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Critical Magnetic Neutron Scattering from Ferrous Fluoride
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A detailed investigation of the static and dynamic correlations in the nearly ideal uniaxial
anisotropic antiferromagnet FeF2 has been carried out using quasielastic and inelastic neutron
scattering. The scattering from transverse and longitudinal fluctuations can be determined
separately in this compound, and the measurements test recent scaling theory and model cal-
culations for anisotropic antiferromagnets. The transverse fluctuations are only weakly de-
pendent on temperature, the inverse transverse correlation length y~ = (0.145+0.040) A ' at
Tz, and the transverse relaxation rate I &(q=0, Tz) = (1.5 +0.4) meV. The inverse longitudinal
correlation length v, ~(T) and the staggered longitudinal susceptibility X„t(q=0, T) are described
above Tz by the critical exponents v=0. 67+0.04 and y=1.38 +0.08, respectively. Below Tz
these remain unchanged within the experimental error. The longitudinal relaxation rates are
three to five times smaller than those found in the weakly anisotropic MnF2. They obey a homo-
geneous scaling relation in (q, Kg) of degree close to 2, as predicted by scaling theory. The
scaling function Q(q/rc„) = I ~~(q, g„)/~g bears a close resemblance to that found for MnF2.

I. INTRODUCTION

In the past few years the concepts of dynamic
scaling' have been applied to the theory of second-
order magnetic-phase transitions, '3 and from a
few assumptions definite predictions have been made
for the behavior of the time-dependent correlation
functions near the critical point. These correlation
functions can be measured by inelastic neutron
scattering, ' and in a series of experiments at
Brookhaven and Risft the predictions of dynamic
scaling theory for isotropic Heisenberg systems
have been tested. '3 More recently scaling theory
has been extended to anisotropic systems, ' '6 and
the present investigation was carried out on an
antiferromagnet with relatively large anisotropy,
ferrous fluoride FeF2, in order to examine experi-
mentally the applicability of scaling to such sys-
tems '~

Previous detailed experimental work on the crit-
ical scattering of neutrons from three-dimension-
al antiferromagnets has been confined to two com-
pounds showing idealized properties. BbMnF3 is
a simple-cubic antiferromagnet with effectively no
anisotropy, and Lau et al. have verified Halperin
and Hohenberg's dynamic scaling predictions for
temperatures above the transition for this case.
A more complete investigation has been carried
out on the weakly anisotropic antiferromagnet
MnF3 by Schulhof et al. ' MnF~ possesses a major

advantage for neutron-scattering work as its tetrag-
onal crystal structure leads to a unique spin direc-
tion in the sample. This enables the longitudinal
and transverse correlations to be determined sepa-
rately. Schulhof et al. were able to show that dy-
namic scaling provides a very good description of
the longitudinal relaxation rates both above and
below T~, and they determined explicitly the scaling
functions for MnF2.

FeF~ has the same crystal and magnetic struc-
ture as MnF~ but exhibits a larger anisotropy which
arises from the unquenched orbital moment of the
Fe2' ion. The procedure adopted in the present
experiment follows very closely that adopted in the
investigation of MnF~. The scattering is, however,
characterized by the anisotropy and is found to show
interesting differences from the more isotropic
case. The noncritical transverse spin fluctuations
are suppressed by the anisotropy, and consequently
we have not examined these in as much detail as
the longitudinal fluctuations.

Riedel and Wegner' '" predict the existence of
two regimes for the critical behavior of aniso-
tropic systems, with a crossover point character-
ized by a correlation length ~~'. In one regime,
close to T„ for low-Quctuation wave vectors, the
anisotropic characteristics are exhibited, whereas
at higher temperatures or wave vectors the iso-
tropic behavior takes over. Our measurements on
FeF2 lie mainly in the anisotropic regime. It is
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interesting to note, however, that Riedel has rein-
terpreted the data on the weakly anisotropic MnF2
and shown that even in this case some of the data
lie in the crossover region. " Part of the work
of Riedel and Wegner was carried out concurrently
with our measurements and has been compared with
our data by Riedel'; we shall refer to this com-
parison later.

The crystal preparation and structure, and the
cryogenic details, are described in Sec. II. The
theory of neutron scattering from a uniaxial anti-
ferromagnet near the critical point is briefly re-
viewed in Sec. III, where the assumed forms of
the cross section are given and the predictions of
scaling theory summarized. In Sec. IV the quasi-
elastic-scattering experiments, carried out to in-
vestigate the spatial correlations, are described.
The inelastic-scattering measurements giving in-
formation on the time correlations are described
in Sec. V, and a comparison of the data with scaling
theox J is made in Sec. VI. The conclusions are
summarized in Sec. VII.

II. CRYSTAL PREPARATION, STRUCTURE, AND
EXPERIMENTAL ENVIRONMENT

The sample used in the investigation was a 1.5-
cm crystal grown by a modified Bridgman method'
at the Bell Telephone Laboratories. The starting
material was synthesized by treating 99.999%%uc-iron-

metal powder in a dry hydrogen fluoride atmo-
sphere at 900 'C. The mosaic spread of the crys-
tal was less than 7' full width at half-maximum
(FWHM); however, a small end portion of the crys-
tal was slightly misaligned from the rest by -15'.
The crystal was mounted by clamping this portion,
which was carefully shielded by cadmium so that
it did not contribute to the scattering.

The crystal structure of FeF~ is rutile with
a=4. 697 A and c= 3.309 A at room temperature.
The space group is D~~-P4/mnm, and the cation
sites, surrounded by a distorted octahedron of F
ions, have point symmetry D». The magnetic
structure ' is such that the spins align along the
c axis, with the body-center ions spin antiparallel
to those at the corners of the cell. The magnetic
and nuclear unit cells are therefore identical.

