real material.
Saunders® has summarized and discussed these as-
sumptions in detail. For even the simplest of mod-
els, it is extremely difficult to correlate theory and
experiment with any degree of confidence, because
of the intractability of the pertinent theoretical
equations and the number and uncertainty of the
physical parameters involved. Indeed, Kelly and
Braunlich? have very recently noted that “simul-
taneous experiments on TSC (and thermally stim-
ulated luminescence) do not yield sufficient informa-
tion to determine the kinetical mechanism of the
thermally stimulated recombination process without
a priori knowledge of most of the trapping param-
eters.”

The object of this paper is to treat the problem
of thermally stimulated currents, in the presence
of high fields, in insulators with blocking contacts.
The theoretical advantages of the high-field TSC
treatment over that of the conventional low-field,

5

A detailed discussion is given of the application of

Ohmic-contact case is that retrapping can be cer-
tainly ignored; that is, first-order kinetics apply.
The method is applicable to reverse-biased p-n
junctions, metal-oxide-semiconductor interfaces,
and to thin insulating and semiconducting films.

1. GENERAL KINETIC EQUATIONS
A. Initial Conditions

Consider an insulator containing an arbitrary
distribution of discrete trapping levels throughout
its band gap. When the solid is in thermal equilib-
rium, traps below the equilibrium Fermi energy
Eg, are essentially full and those above it are es-
sentially empty. Consider the case when the traps
are excited by optical stimulation when the solid
is at a constant low temperature T,, We will as-
sume that the illumination source intensity and
wavelength are selected to produce a uniform ab-
sorption of light throughout the region of the solid

to be investigated. In the past, the initial boundary
condition (i.e., the excitation of the traps) has been
assumed to be quite arbitrary. In actual fact the
excitation of the traps is determined essentially by
nonequilibrium steady-state statistics.” It can be
shown that the initial occupancy of a trapping center
under steady-state conditions such as those de-
scribed above is given by

o Mstepm
fO(Et)— en0+ﬁs+—ﬁs+ €po ’ (1)
53 =00, Ds s (2)
Tig= 00,0, , 3)

where n, is the free-electron density in the steady
state, v is the thermal velocity of an electron, o,
is the capture cross section of the trap for elec-
trons, p, is free-hole density in the steady state,
0, is the capture cross section of the trap for free
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FIG. 1. (a) Energy diagram for an insulator with an

arbitrary distribution of discrete trapping levels. (b)
Occupancy function for the insulator after optical stimula-
tion. Trapping levels are assumed to be members of a
species (Ref. 7) R(=0,/0y).

holes, e, =v0,N, e Ft -Ec) /*Tg ig the emission coef-
ficient for electrons out of the trap at temperature
Ty, es0="00,N, e'Fo~Ft)/¥T0 ig the emission coeffi-
cient for holes out of the trap at temperature T,
and E, is the energy of the trap. Immediately after
the light is turned off, there occurs a rapid decay
of the free carriers in the conduction and valence
bands. Since the free-carrier density is much
smaller than the trap density, we assume that the
capture of the free carriers by the traps does not
significantly perturb the steady-state occupancy

of the traps as given by (1). Thus, the initial con-
ditions at the starting temperature T, can be ade-
quately described by (1) (see Fig. 1). The impor-
tance of (1) in relation to the filling of the traps has
been described in the previous paper, ’ to which the
reader is referred for further details. However,
it will be noted that the energy E,= E}, satisfying
the relationship

e,=Tis+P,
or
n — -
v0,N, e Fre"Ed T =7 + B, 4)

defines a quasi-Fermi level for trapped electrons.
This is because trapping levels positioned above
E%, are essentially empty and levels positioned be-
low E%, are substantially occupied to a occupancy
level given by

g/ (s + B ). (5)
In a similar manner, the energy E%, determined by
vobNu e(Eu-E‘;‘t) /AT = ﬁa"‘.i_)s (6)

defines a quasi-Fermi level for trapped holes.
els positioned below E%, are essentially devoid of

Lev-
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holes and those above E%, are substantially occupied
with holes to an occupancy level of

Es/(ﬁs‘*'is) . (7)

We assume that immediately after the collapse
of the optically generated free carriers, a high field
is applied to the insulator. This field is assumed
to be sufficiently high so that the free carriers ther-
mally excited out of the traps are pulled out of the
insulator without being retrapped; that is, the life-
time of the carrier is greater than its transit time
through the insulator. Furthermore, it is assumed
that the applied field is sufficiently high so that any
space-charge fields may be neglected; that is, the
field in the insulator is essentially uniform. It is
assumed that the contacts at the cathode and anode
areblocking to electrons and holes, respectively, so
that they are noninjecting. Thus the current flowing
in the system is proportional to the rate of release
of carriers from the traps.

