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It is shown that piezoelectric effects can be easily derived from bulk properties and are ex-
pressible in terms of linear and quadvupole moments of variations in charge density induced
by atomic displacements., The linear-moment contribution is determined by optic macroscopic
effective charges and internal-strain parameters. The remaining terms measuredirectly the
induced quadrupole moment, and hence provide insight into the nature of interatomic forces
and chemical bonding. Special attention is focussed upon the zinc-blende structure. An im-
portant step in the derivation is the use of translation and rotation invariance to transform the
basic equations to eliminate convergence difficulties and give expressions manifestly indepen-

dent of surface configurations,

I. INTRODUCTION

The piezoelectric effect!™ is the production of
electric polarization by application of stress to a
crystal. According to convention, ! the change
in polarization P produced to lowest order in the
strain €,, can be written

Pazﬂzeaﬂv EBY"'?XEBE% 1)
y

where @, f, v, are Cartesian coordinates, and
E is the macroscopic electric field regarded as
an independent variable. Thus the piezoelectric
constant e g, is the polarization per unit strain
holding the macroscopic field & constant, and Xx&g
is the “clamped” dielectric susceptibility.

The approach taken in the present work is to
assume an arbitrary form for the change in charge
density induced at each point T in a crystal caused
by the displacement of an atom. It is then shown
that irrespective of the form of the induced charge
density, the piezoelectric constants are uniquely
specified by its dipole and quadrupole moments.

In order to arrive at the final results, it is neces-
sary to transform the expressions for the induced
polarization into sums which are manifestly con-
vergent independent of surface configuration. It
follows that piezoelectricity is a bulk effect, con-
trary to suggestions® that surface configurations
can influence piezoelectric measurements.

The macroscopic theory of the piezoelectric
effect'’? has been thoroughly worked out to extract
all independent components of the piezoelectric
tensor e,g, for any crystallographic symmetry
class. Of course, the group-theoretical analysis
rests on the fact, proved here, that only bulk-sym-
metry invariances are imposed upon the piezo-
electric constants. Here we illustrate the appli-
cation to one crystal symmetry, cubic zinc blende,
but are primarily concerned only with the micro-
scopic derivation of piezoelectricity irrespective
of symmetry requirements.
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Microscopic theories of the origins of piezo-
electricity have been described using a variety
of specific models.3™® Each model affords a partic-
ular description of charge displacement in a crys-
tal as a result of ion motion. The present work,
of course, does not modify the models, but rather
(i) provides the basic connecting link among them
and with more fundamental theories® insofar as the
piezoelectric effect is concerned and (ii) provides
a simple correct procedure for evaluating the
piezoelectric constants, eliminating the problems
caused by the notoriously poor convergence of sums
of Coulombic interactions,

On the other hand, *~® previous general descrip-
tions of piezoelectricity have relied upon pictures
of charge flowing across imaginary boundaries at
specific places in the unit cell, which are in turn
chosen in accordance with particular assumptions
about the surface configurations. Such descriptions
are unwieldly and unpalatable for the description
of a purely bulk effect and are eliminated in the
present analysis.

The paper is organized to present in Sec. II
a very simple derivation of the expressions for
the longitudinal piezoelectric constants that can
be measured in an experiment using wavelengths
much smaller than any crystal dimensions. Gen-
eral expressions for any piezoelectric constant
are derived in Sec. III for a uniform strain in a
finite crystal. There it is necessary to utilize
general invariance requirements to transform
the sums into usable uniformly convergent ex-
pressions., In Sec. IV application to the zinc-
blende-structure crystals is presented.

II. FINITE WAVELENGTH IN AN INFINITE CRYSTAL:
LONGITUDINAL EFFECT

Consider a long-wavelength phonon mode of wave
vector K, Ik|=27/X, in an effectively infinite
crystal, i.e., A < crystal dimensions, but A>>
atomic dimensions. In this case only longitudinal
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polarizations and charge-density waves are ex-
perimentally detectable. The longitudinal polari-
zation is most easily discussed in terms of the
induced charge-density variation 6p(T) defined in
general at every point T and related to P(T) by

V. DB(T)=-0p(T). (2)

It is well known'® that the spatially varying polari-
zation P(T) on the left-hand side of Eq. (2) can

be expanded to yield V. (P+V.Q+...), where P

is a dipole density, Q a quadrupole density, etc.
We shall see that the piezoelectric constant in-
volves both dipole and quadrupole, but not higher
moments of the charge-density variation produced
by displacement of an atom.

