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The exchange self-energy in silicon is calculated using the dynamic Penn dielectric func-
tion and pseudopotential wave functions. Comparison is made with Slater's p approximation,
and it is concluded that errors of the order of 0. 5 to 2 eV result. The static dielectric func-
tion gives 15% errors in the average self-energy but only 2-3% errors in the exchange-gap
enhancements.

I. INTRODUCTION AND CONCLUSIONS

The Hartree-Fock approximation has long been
known to be highly unsatisfactory for calculating
energy bands in solids. ' Studies beyond the Har-
tree-Fock approximation have been made using
many-body perturbation theory. Most such calcu-
lations employ the random-phase approximation
(RPA) which is equivalent to replacing the bare
Coulomb interaction in the Hartree-Fock exchange
terms by a dynamically screened interaction. It
has been suggested that statically screened exchange
would be sufficiently accurate for band calcula-
tions' 3 because band gaps are small compared to
the plasma frequency and we have found this to be
the case.

Although calculations using screened exchange
have recently been performed on the alkali halides,

the great majority of a priori band calculations have
used Slater's "p' " approximation to exchange.
Slater's method is a "local-density" approximation
which uses the average exchange energy of the free-
electron gas as a function of density as calculated
in the Hartree-Fock approximation. The exchange
energy is then assumed to follow the local density
in the solid. Kohn and Sham have justified the use
of the "local-density" approach for calculations of
the ground-state energy with slowly varying distur-
bances of small amplitude. They pointed out that
the electron self-energy at the Fermi surface should
be used rather than the average self-energy. This
correction introduces a factor n = —,

' in Slater's po-
tential. Recently u has been used as an adjustable
parameter which can be empirically determined to
improve agreement between theory and experi-
ment.
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Recent work on silicon using a completely empir-
ical local valence-valence exchange potential sug-
gested a fundamental incompatibility between ex-
perimental gaps and masses. These quantities are
connected by a k p relation for a local potential.
The incompatibilities amounted to 0. 5 to 0. 7 eV in
band gaps or 15-20% in masses. These results do
not strongly contradict Kohn and Sham's work, first
because they refer to energy gaps rather than
ground-state energies, and secondly because the
energies are a small fraction of the total self-ener-
gy (-10 eV), whereas the atomic spacing is not
really large compared to the Fermi wavelength.

In the present paper we compute the screened
exchange interaction for silicon using RPA. We use
the Penn model to compute the dynamic dielectric
function. We ignore "local-field effects"; i. e. , we
neglect those terms in the dielectric function which
are nondiagonal in vectors of the reciprocal lat-
tice. ' (But we do not restrict momentum transfers
to the first Brillouin zone as this would lead to an
error of about a factor of 2. ) We use pseudopoten-
tial wave functions as given by Brust's empirical
pseudopotential. " We find that the static approxi-
mation to the dielectric function leads to errors of
15% in average exchange energies but to only 2-3%
errors in the exchange contribution to the energy
gaps.

We compare our screened-exchange results to
Slater's np' ' method with a= 0. 88 which produces
equal exchange energies at the top of the valence
band, Fzs. . We find some energy-band features
agree closely in the two calculations while others
differ by 0. 5 to 2 eV. In general, we feel that
Slater's method is not reliable in terms of present-
day standards of accuracy and that more attention
should be given to the problem of calculating
screened exchange.

Our results here provide some support for our
empirical observations concerning the inadequacies

of local potentials. However, we have not calcu-
lated masses with sufficient accuracy for quantita-
tive support.

II. RPA SELF-ENERGY

A. Formalism

Hedin and Lundquist give the following expres-
sions for the electron self-energy operator Z in the
RPA appr oximation:

Z(r„„z, 2) = i%(r„ t„r2, t2) Go(r„ t„rz, t2), (1)

W(r„ t„r2, t~)= fv(r„r~) rr '(r3 tJ r2 t2)drs, (2)

Go(r„ t~; r2, t~) = (I/2rr) fGo(r„r~ rd)e '""' '~'d&u,

(3)

~ C'.~(rg) @*.g(r2)e""
G (r r co)=M0 1P 2P

n, k nk nk

(4)

In Eq. (4), 5 is a positive infinitesimal. All ener-
gies are measured from the Fermi level, taken to
be infinitesimally above the valence-band maxi-
mum.

In these equations v(r„rs) is the bare Coulomb
potential e /lr, —r3l or in Fourier space

v(r„r~) = (2rr) fv, e"'"& '3'dq v, = 4rr/q' . (5)

& is the propagating dielectric function, ' and W is
the dynamically screened potential. Go is the un-
perturbed propagator based on the Bloch eigenfunc-
tions C „t(r) of the effective single-particle poten-
tial.

