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A self-consistent, anharmonic approximation is used to compute the values of the libron
energies as a function of the momentum along various symmetry directions in the first

Brillouin zone.

A density-of-states histogram is also presented, based on a calculation of

the libron energies at 584 points in the irreducible section of the first Brillouin zone.

I. INTRODUCTION

It is by now well established that the electric
quadrupole-quadrupole (EQQ) interaction is re-
sponsible for the orientational ordering of the
molecules in solid ortho-hydrogen and para-deute-
rium atlow temperatures.! Deviations from the
fully aligned state occur when the molecules ex-
ecute torsional oscillations about their equilibrium
orientation. The normal modes associated with
motion of this type have wavelike character and
have been called librons. 2

The dynamics of librational motion may be studied
by expanding the EQQ Hamiltonian in terms of
deviations from the fully aligned state. The Ham-
iltonian is then found to be highly anharmonic
with the dominant anharmonic term being cubic in
the deviations.

Coll and Harris® have shown how diagrammatic
perturbation theory may be used to construct a
dynamical matrix for the libron energies which is
energy dependent. They then went on to compute
the values of the libron energies at zero momentum
(2=0) and the associated intensities for Raman
scattering.

In this paper we extend the calculation of the
libron energies throughout the Brillouin zone. Two
methods were used to solve for the energies. First,
along the symmetry directions, we used group
theory to transform the dynamical matrix into
block diagonal form. The resulting secular equa-
tions could then be solved easily on the computer.
Second, the roots of the secular equation were
found on the computer for arbitrary values of k.
Solutions according to this second method were
found to agree with those of the first along the sym-
metry directions. This second method allowed us
to compute the energies on a grid of points in the
Brillouin zone and thus to construct the density of
states.

II. THEORY

We consider the system in which (J=1) ortho-
hydrogen or para-deuterium molecules are ar-
ranged at the lattice sites of a face-centered cubic
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(fcc) structure. At zero temperature the molecules
assume an orientation which is determined pri-
marily by the EQQ interaction. If the molecules
are treated as classical quadrupoles the ordered
state is found to be one in which the molecules

are aligned along (111) axes.* When treated quan-
tum mechanically it can be shown® that the ordered
state is one in which each molecule is in the ro-
tational state (J=1, J,=0), where the z axis co-
incides with a (111) axis. We may visualize the
fcc lattice as being made up of four interpenetrat-
ing simple-cubic sublattices. The equilibrium
orientation of a molecule on sublattice 1, 2, 3, or 4
lies along [111], [111], [111], or [111], re-
spectively. The lattice structure is thus described
as a simple-cubic Bravais lattice with four mole-
cules per unit cell. The space group for this
structure is designated Pa3(T$).

We look for the low-lying excitations of the sys-
tem which we characterize by AM;=x+1. Since
there are four molecules per unit cell we expect
eight modes for each momentum k. It is these
AM;=x1 type excitations which we refer to as
librons.

For simplicity the discussion will be confined
to zero temperature. In the molecular field ap-
proximation the eight libron modes are degenerate
and have an energy

E,=19T, @)

if only nearest-neighbor interactions are consid-
ered. Here I' is the EQQ coupling constant. 2 If
further-neighbor interactions are taken into ac-

count® then

E,=21.20T. (2)

By comparing the theoretical values of the anhar-
monic libron energies at 2 =0 to the experimental
Raman spectra taken by Hardy, Silvera, and Mc-
Tague, ” one deduces the following empirical values
of I'%:

r'=0.56 cm™ for H, , (3a)

r=0.78 cm™ for D, . (3b)
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FIG. 1. Anpharmonic
libron dispersion curves
along four symmetry
directions. Curves
are labeled by the ir-
reducible representa-
tions according to which
the wave functions
transform.
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In both the harmonic and the anharmonic approx-
imations the Hamiltonian contains terms which do
not conserve the number of librons.? In the har-
monic case these terms can be transformed away
using a Bogoliubov transformation.® The trans-
formed cubic terms, however, are extremely un-
wieldy. Accordingly, when anharmonic effects
are included, a formalism is used in which the
Green’s function is a 16X16 matrix and in which
the non-number-conserving terms in the Hamil-
tonian cause a coupling between libron states which
propagate forward and those which propagate back-
ward in time, i.e., between “particles” and “holes.”