B. General Current Equations

We will consider first a single trapping level and
go on to generalize the results later. The rate of
emission per unit volume of electrons to the con-
duction band is

dny

dt = ey (8)

where n, is the number of electrons in the trapping
level positioned at an energy E,, and

€= VO,N, o Et-Ec) /*T
is the rate of emission of electrons from a level at
energy E, and temperature 7. Hence the contribu-

tion to the current of electrons emitted from an
incremental thickness dx of the insulator is

6I,=qgemyxdx/L, 9)

where the distance x is measured from the cathode
and L is the thickness of the insulator (see Fig. 2).
Simarily, the contribution to the current by holes
emitted to the valence band from dx is

8l,=qe,(N, — n,) (L - x)dx/L, (10)

where N, is the trap density of the trapping level
positioned at energy E, and

= (Ey=Et) /T
€,=V0,N, e'“v™"t

is the rate of emission of holes from the trapping
level at temperature 7. Thus the total contribution
to the current of carriers emitted from the incre-
mental strip dx is, from (9) and (10),

0I=561,+61,=(g/L) e, x+ e,(N; =n,) (L - x)] dx.

The total current flowing in the solid is therefore
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given by
I=(q/L) foL le,nyx+e, (N, =n,)(L - x)] dx

= %Q[ennt*’ep(Nt'ne)]L- (11)

Although I is the current per unit cross-sectional
area of the solid, it is not to be confused with cur-
rent density, which is independent of the length of
the solid.

The rate of change of the number of electrons in
the trapping level is equal to the rate of emission
of electrons to the conduction band minus the rate
of emission of holes to the valence band. That is,
we have

ny=— e ng+ ey (N, =n,) (12)
or
np+ (e + ep) My = e,N, . (13)

The solution to (13) is
ne=e™ fot e,N e dt+ C, (14)

where k= [j(e,+e,)dt. In(14), C is an arbitrary
constant determined by the boundary condition that
at £=0 the number of electrons in the traps is #;,
= N,f,; thus from (1)
“Nn=N. _____ES__FEL.____ .
t0 '(e,,+7zs+ps+ e, (15)

From (14) and (15), we have

C=mny.

Conduction Band
E
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<EQ

|
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¥

L

Cathode Insulator Anode

FIG. 2. Energy diagram for an insulator with an arbi-
trary distribution of discrete trapping levels subjected to
a high field.

OI. ISOTHERMAL CURRENT DECAY
A. Single Discrete Trap

At a constant temperature, for which ¢, and e,
are constant in time, (14) is evaluated as

e,N. e,N,
1y = (ngg——L—1—) e~ton* p)t 2t (16)
e,+e, e,+ e,

From (16), we have

e,N, e,e, N,
e, = e, n,o——f—-‘-—-> e-tentep)t  ZpTnot  (17)
e,+e, e,+e,

Using a similar procedure to that used in obtaining
(17), one may derive the analogous equation for
holes:

[\ N €,8,N;
e,(N;—=ny)=e, (pm" )e Lenvep)t |

ent+ e e,+e’

(18)
where

_ Det+ €
Do =Ny e, + ﬁs+$,+ e,)‘

Thus, from (11), (17), and (18) the current flowing
in the system is given by

.

2e,e,N, 2e,e,N,
I=3qL (ennm+epmo—;ﬁ—;%'> e“""“”‘+——ﬂJ;—‘e s
n P P n

(19)

It is apparent from (19) that the current decays ex-
ponentially with time, with a time constant equal
to (e,+ e,)‘l. The second term on the right-hand
side of (19) is simply the constant generation cur-
rent flowing in the solid in the unexcited state.