The sample was mounted on an aluminum ped-
estal which was in direct thermal contact with a
calibrated platinum resistance thermometer. The
mount formed the bottom part of an aluminum can
filled with helium gas, and the whole assembly was
attached to the copper block of a Cryogenics Asso-
ciates temperature-controlled Dewar, type C.T.
14. The calibration of the thermometer and the
temperature measurement and control were carried
out in the same manner as used for the MnF3 ex-
periments. ' ' Temperature control over the
period of one measurement was better than

+ 0.001 'K, and thermal gradients in the sample
were found to be less than + 0.003 'K. The absolute
temperature was estimated to be correct to
+ 0.050 'K, although relative temperatures were
accurate to better than +0.001'K.

III. THEORY

A. Spin Hamiltonian for FeF&

The spin-wave dispersion relations for FeF~, in-
vestigated using neutron scattering, ~~ show that the
magnetic properties may be well described by a
spin Hamiltonian of the form (S= 2)

K= Z J2S, S~+ZDS,' +ZiDS( (1)

The summation in the first term is over all next-
nearest-neighbor pairs (corner and body-center
ions), and the single-ion terms are summed over
ions on both sublattices i and j. Other interactions
are found to be less than 6%%uo of 8,. The parameters
J,=0.45 meV (5. 2'K) and D=0. 84 meV (9.8'K), so
that the ratio of anisotropy field to exchange fieM
acting on a Fe' ion is (2S —1)D/16', =O. 35. The
single dominant intersublattice exchange interac-
tion, and well-defined relatively high anisotropy,
make FeF~ an ideal substance in which to investi-
gate the effects of anisotropy on critical behavior.

B. Neutron-Scattering Cross Section

1. General Form of the Cross Section

The neutron-scattering cross section for a sys-
tem of N localized spins is given in general by

BQ'BE',', =X(k, k')Z(5"- j j')S"(Q, ~), (2)

where NQ=k-k' and k&v=Z —E'= (tt /2mo)(h —h' )
are the neutron momentum and energy change, re-
spectively;

y, e, and m are the neutron gyromagnetic ratio
and electron charge and mass, respectively, and

f(Q) is the form factor for neutron scattering.
5 s(Q, e) is the Van Hove scattering functions3

defined by

& '(Q, &u)=2 Z e" '' ""(S (0)4(t)) dtr,

(4)
where ()r denotes the thermal average. For sys-
tems such as FeF~ with isotropic exchange and
single-ion anisotropy, only the three terms n = P re-
main in the summation in Eg. (2).

The elastic Bragg scattering function ss(Q, &u) is
given by the limit of the correlation function in Eq.
(4) as t (or r) - ~; the spins are uncorrelated in this
limit and the cross section is proportional to
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(S (Q)) 5(P)). The difference 8(Q, &u) —Np(Q, &u)

= &D(Q, p)) is the diffuse-scattering function, to
which the critical fluctuations contribute. If the
spatial correlations fall off according to the
Ornstein-Zernike" relation, and the time fluctua-
tions of the correlations decay exponentially, the
diffuse cross section ' is proportional to

1
p I p p imX"(Q ~) (5a)

mg pz 1 —e

8'p)P ks T (-, 1
)r(qp g~ p X QJ p ~ (ldrqrq)2

(5b)

where I" is the relaxation rate, y(Q) is the wave-
vector-dependent susceptibility, and P = I/ks T. If
the time Quctuations have a damped oscillatory
form with frequency ~0 and amplitude decaying
exponentially, the last factor in Eq. (5a) becomes
the sum of two Lorentzians with ~ replaced by co

Referring the wave vector q to an antiferro-
magnetic reciprocal-lattice point G, Q=G+q,
y(Q) =A/(» +q ) for small q. z is the inverse cor-
relation length g ', and A varies only slowly with
temperature. This form of cross section has
proved adequate in describing the critical scatter-
ing from a number of ferromagnets and antiferro-
magnets. " As we shall see, we must assume the
form of Ip(Q, &u) before fitting to the data, rather
than determine it directly from the data, because
of the problem of deconvolution of the instrumental

resolution function. ~'

It should be noted that Fisher' has shown that
deviations from the Ornstein- Zernike Lorentzian
form for y(q) occur near T„. At T„he gives an

expression

g(q) = [A/(~'+ q')]'-"",
where g is a small number «1. This form has been
found to give a better fit to the data on BbMnF3
and MnF~ at and near T„, with g-0. 05 —O. OV.

We were unable to verify this for FeF~, and shall
take g = 0 in the following equations.

2. Inelastic Cross Section for FeFp

Putting o. =P in Eq. (2) and taking oe along the
c axis, the spin direction in the ordered state, me

see immediately from the orientation factor
P (1 —(I),) how we can separately measure the
scattering from longitudinal and transverse fluctua-
tions. If we investigate the scattering with Q near
the [001] direction, the cross section involves only
8""(Q, (r)) =8"'(Q, p)) = 8'(Q, (p), but if Q is directed
along [100]we measure both 8 "(Q, p)) = &"(Q, p)) and
8'(Q, &u). The form factor f(Q) necessitates mea-
surements at low Q, and the reciprocal-lattice
points (001) and (100) are used for the present ex-
periments. There is no nuclear Bragg intensity
at these points, except for that from multiple Bragg
scattering, and below TN magnetic elastic scatter-
ing only occurs at (100) because of the spin direc-
tion. Near these two points we take the inelastic
cross section to be

BD qq qg tt
'

(K +lr ) q (td —did) +r (td+tdd) +r ) (7)

8 o(100) A(k, k')
( )

A(happ) f I() X A(happ) F)
qrrqz' dq'tt, d ' (dddq"d) ((tdddrd q (dd+q"d) (td —td, )'+rd (tddtdd)ddrd) (8)

where B(p), T)=B'p)/(I —e "" s ).
The factor X relates the relative contributions

to the cross section at (100) of the transverse and
longitudinal fluctuations. It is given by' '

~
d'X„'(q) d'1-, '(q) g, (q=O)(2+a z~j8)
dqP dqP )t„(q=O)(2+a'~'„/8)

q*' = q,'+ q,'+ (c/a)' q,', (Io)

In our analysis we used values of A. varying slowly
with temperature between 1.1 and 1.3 as calculated
from our measured ~„and ~„and the published
static-susceptibility data. ~9 We note that if the crys-
tal is uniformly illuminated in the beam, AA(mp)/
A.&00» =0.5. q* is defined by the relation

where a, 5, c denote the crystal axes. This rela-
tion effectively expresses q* with respect to the
cubic lattice of side a. We shall represent all re-
duced wave vectors, and y, occurring in the cross
sections in the units defined in Eq. (10), though for
convenience the star notation will be dropped.