It is shown in Ref. 3 that the libron energies cor-
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E V

respond to the roots of the secular equation

Re Det|(G%()) 1 -M(k, 2)| =0 . @)

Here go(z) is the 16X 16 matrix Green’s function
for the molecular field Hamiltonian, and M(E, z)
is the energy- and momentum-dependent self-en-
ergy matrix which contains both harmonic and an-
harmonic effects. ®

II1. RESULTS

The self-energy may be reduced to block diagonal
form by appropriate transformations in several
symmetry directions. These directions are the
edge of the cube [the points (1, 1, V) where 05 V<1]
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FIG. 2. Harmonic
libron dispersion
curves labeled as in
Fig. 1. Note, however,
the change of scale on
the vertical axis.
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FIG. 3. Histogram representing
the anharmonic density of states based
on the values of the energies of the
eight libron modes at 13 824 points in
the Brillouin zone. The vertical axis
p(w) is defined as 1/N times the num-
ber of states per unit of frequency
where N is the number of unit cells.
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which we call T and, in addition, the directions
[100]-4, [111]- A, and [110]- = where the sym-
bols following the square brackets label the sym-
metry direction. For comparison we have also
computed the dispersion curves for the harmonic
Hamiltonian, including the effects of second neigh-
bors!® and taking E, as in Eq. (2).

The group-theoretical reduction of the 16x16
dynamical matrix M(E, z) leads to matrices of
dimension (4x4), (6x6), (8x8), and (8x8) for A,
A, Z, and T, respectively. Thus it is still neces-
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computer. However, the saving in machine time
is considerable.

The resulting dispersion curves are shown in
Fig. 1 for the anharmonic case and Fig. 2 for the
harmonic case. We note that the eight modes are
split except along the A and T directions. The
lines labelled {A,, A3} are degenerate as a con-
sequence of time-reversal symmetry. Along the
T direction the energy bands “stick together”!! as
a result of the additional symmetry under the com-
bined operations of the screw axis and time re-

sary to solve the simplified secular equations by versal. This gives two fourfold-degenerate lines
(w) I\
F . l
3 _
FIG. 4. Histogram representing
harmonic density of states based on
2 7 the values of the energies of the eight
libron modes at 13 824 points in the
Brillouin zone, with vertical axis as
in Fig. 3.
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where one might expect four twofold-degenerate
lines if this extra symmetry did not exist. The
small splitting in the nearly degenerate pairs of
lines (4,, A,) is caused by second-neighbor inter-
actions which have been included in the self-energy.
This splitting occurs also in the harmonic approx-
imation. An interesting result of the anharmonic
calculation is the crossing of energy levels A, and
{Az, Mg} which does not occur in the harmonic ap-
proximation.

In order to compute the libron energies at other
points in the Brillouin zone we employed the tedious
but straightforward method of searching for the
zeros of the determinant of the full 16X 16 matrix
as indicated in Eq. (4). We did this for 584 values
of the momentum by dividing the positive octant
into (12)® cubes and computing the energies at the
centers of the cubes in one-third of the octant. This
amounts to calculating the libron energies at 13 824
equally spaced points in the full Brillouin zone. The
resulting energies were used to construct a histo-
gram of the density of states which is shown in Fig.
3. Figure 4 shows the density of states for the har-
monic Hamiltonian. This was obtained by the rel-
atively simple process of diagonalizing the quad-
ratic part of the Hamiltonian for the selected values
of k. I we compare Figs. 3 and 4, we see that the
main effect of anharmonicity is to shift down the
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high-energy modes while leaving the lower-energy
modes relatively unchanged. The bandwith is re-
duced by a factor of almost a half from 15T to 8I"
while the bottom of the band is shifted down by only
about 2T to 11.8T".

IV. COMMENTS

Our theoretical results for the libron density of
states and the dispersion curves along the sym-
metry directions may be tested experimentally by
means of inelastic neutron scattering. The experi-
mental observations may be somewhat difficult,
however, since the intensity from the inelastic
scattering of neutrons by librons is expected to
be much smaller than the intensity obtained in com-
parable experiments measuring inelastic scattering
of neutrons by phonons.

In addition, the computational machinery which
produced the libron energies throughout the zone
will be used as part of a more elaborate calcula-
tion of the shape of the two libron portion of the
Raman spectrum for which experimental results
are already available.’
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