B. Set of Discrete Traps

If a set of discrete levels exists in the insulator,
the total current consists of the sum of the currents
from each trapping level. When dealing with more
than one trapping level it is convenient to reduce
(19) to a simpler, more manageable form as fol-
lows. For levels such that e, > ¢, (that is, levels
above the intrinsic Fermi energy E;), we have

= %Lq enio e~nt ) (20)

and for levels such that e, > e, (that is, levels be-
low E;),

=3Lq enpe®t . @

Consider the case of an insulator containing two
trapping levels, one positioned at an energy E,
(> E,) and of trap density N;; per unit volume, and
the other positioned at an energy E, (< E;) and of
trap density N,, per unit volume. (This two-level
system contains all the essential features of a
more general system containing several discrete
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levels.) Thus from (19), (18), and (7) we obtain

__aL
=@, 5)

where the second subscripts 1 and 2 on the various
parameters refer, respectively, to the trap levels
at E; and E,. Normally, the time constants as-
sociated with the exponential terms e;} and e;} will
differ significantly such that, say e;i > e;;. What
this means is that initially (¢S e;}) the current will
decay with a time constant ey} and thereafter

(t 2 e;3) with a time constant e;3. Clearly, these
remarks can be readily generalized to any system
of discrete trapping levels.

- - t - -
(7Nyy €q1 €71 + PN,y €4 €7P2),

IV. THERMALLY STIMULATED CURRENTS
A. Single Discrete Trapping Level

Thermally stimulated currents are observed in
the excited system when the temperature is changed
in a controlled manner after the field has been ap-
plied. Equation (8) is applicable to this case, but
with the time related to the temperature through

(22)

where B is the constant heating rate in degrees per

second. In this case both e, and e, are functions of
time through the temperature 7' and the heating rate
B. Hence, from (14) and (22), we obtain

T - Ty=pt,

n(T)=e™ (B fTT e,N, e*dT+ny),
0

where

A= g1 frz (e +ep)dT. (23)

Trapping levels positioned above E; siich that
e, e, act essentially as electron emitting levels
only; thus the terms containing e, in (23) may be
dropped yielding

7y =1y exp(— ! fTT e, dT). (24)

0
From (11) and (24) the current flowing in the system
associated with the emission of electrons from the
traps is

AT
1 -8 en dT
I,=3qLnge, e I’ro .

(25)

On the other hand, levels positioned below E;
(e,> e,) act as essentially hole-emitting levels only.
In this case it is relatively straightforward to show
from (13) that the corresponding equation to (24)
for holes is given by

be=bu exp(= B [T, dT). (26)

From (11) and (26) the current flowing in the system
associated with the emission of holes from these
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traps is

I,=%qL pye, exp(- ! fTT e,dT).
0

@7)
For the sake of conciseness we will confine our
remarks to predominantly electron-emitting levels,

but it will be apparent that a corresponding treat-
ment can be applied equally as well to predominantly
hole-emitting levels. The approximate solution to
(24) is (see Appendix)

vo, N ET?

(E¢-E,) [kT
e “t-%c 28
BE,- E, + kf) ) : (28)

Ny = Ny €XP (—

From (28) and (11) for e, > e,, the current flowing
in the system

- 2 -
I= %antoe,.eXp(— B——"—I\l————-—(g:_ﬁj;kn et Bt EC”“”).
(29)

The full curve in Fig, 3 illustrates a plotof I vs T
using (29). This curve has a pronounced maximum
and is representative of a typical high-field TSC
curve. The dotted curve in Fig. 3 is a plot of I vs
T using the exact intractable expression (25) and
the same parameters as for the full curve. The
correlation between the two curves is seen to be
quite good.

The position of the peak in the thermally stimu-
lated current is located by differentiating (24) and
equating the result to zero. This yields®

BAE

ppZ = VoNe et E M (30)
m
-
9
€
3
g
i
1=
3
! ]
S0 120
T(°K)
FIG. 3. J-T characteristic for a TSC curve illustrating

(a) transcendental expression (25); (b) approximate ana-
lytical expression (29); and (c) approximate analytical
curve obtained using (A6).
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FIG. 4. J-T characteristic for a TSC curve for four
different heating rates.

where T, is the temperature at which the peak oc-
curs, and AE=E,~ E,. From (29) and (30) the mag-
nitude of the current at the maximum of the TSC
curve is

-AE/(AE+kT,,)

(1)

By performing an experiment at two different heating
rates B, and B;, (30) yields two relations from which
AE and 0, can be determined. From (31) it is seen
that I, increases linearly with 8. The effect of 8 on
the thermally stimulated curve is shown in Fig, 4
for a typical set of parameters. The variation of
T, with g and E, will be discussed in Sec. V.