In writing the cross sections for critical scatter-
ing in the form given in Eqs. (7) and (8), we assume
that the transverse modes are purely propagating,
whereas the longitudinal modes are purely diffu-
sive. This has been found to be the case in' '
MnF~. The frequencies coo and relaxation rates
T'„, I', will be functions of T and q, and A&00q, and

A&M0& will vary slowly with T. Of course coo may
equal zero, as observed above T„ for smal1 q, in
which case the transverse component will also
take on a diffusive form.



CRIT I CA L MAGNE T IC NE T URON S CAT T E BING. . .
3. t)»(»asielastic Scattering

J.
B(ooi)
Kj+q

9(ro
( )

A (k, k') A (~()p) )(A ((pp)

(1lb)

A(k, k')
x x) x, (x)+x x.(q))a ~a (001)

II II

2+ 2
B ( foo) XB (ioo)

K, +q Kx+q

(12a)

(12b)

where the B' and B"are defined for convenience.
The validity of the quasistatic condition has been

discussed by Lau et al. and Schulhof et al. For
our experiments, using VV-meV incident neutron
energy, we can infer from these papers that the
condition is well satisfied in our case —particularly
as I'„ is much smaller than for MnF2.

Near the transition temperature we assume that
the critical longitudinal correlation lengths K, ,

'
and staggered susceptibility g„(q = 0) diverge as

+ 'V
K II K II 7 p

V T~ TN

~„(q=o)=q,", & ", T& T„
-r'

X (q = 0) =
X r "

where r =
l T —T„l/T„. Static scaling theorypP

relates y and v via the relation y = (2 —ri)v, and
shows that v=v', y=y'.

C. Dynamic Scaling Theory

In this subsection we shall briefly summarize
the assumptions and predictions of scaling theory,
and give the results of calculation of the form of

If the quasistatic condition is satisfied, a two-
axis experiment may be performed to measure
the wave-vector -dependent susceptibility directly,
without energy analysis. The condition states that
the time of passage of the neutrons through a region
of correlated spins should be very much less than
the characteristic period of fluctuation of the spins,
or that 5k'«K, where 5k' is the change in k' due to
inelasticity. When this holds, the scattering ob-
served at a fixed scattering angle will be effective-
ly an integration over all energy transfers co at
fixed Q. Imylicit in the condition is that I»()I «Zp.
If, furthermore, I~ «k~ T at the temperature of
the experiment, we see from Eqs. (6) and (7) that

80'
( )

A k)k ) A(pp») A(k k )
Sg g~ 2 B 2 2 g~ 2 B X

(1la)

r„(q, K„, K, ) = K,"K„'~"&II„'(q/K', K„), (16)

where n denotes (( or I, f„= ((I)» —g, )/v», and 0
= (v, —v, )/v, . The indices subscripted i are those
appropriate to the isotropic case, whereas those
subscripted n or a are for the anisotropic case.
(We shall later simply use v for FeF2.) In the
case of a uniaxial antiferromagnet the expression
for the longitudinal fluctuations becomes

F))(q Kp) Ic„ lcxx II ))(q/Ic))) = Kp iQ(q/K)))

where 0 is the new scaling function. This differs
from the isotropic case in that K„ is raised to the
power 2 rather than —,'.

At q=0, O(q/K„) equals a constant and I'(0, K„)
From the limiting form' of A(q/K„) as

K I 0, the same power law is found to hold at T„

the scaling function by Riedel and Wegner.
The theory of dynamic scaling in isotropic mag-

nets is based on two assumptions ':
(i) The length and time scales of the system in

the critical state are uniquely defined by the spin-
spin correlation length 1/K(v) and the characteristic
frequency ' or spin relaxation time 1/I'(q, K), which
both diverge at the critical point.

(ii) The two scales are related by the "scaling
relation"

r(q, K) = ~"0 (q/r") = K"'"n(q/K),

where (1) is a universal dynamic-scaling index and
Q(q/K) a scale function.

I" is thus a homogeneous function of q and K of
degree (g/v). The same expression should hold
above and below T„, but with different scaling func-
tions 0, and 0 which are equal at T„. From the
hydrodynamic-theory limit Halperin and Hohenberg
find g/v=-'„and as v = —',, (II =1, a result which has
been confirmed by recent experiments. '

In uniaxial anisotropic systems~'4 the spin sys-
tem is characterized by two lengths K,,

' for the
parallel critical spin components, and K,

' for the
perpendicular noncritical spin components.
diverges as Eq. (13), whereas K, behaves similarly
to K I

for high relative 7, but below a "crossover"
temperature, v~, becomes constant at K~'= K, (r =0) '.
The longitudinal relaxation rate 1 „ is critical,
whereas I; is noncritical, and the transverse Quc-
tuations are suppressed by the anisotropy.