The starting point of the present analysis is that
for any phonon mode (optic or acoustic), the vari-
ation in charge density 8p(T) is the superposition
of the variations produced by the displacements
of each atom separately. Let ! be the cell index,
K=1, s the atom specie index, @, f Cartesian
components, and u;x, the displacement of the atom
at ﬁm‘ To first order in the displacements, we
have

9p(T)

op(T) =20 —L u 3
p( ) 1Ko 8RZK0¢ ﬁ.ﬁ o ( )
where
9p(T) _ - =
= r-R 4
aRZKa ﬁ,E fKa( IK) ()

is the variation in charge density at point T per
unit displacement of atom !X holding all other
atoms and the macroscopic electric field constant.
The function fq(T) must, of course, be indepen-
dent of cell index I. The electrical boundary
condition E = const is the appropriate condition
for the present work; in addition, the boundary
condition eliminates the longest-range induced
polarizations so that fx,(T) is short range, i.e.,
the characteristic range [T of fgo(T) is < any
wavelength, and the moments of f required later
are well defined.

The atomic displacements associated with any
phonon mode having wave vector k can be written

Upp= (Ug + Up) ' TRix (5)

where ﬁu, the displacement of the cell as a whole,
is independent of K, and U, are relative displace-
ments in each cell satisfying

2iUg=0. (6)
K
The total polarization of wave vector k produced
by the displacements (5) is given by
— ik P =V! [T D fra(T - Rig)tika -
IKa (7)

In the limit at K- 0 we can expand the exponential
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on the right-hand side of (7) in powers of k to find

where the constant term in the expansion of the
exponential is eliminated by charge neutrality and
Vg is the unit-cell volume.

For an optic mode Uy~ 0 and Eq. (8) becomes

~

RBi=vi [@ kT fro(T) gy
Ka
= 1161 E Eael?aﬂulfﬁy (9)
KaB

where e, is an effective charge tensor for atoms
of type K,

ekap= [ drvfra(T) . (10)

This is the “unscreened” effective charge®!! di-
rectly related to the macroscopic transverse effec-
tive charge. In general, charge neutrality requires

20 exas=0. 1)
K

9

For example, in a diatomic cubic crystal, ef,,
= —e%,, and the transverse effective charge is
er= lek,l.

In an acoustic mode there are two contributions
to P which appear on equal footings in the long-
wavelength limit. The unsymmetrized macro-
scopic strain is related to the average displace-
ment of the unit cells through®

€8 = Uy Rg . (12)

In addition, the internal strains can always be ex-
pressed as afunction of the macroscopic strains, 31213

Uk = 823 Trapr €ay (13)

where the I”s are internal-strain parameters de-
termined by interatomic force constants and the
electrical boundary conditions. Evidently both
linear and quadrupole moments of the induced
charge densities f Ka(?) appear in the piezoelectric
constant. Let us define the quadrupole moment
per unit displacement of atom K by

Qrasy = fdsV Vafke(;)yy . (14)

Then Eq. (8) reduces to the simple form [using

(1n)]
E.P;=2 EB,!:U'O‘E l%a<2 ras Tiosy — QK,,B,> ]
By Ko [}

(15)
Comparing with Eq. (1), we see that the term in
square brackets is the longitudinal (B Il £) piezo-
electric constant for any crystal.
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We must verify that the integral expressions for
the dipole and quadrupole moments, Eqs. (10)
and (14), are convergent and uniquely defined.
The proof rests on the definition that f4,(T) is the
variation in charge density produced by moving
an atom K in the absence of a macvoscopic field.
Strictly, the electrical condition cannot be formu-
lated as a boundary condition independent of geome-
try. However, we can impose the physically rea-
lizable condition that all Coulomb fields are

screened by free carriers and behave as(er)~te™"/ %,

At large 7 (2 )g) the response fx,(T) behaves as
if it were a continuous medium with dielectric
constant € in the presence of the free carriers.
It is straightforward to show that both e* and @
are convergent and independent of the value of

Ao which establishes the desired results. This
is also sufficient proof that e* and @ are well de-
fined for a finite crystal discussed in Sec. III,
since we can choose Ay <<crystal dimensions.