The area under the TSC curve A may be written
[see Eq. (5)]

A= fTle 1dT, (32)

but from (8) and (11) for, say, an electron-emitting
trap,

T2 dn
=1 =t q
A qu'é; at T.

(33)

Using (22) in (33) gives
A=%qLB['2 dn,
t
1
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which upon integration yields
(34)

Hence A varies directly with the heating rate and
the initial electron filling of the trap.

A= %qLBnto .

B. Several Discrete Trapping Levels

If several discrete electron-emitting trapping
levels belonging to the same species’ exist in the
energy gap, the total current at any temperature
is given by the sum of the thermally stimulated
currents from each trap at that temperature.
Figure 5(a) shows five distinct TSC curves from
five discrete trapping levels, each having the same
trap density N;. Since we are concerned with elec~
tron-emitting levels, the initial filling of these
traps is determined by [see Eq. (15)]

(35)

Since the five trapping levels are members of one
and the same species, they have a common quasi-
Fermilevel for trapped electrons E},. From (35) the
occupancy above E%, (see Sec. IIA and Fig. 3)is
very small. This is manifested by the reduced
size of the first peak, which is positioned above
E%, in energy. Below this level the occupancy is
essentially constant and equal to 7,/(7,+ p,). For
this case, the TSC peaks decrease slowly in height
the further from the conduction-band edge are the
corresponding trap levels. However, the areas
under the TSC curves are identical, which simply
means that the same amount of charge is released
from each trap.

Figure 5 (b) illustrates the case when the five
trapping levels are positioned sufficiently close in
energy such that each of the corresponding five
TSC curves overlaps with the TSC curves of adja-
cent levels. The TSC curve is much broader than
that of an individual TSC curve corresponding to
any of the levels involved. The current shows a
very sharp rise and decay, and between these ex-
tremes it undulates, manifesting several peaks
about a large average value. These peaks, of
course, relate to the energies of, and provide a
means of enumerating, the number of the trapping
levels involved. However, the highest and lowest
levels in energy of the group do not give rise to
separate peaks but only to kinks in the rising and
falling portions of the curve.

Figure 5(c) shows the effect produced when the
five levels are positioned such that four of the traps
are fairly close together in energy. Without know-
ing otherwise, such a peak can easily be misinter-
preted as the TSC response of a discrete level with
a large trap density. However, measurements of
the temperature of the peak maximum and its half-
width would show that this is not the case (see Sec.
VI).

ig/ Fig+ Ds+ €,).
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J(arb. units)
I

100 150 200
T(°K)

L (b)

J (arb. units)

V. THERMALLY STIMULATED CURRENTS:
ANALYTICAL INTERPRETATION

A E vsT,

One of the difficulties encountered in the under-
standing of the TSC phenomena and the interpreta-
tion of its experimental data lies in the intractable
nature of the transcendental relationships which
describe the process. The relation (30), which
gives the energy of a trapping level in terms of the
temperature at which the TSC maximum occurs,
has been examined by several authors in an effort
to produce a more usable result. It will be noted
that (30) may be written

|

J(arb. units)

|
90 100 110 120
TC°K)

FIG. 5. J-T characteristic for a TSC curve produced
by five discrete trapping levels positioned at different
energies, illustrating the case of the five levels (a) widely
separated in energy; (b) overlapping to produce an un-

dulating response; and (c) overlapping to produce a TSC
curve manifesting a single peak.

€A™ m = yo, Nk T%/BAE . (36)

Generally speaking, vo,Nk/BAE is of the order 107,
which means that the exponent of the left-hand side
of (36) is greater than about 20 for all practical
temperatures (7>10 °K). If T, were the only vari-
able in (36), a small change in its magnitude would
result in a large change in the left-hand side of (36)
(because the exponent is a large number) but only a
small change in the right-hand side. We thus con-
clude that AE must increase almost linearly with
increasing T,, in order for (36) to be satisfied.