Riedel and Wegner" have extended scaling theory
to anisotropic substances by taking the anisotropy
parameter K~ as an additional critical variable.
They start from two homogeneity assumptions for
1; which apply either in the limit of small K~ or
for K~ fixed. From these they recover the isotropic
scaling relations if q +KII» K~, and a new anisotrop-
ic relation if q2+KI21 «K2~ In the misotropic region
they find a homogeneous function of one variable
for F,
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IV. QUASIELASTIC SCATTERING

0
TN

F Ei
g(] (T)

FIG. 1. Schematic plan of regions of q-z,
~
space. Kjj

=0 at Tz. Regions I and III are the macroscopic hydro-
dynamic regions of Ref. 4 and region II the critical region. ';

The curve z„+q =vz represents the crossover between
isotropic and anisotropic regimes according to Ref. 15.
Regions of small q and zz represented by the cross-
hatched. rectangle are inaccessible to neutron investiga-
tion because of resolution limitations.

I'„(hydrodynamic) = 1.2@~~'~3z„,
I',(hydrodynamic) = 10QxP

whereas in the isotropic limit,

(18)

I „(hydrodynamic) = I', (hydrodynamic) = 4. 1@v„

(1S)
Q is proportional to the isotropic exchange coupling
between the spins and is (2. 6+0. 2) meVA~~ for
FeF2.' We determine ~~ and v„ from experiment.

for the q dependence of 1„. That is, I'„(q, 0)~q .
These two predictions, along with the more general
relation Eq. (17), are tested by our data.

The different regions of q-~, space for an anisot-
ropic system are shown schematically in Fig. 1.
This is similar to the diagrams defining the "macro-
scopic hydrodynamic" regions of q«v„, I and III,
and the "critical" region q» v„, II, of Halperin and
Hohenberg, only there is now an additional de-
marcation of g +K„=Kg between the isotropic and
anisotropic regimes.

D. Theoretical Form of the Scaling Function

The form of the scaling function has up to the
present time only been calculated using approximate
methods. Resibois and Piette" and Huber and
Kreuger have given expressions for the isotroyic
antiferromagnet which agree quite well with the
data on RbMnF3. Riedel and Wegner have calcu-
lated the form of the function in the hydrodynamic
region for the anisotropic case using the mode-mode
approximation (MMA). '" They make specific
predictions for I'„and l, for both the isotroyic and
anisotropic regimes. In general they find the scal-
ing function to be independent of z~, as in Eq. (17).
For T& T„, they find that in the anisotropic regime,

A survey of the quasielastic scattering in the
vicinity of the (001) and (100) reciprocal-lattice
points was undertaken before the inelastic mea-
surements were made in order to investigate
the static correlations and to establish the effec-
tive temperature scale K

~
and anisotropy scale ~~.

A. Experimental Procedure

The procedure adopted was similar to that used
in previous experiments. "" The measurements
were carried out on the H4S two-axis spectrometer
at the Brookhaven high flux beam reactor. Inci-
dent neutrons of one energy, Vv meV, X=1.03 A,
were used, and these were monochromated using
the (311) reflection from a germanium crystal in
order to minimize 2X effects. 20' horizontal col-
limation before the monochromator was used, with
20' horizontal and vertical collimation before and
after the sample.

The resolution function ellipsoid, which de-
scribes the probability of detecting elastically
scattered neutrons at scattering vector Q when
the instrument is set for scattering vectors Q0, was
determined experimentally using the (100) magnetic
peak below T~. The ellipsoid had FWHM of
0.014, 0.0023, and 0.023 A ' in the g, y, and z
directions, respectively. x is here chosen to lie
along —Qo, and z is vertical. The major axis of
the ellipsoid is tilted away from Ox by - 7', and
is almost perpendicular to k'. Use of the measured
resolution at (100) will in effect allow for sample
mosaic effects near (100), although these are ex-
pected to be very small. The effective values of
collimation angles which gave the measured resolu-
tion function were in fact close to the nominal val-
ues. The corresponding resolution function at
(001) was calculated using these effective collima-
tion angles.

In order to take advantage of the narrowest part
of the resolution function, scans were made per-
pendicular to the reciprocal-lattice vector, that is
along c* through (100) and along a* through (001).
Corrections were made for background, measured
by averaging the count at a number of points near
the zone boundary in different directions, and for
multiple Bragg scattering. The latter was mini-
mized by rotation of the sample about G and was
measured by scanning through the (100) and (001)
positions at high temperatures, - (85-S5) 'K, where
the critical scattering is negligible in comparison.
It was not possible to correct for the magnetic
Bragg intensity at (100) below T„, and points on the
scans were omitted if they contained contributions
from Bragg scattering.

B. Experimental Data Analysis and Results

The transition temperature was first determined
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FIG. 2. (a) Qu,asielastic scat-
tering from the transverse fluctua-
tions near (001) at T&. The points
are the experimental counts and

the full line the best fit of the
cross section convoluted with the
resolution ellipsoid. The dashed
line indicates the background level.
{b) Quasielastic scattering from
both the transverse (weak) and

longitudinal fluctuations near (100)
at 78.420 'K. The solid line is
the best fit of the cross section
convoluted with the resolution
ellipsoid to the experimental points.
The dashed curves are the decon-
voluted Lorentzian cross sections,
not on the sa.me scale as the ex-
perimental points. (Note that q
is here in true A and lies along
[Ooz]. }

I—
V)z
4l

-Ol -0.05 0,
)

q A
0.05 O. l

to 0.01 'K by monitoring the scattering near (100)
as a function of temperature, and a series of scans
were then made at temperatur e intervals ranging
between 7 K above and below T~. It was immedi-
ately clear from scans through (100) and (001) just
above T„ that the contribution from the transverse
fluctuations was Inuch weaker than that from the
longitudinal fluctuations. This is a consequence
of the relatively high anisotropy and corresponding-
ly large ~,.

The theoretical expressions of Eqs. (11)or (12)
were fitted to the corrected data using a least-
squares fitting routine. This routine" convolutes
the theoretical cross section cr(Q) with the resolu-
tion function R(Q —Qs) in order to calculate the theo-

retical intensity I(gs):

I(Qs) = fR(Q —Qs) o (Q) dQ . (20)

The quality of the fits to the data was judged by the
weighted variance defined by

os = Z zu, tI, (observed) —I, (calculated)]s,2

(21)
where N is the number of data points, M the number
of free parameters, and the weighting factor se,

is the inverse square of the experimental error
as estimated from the counting statistics.

