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The cluster variation method previously applied to calculate the thermal behavior of ferro-
and antiferromagnets near the Curie temperature is extended to a discussion of solid hydrogen
near its order-disorder transition. An attempt is made to describe the relationship between
the order-disorder transition and the crystallographic phase change. The orientational free
energies of the orthohydrogen or paradeuterium systems are calculated for both the face-
centered cubic (fcc) and the hexagonal close-packed (hcp) lattices. The space group Pa3 is
assumed for the fcc case and pca2& for the hcp case. Within the cluster variation approxima-
tion, a first-order transition is found to occur when the free energies for the fcc and hcp
phases cross. The fcc-hcp crystallographic transition occurs near the onset of the orienta-
tional ordering in the cubic phase. This prediction is in good agreement with experiment ex-
cept when repeated cycling is performed.

I. INTRODUCTION

Numerous theoretical and experimental studies
of the phase transition in solid hydrogen and deute-
rium have been made in the past few years. For a
review of recent experimental and theoretical work,
the reader is referred to Refs. 1-19. Although both
crystallographic and orientational order-disorder
transitions are believed to occur, the main theo-
retical effort has been directed toward an under-
standing of the cooperative ordering of orthohydro-
gen (o-H2) or paradeuterium (p-D2) molecules on
rigid face-centered cubic (fcc) and hexagonal close-
packed (hcp) lattices. ' It has been shown that the
dominant contribution to the anisotropic interactions
is an electrostatic-quadrupole-quadrupole (EQQ)
coupling and also that the EQQ interactions lead to
an orientational ordering of the molecules below
some critical temperature in a manner similar to
the ordering of spins in an antiferromagnet. Since
the EQQ interactions can be represented in a form
rather analogous to the Ising and Heisenberg models
of magnetism, the previous calculations have
made use of a number of techniques developed in
the theories of magnetic phase transitions.

Molecular -field calculations, spin-wave treat-
ments, ' a higher-order Bethe calculation, and
an exact model all predict an orientational order-
ing of the o-H2 molecules, although they do not give
good descriptions of the transition region. The
molecular-field and spin-wave treatments predict
first-order transitions, the Bethe approximation
and the exact model more gradual transitions. Also,
all theories overestimate the transition tempera-
ture by about a factor of 2. The molecular-field
and spin-wave treatments consider only the effects

of long-range order and are essentially low-tem-
perature theories. These treatments would give an
accurate description of the transition region only if
the effects of the short-range correlations between
molecules on the free energy were negligible. The
Bethe model and the exact theory mentioned above
start with a truncated Hamiltonian with no off-di-
agonal terms.

High-temperature expansions ' include short-
range correlations only. These expansions are
strictly valid for temperatures considerably above
the transition region. Raich and Etters extrapo-
late their high-temperature results into the transi-
tion region to point out that the low-temperature
theories cannot give an accurate description of the
transition region in o-Hq. They find that the low-
temperature theories significantly underestimate
the effects of the short-range correlations. In fact,
the molecular-field term contributes only about
one-half of the total orientational free energy in the
transition region. Apparently the nature of the
EQQ interactions make the contributions of the
short-range correlations between molecules to the
free energy important. This can be understood by
realizing the lowest-energy configuration for a pair
alone is different than the zero-temperature pair
configuration in the crystal. Therefore, one would
expect the competition between these two configura-
tions to result in a considerable rearrangement of
the molecules as the temperature is increased and
the long-range correlations decrease.

An alternative description is one which starts
from a spin-wave model of the librational motion
of the molecules in the crystal. ' The relative in-
stability of the low-temperature structure, Pa3 for
the fcc case, manifests itself through the large
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anharmonic contributions to the spin-wave Ham-
iltonian.

Recent experiments indicate that the hcp-fcc
crystallographic and orientational order -disorder
transitions do not occur simultaneously, but that
the orientational transition is responsible for the
crystallographic transition. ' Also, calculations
by Nosanow indicate the difference in zero-point
lattice energies for the hcp and fcc crystals may
not be enough to stabilize one over the other, at
least when orientational forces are important. Since
the structural and orientational transitions are
closely related, it is of interest to compare the free
energies of the hcp and fcc crystals in an effort to un-
derstand their connection. The effects of the short-
range correlations on the free energy are expected
to be signiiicant in the transition region, and there-
fore, it is important to include them in such a cal-
culation.

The purpose of this paper is threefold: (i) De-
velop a variational cluster approximation for the
free energy of a system of o-H2 (or p-D2) molecules
with EQQ interactions which includes to some ex-
tent both long-range and short-range correlations;
(ii) apply the cluster approximation to examine the

effects of the short-range order on the orientational
ordering in the transition region; and (iii) examine
the effect of the EQQ interactions on the hcp-fcc
structural transition.

In this paper we have only considered the libra-
tional motions of the molecules. The translational
phonon contribution, as mell as the associated static
lattice energy were not considered. A complete
discussion of the observed transition must include
both librational and translational modes, ' For
convenience we discuss only the case of 0-H3. The
results for p-Da are qualitatively the same.

A model of o-H2 molecules coupled by an EQQ
potential on rigid hcp and fcc lattices is discussed
in Sec. II. The cluster expansion of Strieb, Callen,
and Horwitz ' (hereafter referred to as SCH) is
applied to the case of solid o-H& in Sec. III. The
numerical calculations are outlined in Sec. IV,
Sec. V contains the results, and Sec. VI the con-
clusions.

II. MODEL

The model used here has been extensively de-
scribed in the literature. It consists of a system
of H~ molecules in the rotational angular momen-
tum state J= 1 on a rigid lattice interacting via
EQQ forces. The separation of successive rota-
tional energy levels of the H& molecule is equal to
593 cm and the orientational coupling energy
varies by less than 30 cm . This implies that the
EQQ interaction is a small perturbation on the ro-
tational levels, and therefore J remains almost a
good quantum number in the lattice. As a result,

it is a good approximation at low temperatures to
treat a system of o-H& molecules as all being in
the rotational state J= 1.