This is shown to be the case in Fig. 6, where E

is plotted as a function of T, for various values of
s/B,(s=vao,N,). Itis seen that the relationship be-
tween AE and T, is approximated very well by a
family of straight lines

AE=CT,-D,
where the slope C is a constant which depends upon
s and B and the intercept D which is given by
D=~0.0155

for all members of the family. The value of C is
obtained by constructing a plot (see Fig. 7) of
[(AE+D)/T,] vs 10gyy(s/B) from the data given in
Fig, 6. This procedure also yields a straight-line
relationship

(AE+D)/TM=Blog10(S/ﬁ)+Z’
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FIG. 6. Family of AE vs T, for three values of heating
rate: 0.01, 0.1, and 1.0 deg/sec.

where B (=1.92X10™) is the slope of the line and
Z(=0.32X10%) is the intercept of the line on the
(AE+D)/T,, axis. Thus, within these approxima-
tions, AE, expressed in electron volts, is given
by

AE=T,[1.92%X10"*10g,o(s/B) +0.32X10%]

-0.0155. (37)
For practical values of AE, s, and j this relation-

LI R

T

T

102

SIB
R

T

10 | | | | | 3,
26 (pE+py 28 (X0

FIG. 7. Plot of (E;+D)/T,, vs logyy(s/B) for several
members of the family shown in Fig. 6.
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ship provides values of AF which are accurate to
within 2% of the true values obtained from solving
the transcendental expression (36).

B. Occupancy Functions

From (1), (15), and (24) the non-steady-state
statistic of occupancy, at a temperature 7, of any
trapping level above the intrinsic Fermi level E;
(that is, for e,>e¢,) is

1B, DV =fo(B) exp(= 6 [ e,dT). (38)

From (1), (15), and (26) the electron occupancy for
energy levels below E; is given by

fo (B, T)=1-[1-f(E)] exp (- B f:o e,dT) (39)
or, in other words, the hole occupancy below E; is
o, T)= (1~ foB)] exp(= 67 [ e dT).  (40)

The exponents

exp(-p* [* e,dT) , )
0

exp(- g [ e,dT) (42)
0

are the kernels of the high-field TSC solutions [see
(23)~(27) and (38)~-(40)], but unfortunately they are
complicated and intractable. However, they may

f(ET)
1)
F

QIO 1C')O 1%0 120
T(°K)

FIG. 8. Plot of the occupancy functions for a TSC curve
using (a) transcendental expression (41); (b) approximate
expression (43); and (c) modified Fermi-Dirac occupancy
function (48).
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be expressed in the following approximate analytical
forms (see Fig. 8):

2
eXp(— B-l LT endT)=e-kT en/ﬂ(Ec"Et) , (43)
0
2 -
exp(— 6-1 fTT e,,dT): P ep/BUE=Ey) (44)
0

From (38), (43), and (30) the occupancy of an elec-
tron-emitting level at the temperature 7T, is

fn(Et) =fo(Et) e, (45)

Similarly, from (40), (44), and (30) the occupancy
of a hole-emitting level at the temperature T,, is

fp(Et)zfo(Et) e, (46)

Hence, within the approximation of (43) and (44)

any trapping level, regardless of the energy or elec-
tron and hole-capture cross sections of the level

or of the heating rate, is occupied at the tempera-
ture T,, for that level with the fraction e-! of the
original occupancy.

C. Quasi-Fermi-Level Concept

The expression (41) behaves very much like a
Fermi-Dirac function (see Fig. 8) in that below a
certain energy E.(7T) the function takes the value
unity, and above E(7) it falls rapidly to zero. In
fact (39) may be approximated by the modified
Fermi-Dirac function (see Fig. 8)

(1+ 1.7 eZ[EF(\T)-Et]/kT)‘l , (47)

in which E(7) is a parameter, the significance of
which is to be discussed a little later. From (38)

and (47) the temperature- [or time- , see (22)] de-
pendent occupancy of an electron-emitting trapping
level positioned at an energy E, is given by

f(E) =f0(E)/(1 +1.7 eZ[EF(T)-Et]/kT)’ (48)

where the temperature dependence of E,(T) is given
by [see Eq. (37)]

E, = Ep(T)=T[1.92 %10 1og,,(s/B) + 0. 32 X107]
-0.0155.  (49)

Equation (48) does not provide as accurate an ap-
proximation to (41) as (43), but it furnishes some
useful physical concepts and a simple analytical
expression for the TSC curve, as we shall see
shortly.