The transverse cross section was determined
first by fitting Eq. (lib) to the data near (001).
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FIG. 3. Temperature variation of z~ and X~(q =0) as
measured from the transverse-fluctuation quasielastic
scattering.

B(ppy~ ~„and the effective center of the scan qp

were treated as variable parameters. A typical
scan with best fit to the data is shown in Fig. 2(a).
In all cases qp was found to be zero within the ex-
perimental error. g„(q =0) was determined from the
relation g,(q =0)~ B&00»jz,T. The results are
shown in Fig. 3. It is seen that g, is temperature
independent within the experimental error below
T„, at a value of (0. 145+ 0.040) A '." This is the
value of I(.~ defined by Riedel and Wegner. Above

T„, a„rises very slightly. g, (q=0), the transverse
staggered susceptibility, is also almost tempera-
ture independent but shows a slight rise near T&.

The data near (100) were then fitted to Eq. (12b)
treating K B(happ~ and qp as adjustable parameters.

X was held fixed at the value calculated from Eq. (9)
and ~, was fixed at the value found experimentally
from the (001) data. A typical scan is shown in
Fig. 2(b); the line through the experimental points
is the best fit of the convoluted cross section. The
deconvoluted cross section is shown as the dashed
lines which represent, on a different scale from
the experimental points, the longitudinal and trans-
verse contributions. We see that the transverse
contribution is effectively flat and very weak at this
temperature. Thus a small error in X has a neg-
ligible effect near T„.

Values of O„giving the best fit to the data gen-
erally ranged between 1 and 3. A fit within statis-
tical errors would correspond to a value of o„=1,
and a number of trial fits were carried out to at-
tempt to find a reason why larger values were ob-
tained. Fits treating q [Eq. (6)] as an additional
variable gave no reduction in o„and often resulted
in a negative value for q. q was therefore kept at
zero for all other fits. The full expression" for
the q dependence of g„(q), rather than the Lorentz-
ian small-q form, was used in some fits but gave
no improvement, nor did use of a finer mesh in the
integration [Eq. (20)]. We can only conclude that
the somewhat large values of cr„are due to nonsta-
tistical errors. The values of the errors on ~„and
8'&&pp& do, of course, include their effects.

The temperature variation of the longitudinal in-
verse correlation length I(,"„above and below T„ is
shown in Figs. 4 and 5, and the values of param-
eters in Eqs. (13) giving the best fit are summa-
rized in Table I. T„was determined most accurate-
ly from the fit to I(c„, T& Z'„, and was consequently

Comparison of the values of the static critical exponents in FeF2 with those in other antiferromagnets and
with theoretical estimates.

FeF2 ~

MnF2

RbMnF3~

Ising' 8= —'
bcc

Ising g

(classical)

Heisenberg g

(classical)

TN

V8. 3VV"

+0.014

67.459"
+D. 014

83.019

0.67
+0.04

0.634
a 0.040

0.724
+ 0.016

0.638
+0.002

0.625
+0.007

0.70
+0.01

0.7
+D. 2

0.56
+D. 10

0.59
+0.06

0.05
+0.02

0.067
+ 0.020

0.041
+ 0.006

0.032

0.029

0.58
+0.07

0.46
+0.02

l.36
+0.17

0.57
+0.12

1.38
+0.08

1.27
+0.04

1.397
+0.068

1.250
+0.002

l. 23
+0.02

1.38
+0.02

1.6
+0.2

1.32
+0.12

xi~~xii

6.1
+1.0

4. 8
+1.0

~This work.
"Absolute accuracy of T& is +0.050 'K; the errors quoted

above are those in the relative consistency of fits.
Reference 12. (Errors correspond to 2 standard devia-

tions. )

References 6 and 8. (Errors correspond to 2 standard
deviations. )

'Beference 36.
~Reference 2.
Reference 37.
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I I I I I I II} I I I I I III I I I I I Ill
LONGlTUDINAL lNVERSE CORRELATION RANGE, FeF&

T &TN

~ll {T) + {T"TN)

v =.67 + .04

Iocf

FIG. 4. Critical variation of v„with
temperature above T& as determined
from the quasielastic scattering. The
solid line represents the best fit to the
data of a power law in v.
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held fixed at this value of 78. 377 'K for the deter-
mination of all other temperature exponents.

The longitudinal staggered susceptibility gp(q = 0)
B~gpp)/K ~

T is plotted against T & T„ in Fig. 6, and
the exponents in Egs. (14) found for T& T„and
T( T„are given in Table I. y„(q =0) may also be

determined from the inelastic-scattering measure-
ments, and anticipating these we give a compari-
son of the inelastic and quasielastic data in Fig.
7. The data points have been normalized at one
temperature, and the lines represent the best fits
to the combined data. The parameters determined

l.00 I I I I I lilt I I I I I lli I I I I I III} I I I I I

Illa'

O.IO—

FIG. 5. Critical variation
of I(:„with temperature below
Tz as determined from the
quasielas tie scattering. The .

solid line represents the best
fit to the dataof apowerlawin
7 ~

O.OOI—
0.00( 0.0( O.IO

(T„-T) 'K

I.O 10.0
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RELATIVE LONGITUOINAI SUSCEPTISILITY Fe Fq
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IO—
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I.O

(T-TN) K

I I I I I I I II
IO

FIG. 6. Critical variation of the longitudinal staggered
susceptibility above T~ as determined from the quasielec-
tric scattering. The solid line represents the best fit to
the data of a power law in 7.