A. Hamiltonian

Y2 ((u;) =A 0;
where

~, = --'. (6/4~)"',

X„=~ ~(i6/2~)2'2,

X„=$(l6/2~)"2

(2.4)

(2. 6)

0',.= S(Z*,)' - 2,
O',.'= J,'J', + J', J', ,

0+2 (A+2)2

Here O',. = J& +i J';, where J";, J';, J; are the com-
ponents of the rotational angular momentum J.
0; operates on the states IZ;, M; ) =

I 1,M, ) =
I M, ),

where M; is the quantum number of J';. The Ham-

As previously discussed, the main anisotropic
contribution to the intermolecular interactions are
the EQQ interactions. ' The EQQ Hamiltonian is

H 2 ~~ Vjg(5(y Gay 5gJ) (2. l)
ij

where 6, = (6;, g, ) specifies the orientation of a mole-
cule on site i relative to the crystal axis. The term
V,~ represents the EQQ interaction between mole-
cules i and j and can be written '

V,, = '- (70&)"'r,,FC(224;M~)
MN

x Y2&(g&) Y4 z+&(g,.~) . (2. 2)

Here C(J,J2J;M&M2) is a Clebsch-Gordan coeffici-
ent, 2 1";~= 6e2Q2/2682&, where Q is the molecular
quadrupole moment, 5,, is the vector connecting
sites i and j measured relative to the crystal axis,
and the Y, (8, , Q,) are spherical harmonics.

The two lattices considered here both have four
sublattices with the molecular equilibrium direc-
tions along the axes of quantization for each mole-
cule. It is therefore convenient to transform to a
coordinate system where the z; axis for each mole-
cule i is along the symmetry direction for that mole-
cule. 7 This. transformation is ~

Y2~(fit) =~.&~ (&;, P;, y~)' Y~(~~) (2. 2)

Here D~ is a rotation matrix, o.„I3, , y,. are the
Euler angles which specify the orientation of the
2; axis relative to the crystal axis, and ~, = (8;, Q, )
specifies the orientation of the molecule at i rela-
tive to its equilibrium axis.

In the subspace of J= 1, one can replace the
spherical harmonics by their operator equivalents'6
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iltonian can now be written in operator form

(2. 7)

B. Molecular Siructures

In order to illustrate the application of the cluster
variation method we limit ourselves to only two
structures: fcc with a Pa3 space group and hcp with
a space group Pca2&. The Pa3 space group for the
fcc lattice is indicated by studies of arrays of clas-
sical quadrupoles. ~ ~ James and Baich found the
Pa3 structure yields a self-consistent description
of the ordered state of a system of interacting H,
molecules coupled by EQQ forces. This space group
is also consistent with x-ray, neutron, infrared,
Raman data, and (sp/BT)„measurements. '
Initial Raman scattering experiments found lines in
the libron spectra which seemed to be inconsistent
with the Pa3 structure. " This discrepancy has been
resolved by Harris who finds that consideration of
libron-libron interactions yields theoretical Haman
lines which are in good agreement with experiment. '

The high-temperature phase is known to be hcp.
Except possibly very near the transition tempera-
ture, no long-range ordering of the molecular ori-
entations seems to occur in the hcp phase. A sys-
tematic study by Miyagi and Nakumura of possible
configurations for the ordered (T = 0) ground state
of bcp 0-Ha concluded that a Pca2~ space group
minimized the ground-state energy. " Computer
calculations by James' confirmed this conclusion
for T=0, but that the equilibrium orientations are
temperature dependent and that other hexagonal
space groups may be favored at higher tempera-
tures. The present calculation assumes a Pca2,
space group for the hcp phase at all temperatures,
neglecting any temperature dependence of the equi-
librium orientations. Although it is found that the
molecules are not ordered in the long-range order
sense in the hcp phase at high temperatures, the
assumption of certain equilibrium orientations is
necessary for the application of the cluster varia-
tion approximation. The actual molecular orienta-
tions at high temperatures will differ considerably
from the assumed long-range ordered structure.
In fact, in the high-temperature limit the results
of the cluster variation method starting from any
particular long-range orientational configuration
are independent of that configuration and must re-
duce to the usual high-temperature expansions. ' ' '
We have allowed for the possibility of a nonideal
c/a ratio. The volume per molecule is held con-

stant when the c/a ratio is varied. The fcc and
hcp volumes were taken to be equal although a
small volume change at the transition has been
measured. Such a volume change can only be
discussed if a nonrigid lattice model is considered.

The Pa3 and Pca2& lattices both have four sub-
lattices with all the molecules on a particular sub-
lattice having the same equilibrium orientations.
Figures 1 and 2 show the Pa3 and PQ2g struc-
tures; Tables I and II give the orientations of the
equlibrium axes and intermolecular directions with
respect to the crystal axis. These are used in the
calculation of the y, &" defined in Sec. IIA for the two
lattices.

III, CLUSTER EXPANSION

Preliminary discussions of the application of the
cluster variation method to the ordering of mole-
cules in solid hydrogen and deuterium have been
given by the authors. ' In order to perform the
cluster expansion, the Hamiltonian is separated
into perturbed and unperturbed parts. This is
done by introducing an expansion parameter 0 and
an operator e, which represents the deviation of
0, from O. The "best" value of 0 is to be deter-
mined by minimizing the free energy with respect
to it. It is to be noted that 0 will not in general
turn out to be (00). This is only the case for the
zeroth-order expression. For higher-order clus-
ters, 0 plays the role of an "effective" field pa-
rameter acting on the cluster.

0
'0

'F 4

FIG. 1. Orientations of the symmetry axes of the
molecular ground states of H2 molecules on an fcc lattice.
The numbers show the sublattice to which each molecule
belongs. Pa3 space group.
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for the case of nearest-neighbor interactions. Here
z equals the number of nearest neighbors.

A. Zeroth Order

The unperturbed free energy Fo is now defined

/F0=in Tre "o,
and the correction is

—pE' = —pE+ pFO

=ln Tre "—ln Tre

(s. 6)

(3. 7)
FIG. 2. Orientations of the symmetry axes of the

molecular ground states of H2 molecules on a hcp lattice.
The numbers show the sublattice to which each molecule
belongs. Arrows at vertices represent molecules in one
hexagonal plane, arrows at the center of triangles repre-
sent molecules in the hexagonal planes immediately above
or below. The arrowhead indicates the end of the mole-
cule that lies above the hexagonal plane. All symmetry
axes make an angle of 55 with the g axis and fI!) equals
43.5'. Pca2& space group.