The simplicity of Eq. (15) requires several
comments. First the transverse-optic effective
charge is the exact coefficient of the internal
strain term because the internal strain is an optic
mode with the electrical boundary condition
E=0.%1 gecond, the macroscopic strain pro-
duces a piezoelectric effect only through the quad-
rupole moments @ because the dipole moments
of the different atoms K cancel identically. Con-
tributions of higher moments vanish in the long-
wavelength limit. These results appear naturally
and simply for a phonon in an infinite crystal; we
shall see in Sec. III, that a more tedious analysis
yields the same results for a uniform strain in
a finite crystal.

III. UNIFORM STRAIN IN A FINITE CRYSTALS

Consider a uniform strain €,5, unsymmetrized
so that rotations are included, in a finite, but
macroscopic or bulk, crystal. No assumptions
are made about the surface region except that it
is a negligible fraction of the crystal volume. In
the presence of a strain each atom is displaced
Uk + €asR1xs, Where internal strains U, are
not required to be periodic in the surface region.
Similarly, the change in charge density per unit
displacement f;xq (T — R;x) is allowed to be a func-
tion of /; in fact, in some cases it is essential to
allow f;x, to vary near the surface to account for
surface charges, for example on a [111]face of
zinc blende where surface charges are required
for the sample to have no net polarization in the
absence of strain. The only requirement on f; o (T)
is that it be short range compared to sample di-
mensions; this is always the case for bulk sam-
ples since we require E=0. Nevertheless, we
shall see that although surface effects may be
essential in a correct microscopic picture, the
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final results can be cast in a form in which sur-
face effects are manifestly negligible in a bulk
sample.

The polarization produced by the strain is

P,=Vv1 2 fda"’”’aftr{s (f- ﬁlK) (uzrm*'z €y Rigy)
1KB 14

- P 25 €g, (16)
B

where V= Ny, is the volume of the crystal and the
final term which results from dilation and is pres-
ent only in a ferroelectric where a static polariza-
tion P° exists. The contribution resulting from
internal strains U, can be straightforwardly summed
just as in the optic-mode case, !! the sum is uni-
formly convergent and is readily shown to be

Pit= vt e;aB Time €5 - amn
KBYb
Here e¢* is the transverse effective charge and
T" is the internal-strain parameter defined in (10)
and (13).

In the remaining terms involving macroscopic
strain, however, the sum over (K is weighted by
the distance ﬁ,, and is not uniformly convergent.
It appears that the value of the sum depends upon
the starting and stopping points. Here we adopt
the procedure of using invariance relations to
convert the sum (16) into one which is manifestly
convergent. The invariance requirements which
the f’s must satisfy are the following: charge
neutrality,

fdszIKoz(;):O s

which is satisfied for each atom /K and direction
«; translation invariance,

(18a)

Efll(oz(;—ﬁl’l{): -2 p(T) s
1K

o7, (18b)

which states that uniform translation of each atom
in the crystal must yield the same variation in
charge density at every point T as if the static
charge density p(T) were rigidly shifted; and ro-
tation invariance,

g [ flKa(-f—ﬁlK) RIKB _flKB(F—ﬁlK)RlKa]

(=7 oz o1 ere 2 o), (ac)

which similarly states that the charge density
rigidly rotates with a rotation of the atoms. These
invariances are exact within the adiabatic approxi-
mation, ® in which case the electrons follow atom
motion instantaneously. Of course, this is valid
for the case at hand, the acoustical properties of
insulators.