A. Experimental Procedure

Measurements were carried out at three differ-
ent incident energies on the H4M and H8 triple-
axis spectrometers at the Brookhaven high flux
beam reactor. An initial survey of the scattering
was made with incident energies of 13 meV (X
= 2. 455 A), using the pyrolytic graphite (002) re-
flection for both monochromator and analyzer.
20' horizontal collimation was used in pile, before
and after the sample, and before the counter. Ver-
tical collimation was determined by the sample
size and was - 1.6' FTHM. This horizontal and
vertical collimation was kept constant throughout
all experiments. Further measurements were
made with 6-meV (X= 3.716 A) incident neutrons
from a germanium (111)monochromator, using
pyrolytic graphite (002) as analyzer. The very
narrow linewidths near T„necessitated special
care in measurement, and these were investigated
with 3.3-meV (4. 965 A) incident neutrons obtained
using the (111)reflection from a crystal of Pe~04.
Pyrolytic graphite (002) was again used as analyz-
er, and the high content of —,'X neutrons, together with
all neutrons with wavelengths less than 4 A, were
filtered out before the counter by a beryllium filter
cooled to 78 K in a Cryogenics Associates type
S 017 Dewar.

The size of the resolution ellipsoid measured at

from the inelastic scattering are very close (with-
in 1/2 standard deviation) to the guasielastic val-
ues, and confirm the validity of the quasistatic ap-
proximation.

The results are compared with those for the iso-
tropic HbMnF3 and weakly anisotropic MnF~ in
Table I.3 Calculated values are also given for two
Ising cases which have been treated in detail and
for the classical (S= ~) case. There seems little
point in commenting further on these results at
this time. It is hoped that a theoretical solution
for the 8=2 antiferromagnet with high single-ion
anisotropy will become available in the near fu-
ture, which may then be compared with our results.

V. INELASTIC SCATTERING

l00.0—

IO.O—
KI-
Cl

I-
Q

IO—

I I I I I IIII I I I l I IIII

RELATIVE LONGITUDINAL SUSCEPTIBILITY FeF

TA

DATA

The higher anisotropy in FeF2 causes two major
differences in the inelastic critical scattering from
the case of MnF3. The longitudinal relaxation rates
are smaller by typically a fifth, and this makes
their measurement more difficult, and the trans-
verse fluctuations are noncritical and are sup-
pressed by the anisotropy. %e have concentrated
our measurements on the longitudinal correla-
tions.

O.I

O. l I.O IO.O

FIG. 7. Critical variation of the longitudinal staggered
susceptibility above and below Tz as determined from the
quasielastic and inelastic scattering. The solid lines
represent the best fit of a power law in v to both data, and
yield indices given in Table I. (Note the primed exponents
refer to data for T &T&.)
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(uo(q, T) =(uo(0, T)+c(T)q' (22)

(100) for each incident energy is summarized in
Table II. The axes are those of Cooper and
Nathans, with Ox along —Qo and Oz vertical. The
"incoherent" and "Bragg" energy widths were
measured using a vanadium sample and the (100)
magnetic peak, respectively. The measured
ellipsoids at (100) were again close to those calcu-
lated from nominal collimation angles. Effective
angles corresponding to the measured resolution
at (100) were used to calculate the ellipsoid at
(001) for the three incident energies.

The background was determined by sampling
scattering vectors near the zone boundary with the
analyzer set to count neutrons with large (-4 meV)
energy gains or losses. Counts were typically 1
per minute.

B. Experimental Data and Analysis

Measurements were made using the constant-
Q technique at temperatures between 71 and
90 'K. Above T„, Q and q* were taken parallel
to Gypo or Gopy Below T„, q* was taken in the
[101]direction for most of the scans in order to
measure the same transverse excitation at both
reciprocal-lattice points.

As we have seen, the transverse scattering is
much weaker than the longitudinal scattering.
Furthermore, the relaxation rates are found to be
larger, and consequently long counting times were
necessary to investigate the scattering in detail.
Measurements of the transverse scattering were,
therefore, confined mainly to the temperature var-
iation at q = 0, and the q dependence at T„. This
was sufficient to enable the contribution at (100) to
be determined.

In order to fit Eqs. (7) and (8) to the data it is
necessary to assume an approximate form for the
q dependence of F„F and coo We therefore take

I"„(q, T) =1„(O, T)+a(T)q',

I",(q, T)= I,(0, T)+t(T)q',

as a first approximation. As long as the values
of the constants are chosen to describe correctly
the variation over the volume of the resolution
ellipsoid, their individual values need not be exactly
correct.

The inelastic cross section was convoluted with
the resolution ellipsoid to give the theoretical in-
tensity I(Q0, &oo),

I(QO, (uo) = fA(Q —Qo, (u —(uo)(r(Q, &u) dQd(u . (23)

It was then fitted~ to the data in a systematic man-
ner similar to that described in Refs. 11 and 12 in
order to determine the parameters A(ooy, +(Mo)
(which include a normalization constant), and the
terms I'„(0, T), I',(0, T), ~0(0, T), a, b, and c in
E(l. (22). As few as possible of these parameters
were varied at any one time. ~, and K)i were held
fixed at their values found from the quasielastic
scattering and X was held fixed at the appropriate
calculated value. The goodness of fit o„varied
between 1.0 and 3. 5.

Typical fits to the transverse data at (001) are
shown in Fig. 8. The energy gap &ua(0, T) was
found to approach zero at T~ according to the rela-
tion

&o(Or T) eo(0i T) = (2. V+ 1.0)%072+0.1,8 (meV)
a&0(0, 4. 2) 6. 53

(24)

and remained zero above T„. Its temperature
dependence is radically different from that found
in MnF3 where the exponent is 0.37+0.04, close
to that of the critical behavior of the sublattice
magnetization (0.33). The exponent for the critical
behavior of the sublattice magnetization in FeF2 has
been found to be 0. 325+0.005. " The transverse
relaxation rate was found to vary only slowly with
temperature as illustrated in Fig. 9; at TN the rate
has the value I",(0, TN) = (1.5+0. 4) meV.