We assume that the dielectric function is diagonal
in momentum space (i.e. , we ignore local-field
corrections). ~0 Then following Schrieffer~ and
Adler, ' we can write the dielectric function as

4 rre H„b ~'1(C'ngkr 1 e I 4'nak2) I [8(fenrir —er;) —8(tn~kp —& )]

where 8(x) is the unit step function 8(+) =1, 8(-)
=0. II„b is the Hubbard correction factor for ex-
change as used by Heine and Abarenkov. In some
of the calculations me have set II„b=1; ao is the
Bohr radius. The matrix element requires

k, =k, -q-K, (7)
(7a)

where the Fourier transform of Z(r„ t„rz, t2) in
Eq. (1) has been introduced. In a completely first-
principles calculation this approximation mould re-

where K is a vector of the reciprocal lattice. We
do not limit q to the first Brillouin zone. We will

1 q
B„b=1 ——

2 q + k~+ 2kr /rrao
'

find that outer zones make a significant contribution
to Z.

We consider only the "diagonal" terms in the
self-energy, namely



COMPARISON OF SCREENED EXCHANGE. . . 1495

quire

(Vb)

&..., .,i,(q)-=I «'. f (r) le"'I ~.,a (r)) I', (9)

1 i 6 (e- 0)
s(q, e)=- — an . . (10)

2pg g(q, n) ((u —n —@+ice)

We divide S in Eq. (10) into three pieces using
tc '= (~ ' —1) +1, and deform the contour of integra-
tion for 0 from the real to the imaginary axis:

S = S1+S2+Ss,

s, =- g(-~),
(11)

(12)

In our numerical work we use pseudopotential wave
functions determined from an empirical pseudopo-
tential. Therefore, to the extent that the limitations
of the assumed form of the pseudopotential permit
it, exchange has already been included in the wave
functions and nondiagonal terms should not be fur-
ther included. From this point of view, exchange
is not a further correction to be added to the pseu-
dopotential energies. Rather we seek to determine
what fraction of the empirical energy is due to ex-
change. This cannot be accurately true because the
three-parameter local effective potential is too
limited in scope to represent a thorough empirical
description of the energy bands but it should be a
reasonable first approximation.

Using Eqs. (1), (2), and (6) in Eq. (7), we can
write

z„„(k„u))= Z v,E„g, „,k (q)s(q, e„g ),
q, n2, k2

small. (1V)

~(q, &u) is sensitive to energies of the order of the

energy gap in the Penn model or the order of qk&
in the free-electron gas. However, (& ' —1) is
less sensitive and only varies appreciably for
IE —&u I- ~~ (~~ is the plasma frequency). Hence,

we need only require I
e —+ I «&u~ in Eq. (17).

Making the static approximation in Eq. (15) also,
we can sum the three contributions and write Eq.
(11) as

v q, 0 2 & q, 0
(18)

The first term in large parens on the right-hand
side of Eq. (18) is a statically screened exchange
(SX), while the second is the interaction of the elec-
tron with the induced charge it creates, the "Cou-
lomb hole" (CH). These results have been previ-
ously obtained and interpreted by Hedin' and by
Brinkman and Goodman.

If we continue the static approximation in Eqs.
(8) and (9), we find

5 F„,g „ f„(q)=1. (19)
n2, k2

This result follows because C „,g,(r)e"' is a state
at wave vector km, and the sum on n2 in Eq. (8) is
over a complete set of states at that wave vector.
With this result the CH term in Eq. (1&) simply
lowers all bands by the same amount and has no ef-
fect on the band structure. This has been pointed
out by Brinkman and Goodman. Using Eqs. (18)
and (19), Eq. (8) can be rewritten

—1
1

z(q, (u —e)
(13)

S3= —— dm- - . —1
1 I'" 1 1

(14)
2vJ x(q, i(u) ((u —& —im) '

Z g, y(k1 +) ZcH+ Zsx(tl„k, ) (2o)

(21)

(22)

S2 comes from the poles of the Go factor in shifting
the contour from the real to the imaginary axis.

Assuming inversion symmetry it is easily shown

that K(q, —il) = K(q, iw). Using this relation and

simplifying Eq. (13), we have

S2= —1
1

~(q, (u —e)

~(q, im) ((u —e)'+m' '

for (u —E such that v(q, i(&u —e))= v(q, 0), Eq. (16)
becomes

1 1s, = — — —1 [e(e —&u) —&((u —~) j
2 ~(q, 0)

occup&ed states, n2k2

(23)
Since the sum in Eq. (23) is only over the states
n2 k2 which are occupied, Fn1k, "1(1- As q - 0
F„k „,-1 for occupied states and - 0 for empty
states by the orthonormality of Bloch functions.
This limit is extreme, of course, and is only ap-
proximately true for a small volume of q space.
However, we expect that F will generally be larger
for valence states than for conduction-band states.
Detailed calculation shows this to be true for nearly
all values of q. Since F is larger for valence
states, the effect is to increase the band gap, just
as in the unscreened Hartree-Fock results, but by
a lesser amount.