—PED=N y(0) 0 +N inc,
where

0
4= Tre'" &

(3. S)

(3. 9)

The trace in (3. 9) is over the states M, = a 1, 0 and

o',. ~,. )=[3(,w,.)'-2)~~,. ) . (3. 1O)

The unperturbed portion can be easily evaluated to
give

After adding and subtracting g, & y, & 0; 0& to (2.7),
and rewriting the Hamiltonian in terms of n„ the
Hamiltonian can be written

B. Cluster Expansion of I''

We define the operator t/' by the equation
-Q (Ho+H') -QH0 -g V (3. 11)

H=H +H' .
Here

Ho ——E0+ $Q. n

where
EO=Ny(0) 0

~ =-2y(o) o,

(3 1)

(3 2)

(3 3)

n;=0 —0;,

In the above,

a'=~(y', .', ~,. o, +Q y",.gO",. O", y', ', O', O', ) .-(3. . 4).
ntn

It has been shown by Blinc and Svetina that

v= a'+ (p/2! ) [a„a']+(p'/s! ) [a„[e„H']]+
(3. 12)

[Note that for the case of ferromagnetism, Ho
commutes with II' and so the separation of e ~'"0'
can be made without using (3, 12). Also, the equa-
tions developed below for the expansion of I' be-
come identical to those of SCH if one sets Q'„= Q
as shown below. ] With this, the perturbation part
of the free energy becomes

—PE' = ln( g„—]
y(0) =Z y",

=ln Trpoe ~ =in(e~ ) . (3. 13)

00

j=j.
(3. 5) Here the average is defined with respect to the un-

perturbed density matrix

TABLE I. Orientations of molecules and intermolecular axes in fcc o-H2. Pa3 space group. a =~2&& 3.757 A=~2&& lattice
cons tant.

Sublat tie es

1.
2

Coordinates with
respect to cube
corner

a/2, a/2, 0
0, a/2, a/2

a/2, 0, a/2

0, 0, 0

Direct cosines
y of equilibrium
axes of molecules
on sublattice

3 'i2(-1, 1, 1)

3-'i'(1, 1, —1)

3 i(l, 1, 1)

Polar angles specifying the
directions Q

&&
from a molecule

on sublattice 4 to nearest
neighbors on sublattices 1, 2, 3

6=7r/2, p=+ 7r/4, + 37r/4
e=~/4, 3~/4
y=7/2, 3'/2
e=~/4, 3~/4
/=0, Yr
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TABLE II. Orientations of molecules and intermolecular axes in hcp o-H2. Pca2i space group. The length of unit-
cell side along the hexagonal axis is c. The nearest-neighbor distance is a for molecules in the same hexagonal plane
and r for molecules in different hexagonal planes. For the ideal hcp case where c/a= {8/3), r= a, and c/2m= {2/3)
pi = 0.59419, y2 = 0.56387, y3 = 0.57385, a =3.761 A = lattice constant.

Sublat tice

Coordinates with
respect to center
of hexagon

0, 0, 0
a/2, v 3a/2, 0
0, a/vS, c/2
-a/2, -a/2&3, c/2

Direction cosines
y of equilibrium
axes of molecules
on sublattice

{7i V2 73)
{-Vi V2. V3)

{7&
—7~ 73)

{—v~ -v2 v3)

Polar angles specifying the
directions 0&& from a molecule
on sublattice 1 to nearest
neighbors on sublattices 1, 2, 3, 4

0=m/2, y=0, 7(

e=~/2, y=~/3, 2~/3, 4~/3, 5~/3
e=coe '(+c/2~), y= z/2
O=cos {+c/2y)
/=7'/6, 11»/6

po ——e "o/Tre (3. 14)

in terms of which the average of an operator A is

(A) = TrpoA .
I

H can be written as
H' =Q V, ( = 2+ Q

e

(3. 15)

(3. 16)

=sing~~+

Y&g (J )Oq" 5~,,&+OP Jy5„,+g)
jj k mfa

where o = (i, j) numbers the pairs or "links" in the
crystal. The commutator [Ho, H'] again is a sum
of two-body interactions:

[Ho, H']= —$Q Q [0, , Vgg]

PE'=-&[ & [-»(.&,]]=Z [-PE( &] (3.»)
f('I} t OI}6 (o)

In the above, (5}is a cluster of spins. ( n},des-
ignates a set of links which can be drawn among
the spine (5}in such a manner that there exists
some path from each spin to every other spin. The
contribution to E», &

of each set of links ( o.},is giv-
en by

(e}g
—PE! &

= Q ( —1)' ' ' 'ln( ~'o") . (3. 22)
f~'}

The sets of links ( u'} over which the summation is
to be carried constitute all subsets of the set ( o.},.
[n] and [o.'] denote the number of links in (5}and
(o.}», respectively. The g goes over all links in
the set (o.'}.

=Q V', q= 2+ [Ho, Q ] .
e

(3. 1 I)

V=2+ q.', (3. 18)

Similar expressions are found for higher-order
terms. Therefore one can also write V as a sum
of pair interactions

—pF&z&= g ln(e ~~ss)
(if)

(3. 23)

C. Two-Spin Cluster Approximation

Using (3.21) and (3. 22), it is found that the two-
spin contribution to the free-energy correction
term ( —PE') is given by

where

+ (P'/S!) [H„[H„q.]]+.. . . (s. 19)

where Q&& is given by (3. 19), and the summation is
over all pairs (ij). Considering only nearest-neigh-
bor interactions, and assuming all sites i are equiv-
alent, (3.23) becomes

As a result —PE' becomes

—PE' = In(e ~~&'o~) . (s. 2o)

8
—PE'&z&= — Q ln(e o~&) .

2 /=i

One must evaluate

(3. 24)

With the correction to the free energy in this
form, the cluster expansion of SCH can be applied
to this problem. In that paper, SCH show that for
a free energy which can be expressed in terms of
pair interactions, a cluster expansion can be per-
formed in terms of clusters of links. After this is
done, the expansion can be regrouped so as to apply
to clusters of spins, or molecules in the present
problem. They arrive at the following expression
for S'.

ln(e o~&) = ln Tre "oe o~&+ PEO . (3.25)

Since [Ho, Q';&]WO, the exponents in (3. 25) cannot
be added. However, using (3. 11) and (3, 12) with
H'= 2 Q',

&
yields

-0(Hp+2Q~y) -QH p -QV (3. 26)
with

V= 2@,q+ (P/2! ) [Ho, 2Q, )]+ . . ~ =2 Q',
q . (3.2I)

Therefore,
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8 (H p+2 Q U ) -0H p e -2' Q ij (3. 28) D. Three-Spin Cluster Approximation

and (3. 25) becomes

ln Tre '"P' i&'+ PI"
p .