The relatively weak transverse contribution was
subtracted from the scattering at (100) in order to
determine the longitudinal cross section. The latter
takes the form of a Lorentzian with width -2F„.
The results for the longitudinal relaxation rates at
different q and T are shown in Fig. 10. There was

TABLE II. Dimensions of the instrumental resolution ellipsoid for the inelastic-scattering. measurements.

Three-axis
spectrometer

H4M

HS

HS

13 meV
X=2.45 A

6 meV
x=3.72 )~

3.3 meV
X=4.96 A

~q„(A-')

0.018

0.0078

0.0074

zq, (A-')

0.0052

0.0041

0.0053

FWHM

aq (A-')

0.101

0.062

0.047

Incoherent
(mev)

0.42

0.12

0.08

Bragg
(meV)

0.05

0.022

0.026
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T=
100—

( T

50—

TABLE III. Values of parameters in Eqs. (29) giving
fits to the scaling function for FeF2, where x is given by
the relationship x =q/&.

Q(x) =Ag+Bgx+ Cgx +Dgx

I-
z 0 I

l00—

co

50—
0-

M

LLJ

0

Ag 7.12 +0.6

B& —3.96 + l. 2

Cg 4. 15 +0.5

Di —0.054 + 0.04

Q(x) =A2+B2x +C2x +D2x

A2 5.92 +0.5

B2 2.46 +0.3
C2 0.014 +0.01
D2 —0.0003 + 0.00002

Q(x) =A3+ B3x2

1.28
3 ~ 27
2. 76

-0.13

+0.3
+0.8
+0.4
+0.02

T&TN

0.24 +0.15
0.74 +0.15
0.022 + 0.006

—0.00006 +0.00001

T= 70.988 K

(TN —T) =7, 39 K

A3

Bs
5.7 +0.5
2. 8 +0.2

0.75 +0.2
—0.0015 +0.0009

50—

0 -6
t I

'
l I

-2 0 2 4
ENERGY TRANSFER ao (meV)

FIG. 8. Typical constant-Q energy scans of the trans-
verse fluctuations at (001) at three temperatures, illus-
trating the collapse of the energy gap at T~ and its ab-
sence above Tz. The solid lines represent the best fit
to the data of the cross section convoluted with the reso-
lution function.

little overlap bebveen the data taken using different
incident energies, but in cases of duplication the
data with better resolution, taken with the lowest
Eo, are given. The energy widths at larger q drop
sharply at T„, whereas those at small q vary more
smoothly. Below T„ there is no evidence of any
speeding up of the fluctuations. These general
features are very similar to those observed in
MnF» and Halperin and Hohenberg ~ and Heller
have proposed a possible explanation for the be-
havior below T„.

I I I I 1

TRANSVERSE RELAXATION RATE FeFp

q =0

2.0—
0
C

I-
O
II

U'

4
I.O—

FIG. 9. Temperature variation of
the transverse relaxation rate at q=0
as determined from the inelastic
s cat tering.
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FIG. 10. Temperature and wave-vector dependence
of the longitudinal relaxation rate as determined from the
inelastic scattering.

VI. TEST OF DYNAMIC SCALING

In order to test the predictions of dynamic scaling
in the anisotropic regime, discussed in Sec. III C,
we examine the variation of the longitudinal relaxa-
tion rate in the critical and hydrodynamic regions.

In Fig. 11 the variation at T„of I'„with q is
shown. The best fit to the data shows that the points
obey the relation

see that all the points do, in fact, fall very close
to two general curves, one for T & TN, and one for
T& T~. The results thus give striking evidence
of the existence of a scaling function in an aniso-
tropic antiferromagnet both below TN, where there
are no detailed theoretical predictions, as well as
in the paramagnetic region. The two functions
must coincide at large q/K„ in the limit T- T„.
We have attempted to describe the functions
0 (q/Ks) T & T„and 0 (q/K„), T & T„analytically
by fitting to assumed functions of (q/K~ ) Three
expressions have been tried:

Q(x) =A1+81x+ C1x +D1x5,

n(x) = A, + a,x'+ Csx'+ D,x',
(29a)

(29b)

fl(x) = &5+&Sx' (29c)

I I I I I I I I I
I

I I I I I I I I I I

LONGITUDINAL RElAXATION RATE Fe F2

T TN

FII (q TN)

where x=q/K„. Each expression is found to give
an adequate fit to the experimental data, and it is
not possible to favor any one over the others. The
values of the fitted parameters are listed in Table
III.

r„(q, T„)=(3.4~ l.p)q""' mev . (25)

The variation of l „(0, T) with K„ is shown in Fig.
12, where the best fit is obtained with O.I—

I"„(0,K„)=(iV+7)K„' ' '
meV .

For the variation with temperature we obtain

Z (p 7) (4 5+l p)y1.5Ss0.12

(26)

(q/ ii)= (q, Ki, )/Kii (26)

determined from our measurements. It should be
noted that the exponent of ~„has been chosen as
2, the theoretical value, rather than the experi-
mental value of 2. 3 giving the best fit at q = 0. We

The exponents in Eqs. (25) and (26) agree within
the experimental error, as they should if scaling
theory holds. They are consistent with the pre-
dicted value of 2. 0 [Eq. (1V)] but not with the iso-
tropic value of 1.5. Recent nuclear-magnetic-
resonance experiments also indicate an exponent of
2.0+0.25 in Eq. (26) for the K„dependence of
l'„(0, K„), although several assumptions need to be
made in the analysis of these data.

In Fig. 13 we plot the scaling function

O.OI—

O.OOI
OOI

I I I I I I I I I II I I I I I I I I I I

O. I I.O
0

q A

FIG. 11. %ave-vector dependence of the longitudinal
relaxation rate at Tz. The solid line represents the best
fit to the data of a power law in q.
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FIG. 13. Dynamic scaling functions Q, (q/tcII), T &T~
and Q (q/I(:»), T & TN, for longitudinal relaxation rates in

FeF2.
FIG. 12. Dependence of the longitudinal relaxation rate

on the inverse longitudinal correlation length in the hydro-
dynamic region T &Tz. The solid line represents the best
fit to the data of a power law in ~„.