From Eq. (18) we can derive a relation sufficient
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to transform (16) into a uniformly convergent sum.
Define

Sapy = vt fds"’ 7o¢flKB<;"' R x) Rpgy
1K

= VD [ (F - Rida furs(F - Rin) Buy (19)
1K

using (18a), which is the sum needed in Eq. (16).
The rotational-invariance condition (18c) can now
be rewritten

S,

7Ba

) P} . 9 -
= Syap t Vl[d%’”r (7’3 o, p(r) -7, o, p(r))
:Sraﬁ—ﬁarpg +66y’P?x ) (20)

where the final form was derived by partial in-
tegration, and P° is the static polarization in the
absence of strain

P2 =Vt [P v0(F) . (21)

A second equality is derived from the observation
that using the translation condition (18b), one finds

vtD fd37’ Yo fiks (F-Ri)n
1K

9 -

“ 97y
(22)

From this it follows that
V-l 3 fda’r (F_EIK)afIKB (;_R.IK) (F—ﬁllf)v

1K

=(N/V) Z Qrapy

K
:6a8P3+53 Tp?x'—s)"ﬂa_saﬁr . (23)

The first equality in (23) follows from the bulk
nature of the crystal, and the second from ex-
panding the product (¥ - R,z), (¥ - R, ), and using
(18a). Finally, substituting (20) into (23) leads
to the desired relation

— -1 N 0 0
Saay == Syas—V0 Uk Qraprt OasPr + 00y Fp -

(24)

The identity relates the ill-defined sum S, to
a sum of the same form with a minus sign and
cyclicly permuted indices, plus terms which are
welldefined, the quadrupole moments Q4 and
the static moments P°. Using the relation three
times in succession, each time cyclicly permuting
the indices, and changing the sign of the S term
on the right-hand side of the relation clearly re-
turns S to the original order of the indices. This

results in an equation involving only only Sz, and
well-defined quantities, which can be solved for
S.sy. The resulting expression is easily shown
to be

— 1,-1%°
Sagy == 200" 24k (Qrapy = Quy as + Qrara) + 005 Py

(25)

which depends on surface configuration only in a
ferroelectric where depolarizing factors influence
the static polarization P°.

Inserting expressions (17) and (25) into (16) we
find the final form for the polarization

m BEPRN IS
P, =71 (€4 P~ €g PO)+ V5 s (2 €%as Tkopy
s KBy B
-3 (Qrasy — Qras + Qusva) | -

(26)
This is the general expression for the piezoelec-
tric polarization in any crystal. The first term
results from the rotation and dilation of the exist-
ing moment in a ferroelectric. It is quite analogous
to rotation-induced Brillouin scattering described
by Nelson and Lax.!® The second term might be
termed the “proper” piezoelectric effect for which
the piezoelectric coefficient is

- Y
Copy = Vg Lig (2 efas Txonr
-3 Qrogy — Urros + QKBY’Ot)] . (27)

The “proper” piezoelectric constant eﬁB, is purely
a bulk property expressed in terms of well-de-
fined microscopic quantities. It is easy to show
that since Qu5,= @,z [ S€€ Eq. (14)], &5, is
symmetric in By,

Cosr = Care > (28)
so that only proper strains and not rotations pro-
duce the proper piezoelectric effect. Further-
more, for the longitudinal effect a=y, Eq. (27)
reduces to exactly the same expression as derived
for the infinite crystal, Eq. (15).