It will be noted from (48) that the trap occupancy
has fallen approximately to e! of its original oc-
cupancy when E;(T) coincides with the energy (E,)
of the emitting trap level, which from (46) is also
the condition for the TSC maximum to occur. This
conclusion could also have been reached, by an in-
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spection of (37) and (49), since substituting T'=T,,

in (49) yields E,— E,= E,— E5(T), thatis, E,=E(T).
Thus, it will be apparent that E.(T) has the char-
acteristics of a non-steady-state quasi-Fermi level
because when E(T) > E, the level is substantially
occupied and when E(T) < E, the level is essentially
empty.

D. Half-Width and Points of Inflection of TSC Peak:
Discrete Trap

One of the criteria that may be used for deter-
mining whether an experimental TSC curve is due
to a single trap or to several traps is the tempera-
ture interval T, - T, separating the points of inflex-
ion of the TSC peak (see Fig. 3). Because of the
intractable nature of (41), it is not possible to ob-
tain an exact analytical expression for this tempera-
ture interval. However, it will be noted (see Fig.
8) that virtually all the change in the Fermi function
[occupancy-see (48)] occurs in an energy interval
2kT,, centered about the trap energy E,. This en-
ergy interval corresponds to the temperature in-
terval between the points of inflection. In order to
relate 2kT,, to the temperature range T, - T, we
note that AE is proportional to T,, [see (37)]. Thus
we may write

(T, - T,)/2kT, =T,/AE,
or (50)
AT=T,-T,=2kT%/AE.

" This relationship was found to hold extremely well

for all TSC curves as shown in Fig. 9. This rela-
tionship provides a simple test for the existence of
a discrete peak and is a particularly useful one be-
cause of its independence of both cross-section and
heating rate. On the other hand, if the trap level
has already been determined to be discrete, then
this relation in conjunction with (37) provides a
means of finding the trap cross section for elec-
trons. It will be noted that the temperature inter-
val

6T=T,~T,, (51)

corresponding to the temperatures T, and T, at
which the current attains half its peak value, cor-
responds reasonably well to the temperature inter-
val T, — Ty, and this provides a rapid first-order
evaluation for TSC curves.

VI. DISCUSSION
A. Identification of Discrete Peak

Existing theories for thermally stimulated cur-
rents have dealt almost exclusively with a model
which considers only one active discrete trap as an
emitting center, together with several “deep traps”
and “recombination centers.” The latter are intro-
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FIG. 9. Plot of AT for a TSC curve obtained (a) nu-
merically from the transcendental expression (25) and
(b) from approximate formula (50).

duced merely as an artifice to give an air of reality
to an otherwise idealistic system. However, ina
real crystal the existence of a distribution of trap-
ping centers is more often the case than not.”

A group of trapping levels positioned energetically
close to each other [see Fig. 5(c)] will often yield
a TSC curve manifesting only a single peak and thus
can be mistakenly identified as a TSC curve cor-
responding to a single trapping level. However, it
is possible to distinguish between the two types of
curves because those due to several trapping levels
will be much broader than those corresponding to
any of the levels existing individually. In fact a
good criterion for establishing that a discrete trap
level is responsible for a TSC peak is the half-width
of the current peak, defined by [see (50) and (51)]

AT=2kT2/AE .

Using this equation, a value of E, may be obtained
on the assumption that a measured TSC peak cor-
responds to a discrete trap; also a value of the trap
parameter (s=v0,N,) and hence the cross section

0, may be determined from (37). Using these pa-
rameters, a TSC curve may be constructed accord-
ing to (29). If the measured TSC peak and the con-
structed curve (judiciously adjusted so that the two
peaks coincide) correlate to a reasonable degree,
then one can conclude that a discrete trap level is
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responsible for the current; otherwise, the curve
is due to a number of discrete trap levels or a dis-
tribution of trap levels. If the trap level is discrete,
and if the initial conditions were exactly reproduced,
then the initial filling of the trap »;, may be deter-
mined from (31) using two values of I,, corresponding
to two values of .