The functions 0, (q/v„) for FeFz show a remark-
able similarity to those found in the much more
isotropic MnF~. This is seen in Fig. 14 where we
compare the experimental points for the scaling
function for FeF2 with the smoothed experimental
curves for MnF~ and RbMnFS.

Ne may test the quantitative predictions of the
MMA by a comparison of the values calculated
from Egs. (18) with Eq. (26) above and the experi-
mental value for I",(0, T„)of (l. 5+0.4) meV.
Taking v~=0. 145 A ' and Q=2. 6 meVA~~', we cal-
culate for the hydrodynamic region

I'„(0, ~„)= (8~ 2)~'„meV

I;(0, T~) = (l.4+ 0. 6) meV .
The transverse relaxation rate is thus in good
agreement with experiment, whereas the longitudi-
nal rate is about a factor of 2 too small. A more
complete comparison is given by Riedel.

VII. SUMMARY AND CONCLUSIONS

Detailed measurements of the critical scattering

I I I I I I I I I I I I

OC

oQ

i 000.0

E
I 00.0

I-
I0.01

II

I.O

2420'0 4 8 12

q/]c

FIG. 14, Comparison of the data points for the longi-
tudinal dynamic scaling functions Q(q/I('») for FeF2 with
the corresponding smoothed data curves (X= &) for MnF2
and RbMnF3 (Befs. 7, 10, 12).

of neutrons from FeF2 have been carried out, and

the nature of the static and dynamic critical phe-
nomena in an anisotropic antiferromagnet charac-
terized experimentally. The predictions of scaling
theory for such a system have been confirmed ex-
perimentally and it has been possible to test quanti-
tatively the form of the scaling function calculated
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for the hydrodynamic region in the MMA by Riedel
and Wegner.

The transverse fluctuations are noncritical and
give relatively weak scattering which, in contrast
to the more isotropic ca,se MnF~, is not strongly
temperature dependent. The characteristic
length z,(T„) ' = g~', which sets the scale of the
anisotropy is determined to be 0. 145 '= 6.9 A,
and many of our measurements are carried out
within the anisotropic regime of scaling theory,
g + K(~ && Kg The transverse relaxation rate at zero
wave vector is in good agreement with that calcu-
lated in the MMA.

The longitudinal relaxation rates show the same
general variation with temperature and wave vector
as found for MnF~. They are, however, of the or-
der of a fifth smaller, and are described by a homo-
geneous scaling function of q and z„of degree 2

rather than of degree —,
' as found in the isotropic

systems. This is in agreement with recent aniso-
tropic scaling theory. The scaling functions
Q,(q/a„) are remarkably close to those found in
MnF&. In the hydrodynamic region the rates are
a factor of 2 larger than predicted by the MMA cal-
culations.

Together with previous investigations on the iso-
tropic RbMnF3 and weakly anisotropic MnF~ the
present results help to clarify the general experi-
mental features of the critical behavior of three-
dimensional antiferromagnetic systems.
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The dispersion relation for the coupled photon-magnon-phonon modes is discussed, and an
expression for the time-averaged energy density of the coupled modes in a ferromagnetic
insulator is derived, based on the electromagnetic nature of the modes. The phenomena of
ferromagnetic resonance and ferroacoustic resonance are shown to correspond to specific
frequency-wave-vector regimes of the dispersion curves. Expressions are derived for the
phonon, magnon, and photon strengths of the coupled modes in the two regimes.

I. INTRODUCTION

In a ferromagnetic insulator, the electromag-
netic and acoustic eigenmodes of the crystal are
coupled acoustic phonon-magnon-"photon" modes, '

which arise from the magnetoelastic interaction of
acoustic phonons with magnons and the magnetic
dipole interaction of photons and magnons. In
the present paper we are not directly concerned
with the coupling of the photons with optical phonons
nor with other electric dipole excitations, and
therefore designate the coupled photon-electric
dipole-excitation (polariton) modes simply as
"photons. "

The existence of the coupled acoustic phonon-
magnon- photon modes implies that whenever an
electromagnetic wave or an acoustic wave is in-
cident on a ferromagnetic crystal, the propagating
modes will be an admixture of acoustic phonons,
magnons, and photons, whose relative amplitudes
depend on the wave vector and frequency of the
incident wave. Since the properties of the coupled
modes, i.e. , the damping of the modes and the
nonlinear interactions of the modes with other ex-
citations, depend on the acoustic phonon, magnon,
and photon contents of the modes, it is desirable
to have expressions for the photon, magnon, and
photon strengths of the coupled modes as a function

of frequency and wave vector.
In Sec. II, the dispersion relation of the coupled

photon-magnon-phonon modes is discussed, and
an expression for the time-averaged energy den-
sity of the coupled modes in the crystal is ob-
tained, based on the equivalence of the coupled
modes and the electromagnetic modes in the crys-
tal.

In Sec. III, a general expression is obtained for
the acoustic phonon, magnon, and photon strengths
of the modes. Simple analytical equations are
obtained for two different frequency-wave-vector
regimes: (a) the ferromagnetic resonance regime
and (b) the ferroacoustic resonance regime.

In Sec. IV, the damping of the coupled modes is
discussed, as one example of the usefulness of
the expressions for the phonon strength, magnon
strength, and photon strength.

II. DISPERSION REI.ATION AND ENERGY".Y DENSITY

For a cubic crystal, the Hamiltonian density is
given by'

H= (1/2p)(m'„+w,'+m', )+-,' o. (Z„',+Z„', )

+b(M„Z„,+M„Z„,)+(&'+E D)/8~+-,'(~o/&o, )