The comments on the form of the piezoelectric
constants made at the end of Sec. II apply here
also. The definition of ¢* and @ in (10) and (14)
are unique and independent of sample geometry
or size since the long-range effects of the macro-
scopic fields are eliminated by definition. The
purely macroscopic strain generates a piezoelec-
tric polarization only through the quadrupole
moments, which appear in the microscopic theory
because of restrictions on the charge-density varia-
tions which must be satisfied for translation and
rotation invariance. Similarly, the internal-strain
contribution is uniquely determined—apart from
sign—by optic effective charges and internal-strain
parameters.
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IV. ZINC-BLENDE STRUCTURE

The zinc-blende structure is particularly in-
teresting. A purely longitudinal piezoelectric ef-
fect appears for uniaxial strain € along the [111]
direction, * P=(2/V3)ey €, ey =e,,,. The piezo-
electric constant is defined with the atom at posi-
tion 1 in Fig. 1 (minus end of 111 bond) arbitrarily
chosen to be the metal atom.® It is this choice
and not the coincident fact that the +(111) face is
terminated on metal ions that determines the sign
of the piezoelectric effect. It is convenient here
to introduce the conventional dimensionless in-
ternal-strain parameters ¢. %318 In this case,
it is easy to show that u; — u, = (2/V'3) ta/4, where
0<¢ <1 for reasonable interatomic forces and a
is the cube edge. Letting z’ be the coordinate
projected along the [111] direction, Eq. (27) or
(15) becomes

ey = 5L avy fdaV 2" [fro (F) = fou (T)]

-1V v} [ (2P [frp(F)+fon (D] . (29)

A more perspicuous form of (29) is derived by
defining f%(¥)=f1,(T) and £(T) =f,,( - T), where +
refers to the metal and — to the nonmetal. The
inversion operation in f~ transforms the symmetry
of the nonmetal atom to that of site 1. Thus,
Af,(F) = F2(7) - £, (T) is the chemical, not site
symmetry, difference between the displacement
charge densities of the metal and nonmetal.
Transforming (29) to the usual Cartesian coordi-
nate system and using the tetrahedral site sym-
metry, (29) becomes

ew=vg [d (3caz-%xy) af(F). (30)

Defining a dimensionless coefficient for the xy
quadrupole moment per unit displacement along z

AQuy. = (2/a0) [d*r xy af(F), o

the expression for e,, can be written in the simple
dimensionless form

/:(m)

FIG. 1. Unic cell in zinc blende. Macroscopic strain
€ and internal strain # of atom 1 relative to its neighbors
are indicated.
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TABLE I. Piezoelectric constants of zinc-blende and
Wurtzite-structure (for which we assign an effective ey,
=e33/V3, following Ref. 5) crystals. The contributions
to the dimensionless constant (a*/e)ey, are dipole=¢ (e}
/e) and quadrupole=—AQ,,, [see Eq. (32)].

a2 e*b Ze*

Mat. ey e u ¢ _ez _e‘11 Ay
AlSh -0.07¢ —0.16  0.73 1.93 1.41 1.57
GaP ~0.10¢  -0.19  0.67 2.04 1.37 1.56
GaAs -0.16°  -0.32  0.68 2.16 1.47 1.79
GaSb —0.13° -0.29  0.69 2,15 1.48 1.77
InAs -0.05¢ —0.10 0.76 2.53 1.92 2.02
InSb —-0.07¢ -0.19 0.78 2.42 1.89 2.08
ZnS 0.15° 0.27  0.82 2.15 1.76 1.49
ZnSe 0.05° 0.10  0.79 2.03 1.60 1.50
ZnTe 0.03¢ 0.06  0.79 2.00 1.58 1.52
CdTe 0.03¢° 0.08  0.87 2.35 2,04 1.96
CuCl 0.16f 0.31  0.87 1.12 0.97 0.66
BeO 0.05% 0.05 =0,80 ~1.85 =~1.5 =1.5

Zn0 0.64" 0.83 =0.80 ~2,10 ~1.7  =0.9

cds 0.25° 0.54 =0,90 =2.3 =2,1 =1.6

CdSe 0.20° 0.47 =0.90 =2.3 =~2,1 =1.6

*Reference 16.

bReference 11.

®Reference 5.

9D. R. Nelson and E. H. Turner, J. Appl. Phys. 39,
3337 (1968).

®Reference 6.

T, Inoguchi, T. Okamato, and M. Koba, Sharp Tech.
J. 12, 59 (1969).

€S. B. Austerman, D. A. Berlincourt, and H, H. A.
Krueger, J. Appl. Phys. 34, 339 (1963).