Inserting o, =O —0, , Q, ~
becomes

(3. 29)

0',. ~ H, (zq), (3. »)
wher e

Hz(zj) = 2 [ —(z F + y, , 0) (0&+ 0)) + Q y&~" 0& 0) ].

Substituting (3. 32) into (3. 29), one has

9

ln(e zo&&)= —2py;&0 —21nC+ln Q e
l =1

(3. 32)

(3. 33)

where the v (i&j) are the eigenvalues of Hz(ij). With
this, —PI 'z) becomes

g 9
—PE'&z& = -N y(0) O' Nz InC + —-~ ln Q e

2

(3. 34)

Q&)=y;)0 —y, )0(0;+0))+Q y&)" 0; 0) (3. 30)

and

H&&+ 2Q() ———Ny(0) 0 + 2 y;, 0

There are two types of clusters which contribute
to —PE' in the three-spin cluster approximation.
They have been discussed by SCH, and consist of
triangles and V-linked diagrams. Using (3.21) an&

(3. 22), one finds that the contribution of the tri-
angles to —PE' is

—ln( exp[ —2 p(Q'; ) + Q )k) ] )

—ln(exp[ —2 p(Q'„+ Q„',.)] ) —ln (exp[ —2 p(Q'k;+ Q';, )] )

+ ln( exp( —2P Q', q) ) + ln( exp( —2P Q',,) )

+ ln(exp( —2P Q„';) ) j, (3. 38)

where the summation is over all sets (ijk). The
contribution of the V-linked diagrams is

{In(exp[ —2P(Q', , + Q,'.„)])
(ice)

—1 (-p[-2&(Q'„Q,';)])
—ln(exp[ —2p(Qk, . + Q';, )]) —2 ln(exp( —2pQ', ,))

+ ln(exp( —2(3Q&k) ) + ln(exp( —2pQ'k&) ) ] . (3. 39)

Therefore the contribution to —PE' by three-spin
clusters (ijk) is

Adding the zeroth-order and the two-spin contribu-
tions, one has the complete two-spin cluster ap-
proximation to the free energy:

—PE~ ———PEp
—PF'(~ )

(3) = & —~+{i&k) ~

(ijk)
where

—& ( &k)
= (expl. — P(Q';g Q+' +&kQ';)])

(3. 40)

9
= N(l —z) lnC + —Q ln Q e "& "~' . (3. 35)2, =1 r=1

For the Pa3 lattice, all pairs (ij) are equivalent,

pp p if ij are nearest neighbors
0 otherwise

and
y(o)= y"

In this case v (ij)&= »& and (3. 33) oecomes

—ln(exp( —2PQ', ,) ) —ln(exp( —2PQIk) )

—ln(exp( —2PQk';) ) . (3 41)

Assuming nearest-neighbor interactions only, for
which

if ij are nearest neighbors 3. 42
otherwise,

it is found that only two types of triplets contribute
to —PE'(3). In that case,

9
—PE &z&

= N(l —z) lnC +—ln Q e
Nz
2

(3. 36)
—(3E'&3&= Z' —pE(;„)(&)+ Q" —pE(,„)(V), (3. 43)

(ice) (i jk)

which is identical to Eq. (52) of SCH. For less
symmetric lattices, (3. 35) will not necessarily re-
duce to (3. 36). In particular for the Pca2, lattice,
the pairs (ij) are not all equivalent. In this case,
(3. 35) becomes

9
—PE&z&=N(l —z) lnC + Q a, ln Q e k"&&k',

A,'

(3. 37)
where the sum on k is over the nonequivalent pairs
(ij) and a, gives the weight of each.

where the primed summation is over all sets (ijk)
such that i, j, and k are all nearest neighbors, and
the double-primed summation is over all sets {ijkj
such that i, 0 are nearest neighbors of j, but not of
each other. For the second sum —pE'(ok) is found

by setting Q„'& ——0 in (3.41).
The terms ln(exp( —2PQ', ,.) ) in (3. 41) have been

evaluated in Sec. III C. The term

ln(expl. 2P(Q g+ Qgk+ Qk&)l )'
= ln Tre o exp[ —2(3(Q)+ Q~k+ Q„',)]+ pEO . (3. 44)
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+ (P ls! ) [Ho, [Ho, 2(Q((+Q»+Q3()]]+ ~ ~ ~ . (3. 46)

However, use of (3. 19) shows that

V=2(Q';, Q'„Q.', ) . (s. 4v)

Therefore, using (3. 11) one has

e '"'exp[ 2P—(Q'(g+ Q»+ Q))()]

=exp( —P(Ho+2[Q; +Q +Q ]6 (3 46)

Evaluating the exponent as in Sec, III C, one finds

ln(exp[ —2P(Q',.&+ Q»+ Q3()] ) = —2P(y, &+ y»0+ y030() 0

27
—3»C+Ing e "')"»' (3 49)

l~1

Here the v', (ijk) are the eigenvalues of

H3(ijk) = —(3 $ + 2 y(& 0) (0(+ 0&) —(3$ + 2 y» 0)

x (0&+ 0,') —(-,' $ + 2 y,",) (0„'+0,)

Using (3. 33) and (3. 49), (3. 41) becomes, for the
case where ijk are all nearest neighbors,

87
—PS'„„&(~)= 31n4+in g e-'"i((»& —» Z e '")'"'

l=1 gzj.