The analysis of the rising portion of the curve
also provides information on the energy depth of
the trap and its capture cross section. During the
initial rise of the curve, the occupancy of the trap
is essentially constant (see Fig. 8), and the current
is dominated by, and hence essentially proportional
to, e, for the level. Thus [see (25)] the measure-
ment of the current at two different temperatures
in this region of the curve will yield e, and #n;,.

B. Initial Conditions

Unless the same steady-state condition is ensured
before each measurement, it is very difficult to
correlate successive TSC measurements. The ini-
tial boundary conditions are related to the steady-
state photocurrent that flows in the system just
prior to the termination of the excitation, Thus,
careful control of the steady-state photocurrent can
ensure reproducible boundary conditions.

It is interesting to note that, because of the dif-
ferent occupancy functions (7) associated with dif-
ferent species,” it is quite possible to have a shal-
low trap belonging to one species R, occupied and
a deeper trap belonging to another species R, (> R,)
essentially empty for the same illumination inten-
sity. As a result, contrary to what is normally
expected, the peak of the TSC curve corresponding
to the deeper trap appears only for higher-illumina-
tion levels than that corresponding to the shallower
trap. This again emphasizes the necessity of cor-
relating the illumination intensity with the initial
trap occupancy.

C. Temperature Dependence of Parameters

To this point, we have ignored any temperature
dependence of the capture cross sections, the ther-
mal velocity, or the effective densities of states
(N, N,). Although it is relatively simple to include
these dependences in the theory, it will be noted
that these parameters always appear together as
the product vo,N, or vo,N, and have the following
typical temperature dependences:

'UOCTI/z, NCOCT3/2, on.PmT-z'

(The cross-section temperature dependence assumed
here applies toaCoulombic type of energy barrier. 9
Hence, the temperature dependence of their prod-
ucts is negligible. The trap depths (E, - E,) dis-
cussed in the text have been taken as their zero-
field values. In actual fact, in the presence of a
high field, the energy barrier to electrons and holes



1628 J. G.

trapped in the bulk will be less than the above due
to the Poole-Frenkel lowering effect. !® If the
Poole-Frenkel effect does play a role, and this may
be clarified by measuring the TSC at different ap-
plied voltages, it may be taken into account through
the equation

Et=‘Eto’ 82 (¢ /1Ke )2 ,

where E,, is the trap energy barrier with no applied
field, & is the applied field strength, €, is the per-
mittivity of free space, and K is the high-frequency
relative dielectric constant, It will be noted that

in the above discussion no mention is made of the
mobility of electrons and holes and their tempera-
ture dependence. The mobilities are not required
in the interpretation of HFTSC (high-field thermally
stimulated currents),

D. Generation Statistic

Because of the absence of recombination and re-
trapping the occupancy function of a particular trap
decays from the initial nonequilibrium statistic

FE)= @, +e,)/ (e +Tig+ Ps+ €))
to the high-field trap-occupancy function
f(E)=e,/(e,+e,).

The latter result may be deduced from the fact that
the system is decaying to the state where the rate
of emission of holes is just equal to the rate of
emission of electrons from all trapping levels.
Thus, if N, is the trap density at an energy E, and

f is the occupation function then the rate of emission

of electrons equals the rate of emission of holes
or

e, Ny f=e,Ny, (1-1);

hence,
f=e,/(e,+e,). (52)

Equation (52) is not the thermal-equilibrium statistic
tic, i.e., Fermi-Dirac statistic, since from the
definitions of e, and e, given in Sec. IIA, (52) may
be written as follows:

f=1/(1+ ¥ Ee-E) /*T),

This statistic is simply the electron-hole non-equi-
librium steady-state-generation statistic. The
statistic is symmetric about the intrinsic Fermi
energy E; (where e¢,=¢e,) where it takes the value
of %

E. Importance of Hole Kinetics

Because of the symmetry of the electron and hole
kinetic processes and the similarity between the ap-
propriate equations, remarks similar to those con-
cerning electron emission may be applied to the
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hole-emitting traps. Because of the indistinguish-
ability between the electron and hole TSC peaks,

an observed peak could arise from either an elec-
tron- or a hole-emitting trap. A TSC peak due to
a group of traps may be produced by a combination
of electron- and hole-emitting traps. The capture
cross section determined from the measurement
may be an electron-capture cross section or a hole-
capture cross section, and the energy determined
for the level may be with respect to the conduction-
band or the valence-band edges.