"A. R. Hutson, Phys. Rev. Letters 4, 505 (1960).

(aZ/e) €14 = g(egi/e)metal - AQxye . (32)

The quadrupole-moment contribution is large
only if the charge-density response Af,(T) is de-
localized. For example, in the rigid-point-ion
approximation only the first term in (30) remains.
The quadrupole term, however, is found experi-
mentally to be as important as the dipole term.
This may be seen from Table I where measured
values of ey, and e’;/e are listed. The internal-
strain contribution is an order of magnitude larger
then the measured e,, and mus? be cancelled by a
quadrupole term of the same order of magnitude
to explain the measured e;,. In Table I, Wurtzite
crystals have been included with equivalent® cubic
parameters,

Elementary considerations of the bonding in
these crystals is sufficient to estimate the magni-
tude of the two contributions to e;, and to show
why they should tend to cancel. All that is needed
is the ansatz that 2~ (T) is roughly monotonic in
IT | and is large for T along bond directions and
small along antibonding directions. Referring to
bond directions around site 1 in Fig. 1 one sees
that z and xy always have the same sign. There-
fore, the two contributions to e, always have op-
posite signs. For a more quantitative discussion,
assume Af,(T) is restricted to one-dimensional
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bond lines. Then if the weighted mean value of
xy, (xy) is greater (less) than ${aZ, the second
contribution is larger (smaller) than the first.
Roughly the two terms cancel identically if the
dominant charge response in Af,(T) is centered
at the fraction ¢ of the distance along the bond.
Since!® ¢ ~ 0.5, it is quite reasonable that such
calculation occurs.

The most important result is that if ¢ and the
sign of the effective charge can be established in-
dependently, the piezoelectric constant provides
a direct measure of the difference between metal
and nonmetal of the induced quadrupole moments.
This is a measure of charge-response delocaliza-
tion and is important in understanding the nature
of bonding and interatomic forces in crystals. Let
us make the most reasonable choice!” that e*>0
on the metal; then from e¥%, ¢, and ey, we find the
dimensionless quadrupole moments listed in the
final column of Table I. It should be emphasized
that { was calculated from a phenomenological
model. The expected accuracy is 20% for the III-
V crystals, less accurate for the II-VI crystals,
and for the Wurzite crystals only an estimate is
presented. The accuracy in AQ,,, is essentially
the same, since e; is accurately known.

Lax'® has emphasized that a very important fea-
ture of interatomic forces in diamond-structure
crystals are quadrupole-quadrupole forces. Of
course, piezoelectric constants vanish for the
diamond structure, but the importance of the quad-
rupole moments in the closely related III-V crys-
tals clearly implies large quadrupole moments
in the IV crystals also. Lax estimated that a dis-
placement u,, leads to radial moments on each
neighboring site of magnitude e’u,,, e’=~e. This
gives Q,,,~4/V3, which is consistent with the
measured values of AQ,,,~1-2 listed in Table L

The measured signs of the piezoelectric con-
stants show that [if e }(metal) >0] the quadrupole term
dominates for III-V crystals but the dipole for
II-V and I-VIII crystals. The primary conclu-
sion is that although variations in either ¢(e%/e)
or AQ.,, with chemical trends such as the ioni-
city® are quite smooth (excepting ZnO and CuCl),
no trends are well enough established to predict
quantitatively the piezoelectric constants. In
particular, analysis of the most interesting cases,
Wurtzite-structure crystals with first-row atoms,
for which ¢ is not established, '*%° must await
further refinements. We can, however, note one
expected trend: for more ionic crystals for which

atoms are presumably more rigid, A®@,,, decreas-
es more rapidly than does ¢ (e3/e) in agreement
with the interpretation of AQ,,, as an induced quad-
rupole moment.