9 9
Wv& (»)» g~ -()v) (3()

g 1 1

(3. 51)
For the clusters where i and k are nearest neigh-

bors of j, but not of each other, (3. 41) becomes

—P&(($3)(V) = »(exp[ —2P(Q(g+ Q»)])

—ln(exp( —2P Q'(&) ) —ln(exp( —2PQ» ) ) . (3. 52)

This is simply (3. 41) with Q„', = 0. As a result, one
can immediately write

ln(exp[ —2P(Q(&+ Q»)]) = —2P(yo(&0+ y») 0
27

—sink+ ln Q e "&"", (3. 53)
i=1

where the )&')'(ijk) are the eigenvalues of

H3 (ijk) = —(—,
'

$ + 2 y, ) 0) (0(+ 0)) —(—,
'

$ + 2 y~3 0)

x(o +o,) -(-'~) (o,+o')

As in Sec. IIIC, one defines Vby

exp[ P[HO+2(Q(g+ Q»+ Q3()0=e '"'e ",
(3. 45)

and uses the theorem of Blinc and Svetina3' to write

V = 2(Q„+Q„+Q, () + (Pl2 t ) [Ho, 2(Q(g+ Q»+ Q, ()]

Therefore, (3. 52) is
27

—PS'I(, »& ( V) = InC + ln g e~") ""&

&=1

P~(3) P 0 P~(3& P (3& (3. 56)

Using (3. 35), (3. 43), (3. 51), and (3. 55), collecting
terms, and performing the indicated sums, (3. 56)
becomes

—PZ(» = —(z —i) (~ -2) Inc
N

(3) 2

9
+ (zq —22+ 3) Q a3ln Q e 3"&(3)

&=1

.27

+ (z —g& —1) Q b„ln + e ")™
m

in ~ ""&(") (S 5V)3t
n

Here z1 is the number of nearest neighbors which
two nearest neighbors have in common. If all pairs
(n=i, j), V-linked diagrams (m=i, j, k with i, k be-
ing nearest neighbors of j, but not of each other),
and triangles (n = i, j, k with i, j, k all being nearest
neighbors) are equivalent, there is only one term in
each of g„, g, Q and aq=b)=c&=1. However, in
general, there are several nonequivalent sets of
each type of cluster and then g, , g„, Q are over
all nonequivalent clusters, with a„b, c„giving
the weight of the k, m, and nth clusters, respec-
tively. In particular, for the I'a3 lattice all pairs
(ij) are equivalent, so g» a3= 1; there are two non-
equivalent triangles, and seven nonequivalent V-
linked diagrams. The weights a~, b, c„are listed
in Tables III, IV, and V, respectively, for both the
I'as and Pca2~ structures. [Note that for magne-
tism, all pairs, triangles, and V-linked diagrams
are equivalent and in this case, (3. 5V) reduces to
Eq. (65) of SCH. ]

IV. CALCULATIONS

In the numerical calculations, an arbitrary pa-
rameter )) was put into H3(ij) so the model could be
varied from an Ising (q = 0) type to a Heisenberg
(q = 1) type with )& measuring the amount of the off-
diagonal EQQ interaction in the Hamiltonian. With
the insertion of this parameter, (3. 32) takes the
form

H (zj) = 2([y(0) —2 y„'] o (o', + o', )

9 9
—ln Q e ")""—in g e "&'' ' . (3. 55)

1=2

The total three-spin cluster approximation to the
free energy is

+Q (y(&" 0("0&+yp30& 0,") . (3. 54) + &I Q y()" 0( Oq} . (4. 1)
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TABLE III. Representative two-spin clusters and their
weights for the fcc and hcp l.attic es. Molecules v', and j are
nearest neighbors, Ogy = (8]y, 0(J) are thepolar angles speci-
fying the direction of R~&. For the Pca2~ lattice, ) R&& [ = y for
molecules indifferent hexagonal planes, and IR&~ I =a for
molecules in the same hexagonal plane when c/a & (8/3) ~

Sublat tie e

vr/2

Pa3

Pca2~

Weight

vr/2

vr/2

cos '(c/2r)
cos (c/2/)
cos (c/2v )

0

vr/3

vr/2

Vvr/6

11~/6

2/12
4/12
2/12
2/12
2/12

poo';= a(o';+o~) p2(fi) (4. 2)

However, in this calculation, the best value of 0
has been determined by minimizing F&&& numerical-
ly. Therefore it can be used in (4. 2) to obtain a
value of the long-range order parameter n=-,' (1
+ —,

' (00)) within the two-spin cluster approximation.

The calculation of the two-spin cluster approxi-
mation for a given value of g involves the following
steps: (a) Select a reasonable range of values of
the parameter 0. An estimate of this range is giv-
en by the limits on 0 in the molecular-field case
where 0= (Oo). (b) Pick a set of trial values of
0; diagonalize the fcc and hcp two-spin Hamiltonians
and calculate the respective free energies. (c)
Approximating —PF +, as a quadratic in 0 at its
absolute minima, use the two values of —PF +& next
to the lowest calculated value of —PF g) to calculate
a minimum, then invert to find the corresponding
value of 0. (d) Minimizing E,z& with respect to 0
shows that the best value of 0 is determined by the
solution of

(e) Repeat steps (a)-(d) for other temperatures.
(f) Values of C c/a ranging from 10 to 0. 1 were
inserted and the calculations redone to examine the
effects of varying the intermolecular distances and
angles on the hcp free energy. The variation of
&c/a entered only into the calculation of Z;&"(fl;&).

The same procedures are used in the calculating
three-spin cluster approximation to the orientational
free energy.

V. RESULTS

A. Two-Spin Cluster Approximation

The results for the long-range order parameter
yg for the two-spin approximation are shown in Figs.
3 and 4. For g= 0, the first-order transition pre-
dicted by molecular-field treatments does not oc-
cur. However, n does undergo a very rapid transi-
tion from a value near one-third to near zero. This
transition occurs in a temperature range very close
to the first-order transition temperature predicted
by molecular-field treatments. As g is increased,
the transition becomes sharper in the cubic case
and for g-0. S, one obtains a first-order transi-
tion. ' For the Pca2q lattice, no phase transition
is observed for any value of g. In both cases the
temperature for which the molecules start to order
decreases with increasing g.

Figures 5 and 6 show the difference between the
orientational free energy calculated using (3. 36) and
(3. 37) and the completely orientationally disordered
phase, &Fz=F&+Nk& Tln3. The Ising models for
the I'a3 and I ca2& structures show the correct low-
temperature behavior for which F I z p= Ul z o

=(OIHI 0). However, for nonzero values of q the
two-spin free energy deviates from the correct val-
ues at low temperatures. This deviation is larger
for the hcp lattice than it is for the fcc lattice, and
indicates an overestimation of the importance of
short-range order at low temperatures by the two-
spin cluster approximation. This also is shown by

Weight

TABLE IV. Representative three-spin clusters and their weights for the fcc and hcp lattices. Molecules i, j, and 0
are all nearest neighbors of each other. 0&&= (8~&, p&&) are the polar angles specifying direction of intermolecular axes.