APPENDIX

Consider the integral

[T esE T4y, (A1)
To

where AE=FE_ - E,.
parts in two ways.
directly to yield

This may be integrated by
The first of these is performed

fT GAE/M g "B B/RT ’T
T

To 0

- fT Z(AE/kT) e BB/ g7 (A2)

The second of these requires a change of variables

x= AE/ET, dx=- (AE/kT?)dT, (a3)
and the transformation
e 2B/’ T = _ (AE/E) (e”*/x%) dx . (A4)

Substituting (A3) and (A4) into (A1) and integrating
by parts, (A1) may now be expressed as

£/T e’ d _sz -xIT
T T, w2 ¥="Ag € Ty
é£fT 2kT €
+= r, AE dx. (A5)

Now when 22T << E, a good approximation to (A1)
from (A5) is

T kT2 BT
-AE/RT - -AE/RT _KLQ ,-AE/rT
]; e ar NG e AR e .

0
(A8)
On the other hand when 27 > E, then a good approxi-
mation to (A1) from (A2) is
T

f e BE/RT g p-AE/RT _ T, eAE/RTy
Ty

A7)

On the basis of (A6) and (A7) a general approxima-
tion to (A1) for all values of T can be written as

[T e ar=[kT?/ @B+ RT)] 5T, (a8)
0
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where the value at the lower limit 7, has been
dropped in comparison to the value at the upper
limit, The accuracy of the approximation is illus-
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trated in Fig. 5 where both (A8) and (A6) are com-
pared with a numerical calculation of the integral

Aa1).
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Photoconductivity measurements in uncolored single crystals of NaCl, KCl, and KI are re-

ported.
second harmonic (Zw=3.56 eV).

The exciting source is the beam of a @-switched ruby laser (Fw=1.78 eV) and its
The experimental results show clear evidence of multiphoton

absorption processes. The nonlinear cross sections v, of two-, three-, four-, and five-
photon transitions have been measured and compared with the cross sections predicted by the

existing theories.

INTRODUCTION

In the present work we report the results of a
study of multiphoton optical transitions in alkali
halides.

The absorption process hasbeen detected by means
of the associated photocurrent. This method is in-
deed the only one capable of measuring absorption
coefficients as low as 10 cm™ or less. It may be
noted that even with a flux of 10% (photons/cm?)/sec
(which corresponds to about 30 MW /cm? of ruby
light), the three-photon absorption coefficient is
only 10~° cm™! and decreases very rapidly for higher-
order transitions.

Other investigations of multiphoton transitions
utilizing this technique are reported in the litera-
ture!’? with experimental results which differ marked-
ly. Our aim was to determine the order of the tran-
sition (i.e., the number of photons which participate
in the absorption process) and to evaluate the non-
linear cross section vy, which can be compared with
the cross section predicted by existing theories.

EXPERIMENTAL PROCEDURE

The experimental apparatus has been previously
described.

A @-switched ruby laser (Zw=1.78 eV) with a
pulse duration of 20 nsec at half-power and 200-MW

peak power was used to induce the photoconductivity.
The maximum beam cross section was about 1.5
cm?, The energy of every pulse was monitored with
a photodiode intercepting a small fraction of the.
beam. The photocurrent pulse is integrated and

the resulting voltage pulse is sent to a 556 dual-
beam Tektronix oscilloscope with a 1A7A plug-in,

The absolute calibration of the measuring system
has been obtained injecting aknown amount of charge
at the input and recording photographically the vol-
tage output, A linearity test has been performed
in the range of interest. The photodiode pulse is
also integrated and displayed simultaneously on the
other oscilloscope beam, thus giving the energy cor-
responding to the single photocurrent pulses. The
photodiode has been calibrated and tested for line-
arity by measuring the energy of the laser pulses
with a thermocouple calorimeter and the intensity
was obtained approximating the photodiode pulse
with a square pulse of 20-nsec duration,

To produce a different photon energy a LiNbO,
second-harmonic generator (SHG) has been used in
conjuction with the ruby laser. The SHG gives out
about 10-MW maximum power at Z«=3.56 eV and
the residual ruby light is filtered out using a cell
filled with an aqueous solution of CuSQ,.

Undoped monocrystals of NaCl, KC1, and KI,
with typical dimension 0.8 X 0.2 x 1 cm?, were placed