V. SUMMARY AND CONCLUSIONS

Explicit expressions for piezoelectric constants
in terms of microscopic variations in charge den-
sity induced by atom displacement have been de-
rived and shown to depend only on the internal-
strain parameters I'y,;,%'2 and the first and sec-
ond moments of the charge-density variation pro-
duced by motion of an atom, ef,s and Qgqs,, re-
spectively. All quantities are evaluated for atom
motion in the absence of a macroscopic field, i.e.,
in the absence of long-range forces between the
atoms. In principle, the internal-strain param-
eters can be determined if the force constants
of the solid are known (see Ref. 3). In addition
it was shown that the eK*aB are exactly the trans-
verse effective charge tensors which can be mea-
sured (apart from sign) in optic experiments.
Therefore, piezoelectric constants can provide
direct measurements of the quadrupole moments
of the induced-charge-density variation. Since
in a rigid-ion model, the quadrupole terms are
zero, the piezoelectric constants provide possibly
the most sensitive test available for the applica-
bility of a rigid-ion model.

In order to derive explicit expressions for the
piezoelectric constants, it was necessary to con-
vert the basic formulas into uniformly convergent
sums. This was accomplished by using trans-
lation- and rotation-invariance requirements on
the microscopic quantities and led to the appear-

ance of the quadrupole moments in the piezoelec-
tric constants. The present proofs demonstrate
conclusively that, contrary to the suggestion of
Ref. 4, piezoelectricity is a purely bulk effect.

Note added in proof. The results of this paper
pertaining to the bulk nature of the piezoelectric
effect are illustrated for a simple model of zinc
blende by the present author.® There it is shown
that, contrary to Ref. 4, surface effects vanish
within the model (which is the same as that used
by Woo in Ref. 4).
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A general expression for the nth-order nonlinear complex-susceptibility tensor is derived

by use of many-time temperature-dependent Green’s functions.

The damping constant for non-

linear absorption is obtained from the susceptibility tensor. It is shown that the nth-order non-
linear susceptibility tensor is generated from lower-order Green’s functions and that the ex-
plicit temperature dependence of the damping constant is not affected by increasing the strength
of the applied field. It is found, by observing the frequency dependence of the susceptibility,
that the frequency w of the applied field is converted into nth-harmonic waves of frequency nw.

I. INTRODUCTION

The phenomenon of infrared absorption in ionic
crystals is connected with the dynamics of lattice
vibrations. The traditional theory of lattice dy-
namics was developed mainly by Born and von Kar-
man'~? more than fifty years ago. In this theory,
one may think of a crystalline solid as consisting
of a set of coupled springs (forces) and masses
(ions). The fundamental assumption is that atomic
(ionic) displacements in the lattice from their equi-
librium positions are small in comparison with
interatomic spacings. Hence, truncation of expan-
sion terms of interatomic potentials in powers of
the displacements at the first few anharmonic terms
(usually, third or fourth) is valid. This approxi-
mation is generally valid for a large class of crys-
talline solids, but it has recently been discovered
that it is not valid for the so-called quantum crys-
tals (for example, solid helium).* We will not con-
sider quantum crystals in this paper.

The process of optical absorption involves the
interaction of an electric field with the electric
moment of a crystal when one optically active pho-
non branch is considered. The electric moment
may be expanded in powers of the thermal dis-

placements of the ions from their equilibrium posi-
tions; the linear term in this expansion is the usual
dipole moment. Higher-order terms give rise to
continuous absorption.! The Hamiltonian of the
crystal consists of the sum of harmonic and anhar-
monic parts; the anharmonic part is obtained by
expanding the potential energy of the crystal in
powers of the ionic displacements from the equilib-
rium positions.

An interesting problem in the infrared absorption
process is that of explaining the observed tempera-
ture dependence of the damping constant of the .
fundamental lattice vibration absorption peak at
high temperature. Measurements carried out by
Heilmann® on LiF and by Hass® on NaCl show that
the damping constant varies approximately as T2
at high temperature.

In the Born! and more recent Maradudin-Wallis”
classical treatments of this problem, it is found
that this damping constant is linearly related to
temperature. Jepsen and Wallis® derived results
which showed that the damping constant was propor-
tional to T2 in the classical limit. Their calcula-
tion, unlike previous classical treatments, included
quartic anharmonic terms in the Hamiltonian. De-