Sublattice
z k egg ~yk ~gk

vr/4

vr/4

Pa3
vr/2

3vr/4
vr/4

3vr/2
3,/4

vr/2

3vr/2

3vr/4
18/24

6/24

vr/2

vr/2

vr/2

~/2
vr/2

vr/2

vr/2

0
0
0

vr/3

vr/3

2vr/3

2vr/3

vr/2

cos &(+c/2&)
cos ~(- c/2~)
cos-'(+ c/2x)
cos &(- c/2&)
cos ~(+c/2y)
cos (- c/2g)

2vr/3

7vr/6

vvr/6

Vvr/6

7vr/6

11vr/6
11vr/6

vr/2

cos ~(- c/2z)
cos i(+c/2g)
cos"& (—c/2&)
cos ~(+c/2v)
cos" (-c/2x)
cos (+ c/2~)

«/3
5vr/6

~vr/6

3vr/2

3vr/2

3vr/2

~vr/2

6/24
3/24
3/24
3/24
3/24
3/24
3/24
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TABLE V. Representative three-spin clusters and their weights for the fcc and hcp lattices. Molecules i and k are
nearest neighbors of j, but not of each other. 0&&

= (0;&, (Ip);&) are the polar angles specifying the direction of the inter-
molecular axis.

Sublat tie e
Weight,

~/4
~/4
~/4
~/4
~/4
~/4
~/4

~/4
~/4
m./2
~/4
~/4
~/4
~/4

0
m/2

3&/4

37t/2
0

3z/2

24/84
12/84
12/84

6/84
12/84
6/84

12/84

m/2

7t/2

m/2

~/2
m/2

m/2

m/2
m./2
7t-/2

7t/2
m./2
7t-/2

m/2

m/2

7r/2

x/2
vr/2

x/2
7t-/2

7|/2
~/2
7t-/2

n/2
m/2

cos '(+ c/2r)
cos '(+ c/2r)
cos ~(+c/2r)
cos '(- c/2r)
cos ~(- c/2r)
cos i(+c/2r)
cos i(+ c/2r)
cos (+ c/2r)
c os '(+ c/2~)-

0
0
0
0
0
0
0

~/3
w/8

7t-/3

~/3
~/3
~/3

27t./3
27t/3
27|./3
27t-/3

2w/2

4~/3
4&/3
5~/3
5~/3

7t-/2

7t/2

7t/2

vr/2

7r/2

7~/6
7~/6

11~/6
1171./6

7(./2
cos (+ G/2r)
cos (- c/2r)

m/2

x/2
cos (+ c/2r)
cos (-c/2r)
cos (+ c/2r)
cos (-c/2r)
cos ~(+c/2r)
cos (-c/2r)

m-/2

cos (+ c/2r)
cos (- c/2r)

x/2
cos (+ c/2r)
cos (-c/2r)

w/2

cos '(+ c/2r)
cos-'(- c/2r)
cos '(+ c/2r)
cos '(- c/2r)
cos ~(+ c/2r)
cos i(- c/2r)
cos '(+ c/2r)
cos (+ c/2r)
cos i(+ c/2r)
cos '(- c/2~)
cos"~ (—c/2r)
cos-'(+ c/2r)
cos ~(+ c/2r)
cos (+ c/2r)
cos i(+c/2r)

5~/3
11~/6
11~/6

0
7t/3

z/2
m/2

7~/6
7~/6

11m/6

11~/6
z/3
x/2
7r/2

2' /3
m/2

m/2

27t/3

7~/6
7~/8
7~/6
7~/8

11&/6
11~/6

~/6
8~/8
3z/2

~/6
~&/6

~/6
8~/8

~/6
5~/6

4/84
2/84
2/84
2/84
4/84
4/84
4/84
2/84
2/84
4/84
4/84
2/84
2/84
2/84
4/84
2/84
2/84
2/84
4/84
4/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84
2/84

the fact that the molecules do not order at all for
q= l.

The Gibbs potential Q=F+ t/' is minimized for a
phase transition at constant pressure. Crystal-
lographic transition will occur when AG = G(fcc)
—G(hcp). However, AG= r F+pb U and for normal
pressures where p-1 atm, the term pb, U/Nks
& 7&& 10 ' K and can be neglected for solid o-H2.
Therefore, a comparison of F(fcc) —F(hcp) is ade-
quate. Figure 7 shows plots of this difference for
several values of ~~. It is seen that a structural

transition does occur in the region where the two-
spin cluster variation method is valid, that is, for
g &0.75. The hcp phase is favored at high tem-
Peratures. One finds n.F/Nks T, -5x10 3 for T
greater than the fcc-hcp transition temperature,
T„,„„, Here T, is the branching temperature
and k~ is Boltzmann's constant. For o-H~, T, has
a value 19I'/3k~ = 4. 91 K using 1 = 0. 539 cm '. '
This gives nF/Nks-2. 4x10 K. An estimate of
the difference in the zero-temperature lattice con-
tribution to the free energy also indicates the hcp
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0.4

0.3-

0,2-

O. l—

0. I—

0.0
0.0 0.4 0.8

T/ Tb

1.2 1.6

FIG. 3. The long-range order parameter n for fcc
o-H2 vs the reduced temperature for several values of
the anisotropy parameter g, calculated using the two-
spin cluster variation method of SCH. Pa3 space group.

lattice is favored by about 10 ' K over the fcc
phase. The above results are for bc/a= 0; here
&c/a measures the deviation of the c/a ratio from
the ideal hcp value of (8. 3) ~ . With ac/ax 0, one
finds a structural transition even for g= 1.0. How-

ever, it occurs at very low temperatures in the
region where the two-spin cluster approximation
is not expected to be valid. For deuterium I'
= 0. 736 cm ' from optical data, so that T„=6. 71
K.

B. Three-Spin Cluster Approximation

The three-spin results differ substantially from
those of the two-spin approximation. The three-
spin calculation was performed only for q = 0. 0 and
g= l. 0 because of the large amounts of computer
time required. The g= 0 results are nearly the
same as the corresponding results for the two-
spin cluster approximation and will not be pre-
sented.

The extrema of the free energy for the fcc and

hcp lattices are shown in Figs. 8 and 9. The as-
sociated branches of the long-range order param-
eter for the two lattices are shown in Figs. 10 and
11. Related curves are indicated by similar letter-
ing. Within the three-spin cluster approximation
we find two first-order orientational transitions
in the fcc and hcp lattices under consideration.
However, the details of these transitions are quite
different.

In the fcc lattice, at low temperatures the stable
solution (labeled A in Fig. 8) is a state for which
n is nearly zero. This corresponds to ordering
along the z axes. As the temperature is increased,
n increases gradually until T/T~ is between 0. 73

0.0
0.0 0.4 0.8

T/Tb
1.2 1.6

FIG. 4. The long-range order parameter n for hcp
o-H2 vs the reduced temperature for several values of the
anisotropy parameter q, calculated using the two-spin
cluster variation method of SCH. Pca2~ space group.

0.0

-0.2

-0.4
D, Fg

keTb

-0.6

-0.8

- l.O

0.0 0.4 1.2 1.6

FIG. 5. Contribution of the orientational coupling to
the free energy per molecule for fcc o-H2 within the two-
spin cluster approximation. The difference between the
free energies of the ordered and disordered phases is
shown for several values of g. Pa3 space group.

and 0. 74. A first-order transition then occurs to
the state labeled B in Fig. 8. In this state 2=0. 5

at low temperatures, and the molecular axes are
ordered in the x and y planes. Since the z axes are
along the [+1, +1, +1] directions, these are planes
perpendicular to the [+1, +1, +1) axes. In the
same temperature region, the solutions labeled D

and E appear. Solution E is a relative minima with
n- 3 and is a state with no long-range order. For
T/T, between 0. 78 and 0. 79, another first-order
transition occurs with the system going to the state
with no long-range order.

For the hcp system, the molecules also order in

the state (labeled A in Fig. 9) with n= 0 at low tem-
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0.0 - 0.20

-0.2 -0.40

-0.4
DFg

Nkl, Tb

-0.6

-0.60

-0.80

-0.8
-1.00

-1.0
0.0 0,4 0.8

T/Tb
1.2 1.6

FIG. 6. Contribution of the orientational coupling to the
free energy per molecule for the hcp o-H2 within the two-
spin cluster approximation. The difference between the
free energies of the ordered and disordered phases is
shown for several values of g. Pca2~ space group.

-1,20

- I.40 I I I

0.45 0.60 0.?5 0,90
T/Tb

FIG. 8. Free energy for the fcc (Pa3) structure show-
ing all branches of the solution. A particular extremum
and its corresponding order parameter in Fig. 10 have
the same lettering.

peratures. As the temperature rises, n increases,
but more rapidly than in the cubic case. When T/T,
is between 0. 71 and 0. 72, this system also under-
goes a first-order transition to the state labeled B
in which n-0. 5. However, the solution corre-
sponding to n- 3 or the completely disordered state
does not appear. Rather, the order parameter in

the ordered state at low temperatures makes a
rapid transition from a value near zero to a value
near one-third. For T/T, between 0. 80 and 0. 81,
a first-order transition occurs from the state in
which n-0. 5 to the state in which n now has a value
near one-third.

The difference between the minimum orientation-
al free energy in the three-spin cluster approxima-
tion calculated using (3. 57) and the completely dis-
ordered state is shown in Fig. 12 for the fcc and

hcp lattices. The behavior of the free energy is

substantially improved by the inclusion of the three-
spin clusters. In the low-temperature and high-
temperature regions, large amounts of free energy
remain indicating the remnants of short-range
order imposed on the system by the use of the
cluster approximation. As we noted previously,
the anomaly in the specific heat near the transition
temperature for which 8 F/BT & 0 indicates devia-
tions of the molecular symmetry axes from the
I'a3 directions as a result of the increasing im-
portance of the interactions of smaller clusters of
molecules at higher temperatures.

The possibility of the quadrupole-quadrupole in-
teraction leading to a structural phase transition

o 004

0
CL
O

LL~ -0.04—
I

O
O

-0.08—
L

ol

-0.00-

-0.40-

I
~ -1.20-

0"

PCQ 21
ac/a =O. l

-0. 12
0.0 0.4

I

0.8
T/ Tb

1.2 1.6

FIG. 7. Comparison of the two-spin approximation to

the orientational free energies of fcc and hcp o-H2 for
several values of q.

0.0 0.3 0.6 0.9 1.2

T/Tb
1.5

FIG. 9. Free energy for the hcp (Pca2&) structure
showing all branches of the solution. A particular extre-
mum and its corresponding order parameter in Fig. 11
have the same lettering.
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-0.20

0.50
Pa3

-0.30

0.40—
LLI

LLI

0.30—

Cl 0.20

O

0. I 0—

-0.40

-0.50
z'.

-0.60
GO

Cl
-o.7o

I

LI

-0.80

can again be examined by a consideration F(fcc)
—E(hcp), where F(fcc) and E(hcp) refer to the
orientational free energy within the three-spin
cluster approximation. For q= 1 and bc/a=0, the
fcc phase is stable at low temperatures. In the
region where the molecules order in the plane per-
pendicular to the t a 1, a 1, a 1] directions, the hcp
lattice becomes stable over a small temperature
range. The exact transition temperatures cannot
be determined from our results. However, ex-
amination of the results make it appear that hcp
phase becomes stable at about T/T~ = 0. 72 and then
destabilizes at about T/T~= 0. 77. For bc/a- 10
the hcp free energy is raised slightly. For bc/a
& 10, and increasing, the hcp free energy drops

0.50— 8 Pca2I

Ic/a = O. l

0.45 0.60 0.75 0.90
T/ Tb

FIG. 10. The long-range order parameter n for fcc
0-H2 vs the reduced temperature with the anisotropy
parameter g =1, calculated using the three-spin cluster
variation method of SCH. Pa3 space group. The vertical
lines mark the first-order transitions.

-0.90

-1.00
0.0 0.3 0.6 0.9 I.2 I.5

T /Tb
FIG. 12. The difference between the orientational free

energy calculated in the three-spin approximation and the
completely disordered state for the fcc and hcp lattices.
Straight lines represent the energies of the completely
ordered states. Energies in the hcp case are shown for
M/a=0. 0 and 0.1.

rapidly until bc/a is slightly larger than 0. 01. At
this point the hcp phase becomes stable at high
temperatures. Figure 13 shows the difference be-
tween the fcc and hcp orientational free energies
for &c/a = 0. 0 and 0. 1.

Inclusion of the estimated difference between the
zero-temperature lattice energies increases the
temperature range over which the hcp phase is
stable. The transition near T/T, = 0. 72 is insensi-
tive to variations in &c/a, or changes in the esti-
mate of the zero-temperature lattice contribution
to the free energy because the fcc free energy drops
rapidly in this region. This transition remains
when &c/a or the lattice contribution to the free en-
ergy are large enough to make the hcp phase stable
at all high temperatures.

0.40—
LIJ

0.50—

LLI

Q 0.20—
O

C

0. 10—

0.00 0.30 0.60 0,90 1.20
T/ Tb

FIG. 11. The long-range order parameter P for hcp
o-H2 vs the reduced temperature with the anisotropy
parameter g =1, calculated using the three-spin cluster
variation method of SCH. Pca2~ space energy. The
vertical lines mark the first-order transitions.

z o5o-

0O

LL
I

-0.50—

O
O~ -I.OO-

LL

6c/a =Q. l

c/a =0.0

- I.50'
0.0 0.3 0.6 0.9 I.2 I.5

T /Tb
FIG. 13. Comparison of the three-spin approximation

to the orientational free energies of fcc and hcp o-H2.
Included are the differences for Ac/a=0. 0 and O. l.
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VI. CONCLUSIONS

The two- and three-spin cluster approximations
have been applied to rigid-lattice models of hcp and
fcc o-Hz molecules interacting via a quadrupole-
quadrupole interaction. These approximations lead
to significant improvement over previous theories
in the transition region because of the inclusion of
the two-molecule, three-molecule, etc. , correla-
tions as well as the effects of molecules outside the
cluster by a variational procedure. However, es-
pecially at low temperatures, it overemphasizes
the importance of short-range correlations.

Comparison of the order parameters and free en-
ergies for q = l. 0 show that the three-spin cluster
approximation gives much better results than the
two-spin method, In particular, we find the two-
spin order parameter behaves correctly only at
higher temperatures, whereas the three-spin order
parameter approaches the correct low-temperature
limit in agreement with molecular-field and libra-
tional-wave treatments.

The first-order orientational transitions observed
have not been predicted by other calculations and
could be the result of the approximation. It has
recently been shown that within the framework of
the molecular-field theory the nearest-neighbor
approximation can lead to spurious results. " Since
these transitions occur in the same temperature
region as the anomaly in the free energy, it is prob-
able that they are not physically significant. How-
ever, the transitions are important insofar as they
reflect the instability of the lattices under consid-
eration with respect to space groups with other
types of ordering. In this temperature region, the
molecular axes show large deviations from the
Pa3 symmetry directions and the inclusion of fur-
ther interactions could affect the behavior of the
order parameter. The effects of further neighbor
interactions are presently under investigation. It
may also be that other lattices become stable in
this region as has been found in molecular-field
studies by James. He performed self-consistent
calculations with random initial molecular config-
urations and found several lattice with free ener-
gies close to those of the Pa3 and Pca2& lattices.
The present calculations are being performed for
those lattices which he found to be stable or nearly
stable using the molecular-field approximation.
Preliminary indications a,re that the P2&/c space
group has a lower orientational energy than either
the Pa3 or Pca2~ structures at high temperatures.
Consideration of this space group removes a sub-
stantial portion of the anomalous behavior of the
free energy. Inclusion of other lattices may re-
move the remaining portion.

It has been suggested from experimental evidence
that the molecules begin to order in the hcp phase,
then this structural transition occurs and aids in
the ordering. Our results could be interpreted in
that manner since the free energy of the stable solu-
tion n-0. 5 is not much lower than the disordered
solution, and hence the disordered solution might be
made stable by the presence of defects. The mol-
ecules would then start to order in the hcp phase
with the structural transition occurring when the
molecules would be more aligned in the fcc phase
than in the hcp phase. From a comparison of the
order parameters, we see this would happen at
about 2'/T, = 0. 75, or T =- 3. 68 K which is much
closer to the predicted structural transition at about
2. 8 K for orthohydrogen ' than previous treat-
ments. For deuterium the 0. 757, is 5. 03 K and the
extrapolated transition temperature from experi-
ment is about 4 K. 3

The temperature range over which the hcp lat-
tice is stable for &c/a = 0 seems to be closely
related to the occurrence of orientational transi-
tions. This may be a further indication that other
hcp space groups could be significant. It is also
possible that a distortion of the hcp lattice is sug-
gested since pure quadrupole-quadrupole interac-
tions cause the rigid hcp lattice to remain stable
at high temperatures only for nonzero values of
hc/a. Although a distortion has not been observed
experimentally, a small distortion has previously
been predicted by Van Kranendonk, ' due to transla-
tion-libration interaction. We find a Lc/a some-
what larger than 0. 01 causes the Pca2, space group
to be favored at high temperatures. The exact val-
ue was not found because of the large amount of
time involved. This value of bc/a would probably
be reduced if the effects of a nonrigid lattice were
included.

In summary, we conclude that the quadrupole-
quadrupole interactions can ~cad to a structural
phase transition from a fcc (Pa3) lattice at low tem-
peratures to a hcp (Pca2~) lattice at high tempera-
tures. The predicted transition temperature is
about 1 K higher than the extrapolated experimental
transition temperature of 2. 8 K. For ortho-para
mixtures, this transition temperature is a function
of the para concentration. ' A cluster expansion for
ortho-para mixtures would be indicated, this cal-
culation is being done. In addition, the effects of
the lattice have only been estimated, and the com-
bined effects of the transitional and librational mo-
tions of the molecules should be considered for a
complete description of the properties of solid hy-
drogen and deuterium as a function of temperature.
Work on these problems is in progress.
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New resonant-mode infrared absorption lines have been observed in NaC1 with high con-
centrations of fluorine impurities. The quadratic concentration dependence of the strength
of these lines indicates that they are due to pairs of fluorine impurities. At the resonant
frequencies, the motion of some host ions appears to be as important as the motion of the
impurities thems elves.

INTRODUCTION

Many impurities in alkali halides induce an
easily observed far-infrared absorption with con-
centrations of only 0. 1 mole%. Essentially all this
absorption can be attributed to isolated impurity
ions at substitutional sites in the host lattice.

However, a 1-mole% concentration of impurities
should result in impurity-pair absorption compa-
rable to the total absorption at O. 1 male%. In
general, this impurity-pair absorption would be
difficult to observe above the isolated impurity ab-
sorption background. However, if the impurity
pairs give rise to resonant or localized modes, ob-