1496 E. O. KANE

B. Numerical Calculation

The diagonal dielectric constant in Eq. (6) was
calculated in the Penn model fitted to a value z(0, 0)
= 12 with k& = 0. 957ap' corresponding to a lattice
constant a -- 10.263ap. The exchange "overlap" in-
tegrals in Eq. (9) were calculated using pseudopo-
tential wave functions based on Brust's coefficients
V(3)= —0. 21 Ry, V(8)=0. 04 Ry, and V(11)=0.08
Ry." Plane waves whose magnitude k satisfied

k" (2v/a)'7 (24)

were included in the Hamiltonian„while plane waves
satisfying

(2v/a) 7&k (2w/a) 19.5 (26)

were treated by Lowdin perturbation theory as de-
scribed by Brust. " The Hamiltonian size varied
from 15 to 23 depending on the point k of the zone.
The Fourier coefficients obtained from diagonalizing
the matrix were used in Eq. (9) without considera-
tion of the states with k & (2w/a) 7.

In the q sum of Eq. (8) a bcc mesh was deter-
mined in the form of a miniature Brillouin zone with
lattice points —,'K„. The quantities I and S in Eq. (8)
were evaluated at these lattice points while 1/q was
integrated over a sphere centered at the lattice
point with a volume equal to the volume per mesh
point.

We write

q = qp+K„, (26)

where qp is inside the first Brillouin zone and K„ is
a principal lattice vector. We summed over the
following (a/2w)K„=(0, 0, 0), (1, 1, 1), (2, 0, 0),
(0, 2, 2), (3, 1, 1), and (2, 2, 2) for all qo= —,'K„. The
convergence of the self-energy is given in Table I
where the cumulative self-energy is tabulated vs
K„. In the first two rows of Table I the self-energy
contribution from q in the first zone is compared
for the two mesh sizes -„'K„and ~8K„. The difference

is about 2% so that we estimate no more than a 1%
error in the total self-energy from mesh-size
coarseness. The q-space convergence appears good
in Table I, but we can get a more accurate estimate
by comparison with the free-electron-gas conver-
gence in q which is more easily calculated. First
we note that the average solid self-energy at the F
point is only 2/odifferentfrom the free-electron self-
energy integrated over the same volume of q space.
This indicates that the q-space convergence in the

solid should be nearly the same as in the free-elec tron
gas. We further note that the free-electron self-ener-
gy for aq-space volume equal to that of the Brillouin
zones out toK„= (2v/a) (2, 2, 2) inclusive is only 1.6%
smaller than the total free-electron self-energy. (An

expression based on a mesh in 1/q was used to sum
over large q in the free-electron case. ) Hence we
conclude that the q-space integration is accurate to
a few percent both as to mesh size and total volume
of integration.

In Table II the values of the exchange self-energy
calculated with the dynamic Penn dielectric function
are compared with the static approximation (values
in parentheses). It is seen that the average values
in the static limit are about 16% too low but the val-
ues of the energy gaps are only a few percent in
error. Earlier work had suggested that the static
approximation would be satisfactory. ' This result
is gratifying because it makes the calculations a
great deal easier.

III. RESULTS AND DISCUSSION

The considerations in Sec. IIB suggest that com-
putational inaccuracies and the use of the static ap-
proximation involve errors of only a few percent.
The major unevaluated sources of error are the use

TABLE II. Self-energies at the I', X, L points in eV.
Bare numbers were calculated using the dynamic Penn
dielectric function and no Hubbard correction. Numbers
in parentheses were calculated using a static dielectric
function and no Hubbard correction. Numbers in brackets
are static with Hubbard correction.

(a/2~) Q ~2 5'

—5. 145
—5. 194
—8. 255
—9.708

—10.39
-10.89
—11.02

~is ~25I'is

0.855
0.838
l.311
l.432
I.519
1.628
l.621

—4. 291
-4.356
-6.944
—8. 277
-8.875
—9.259
—9.395

000
ooo'
111
200
220
311
222

Row coinputed with half the mesh spacing of all other
entries. This value used in cumulative totals below.

TABLE I. Self-energy at the 1 point vs volume of q
integration. Sum is over complete zones. Q labels
zone-center point of furthest zone included in sum. The
dynamic Penn dielectric function was used, but no Hub-
bard correction was applied. Energies are in eV.

I'2s

-11.02
(-12.55)
[-12.ov]

—ll. 06
(-12.62)
[—12.15]

X4

—10.95
(-12.61)
[-12.11]

I'is

—10.04

—9.62
(-11.15)
[-1O. 62]

—9.06
(- lo. vo)
[-1O. 11]

—9.39
( —10.88)
[—10.31] [ —10.90]

l.62 0.978
(l.66)
[l.v6] [1.17]

Lg -L3.
l. 44
(l. 4v)
[l.53]

Xg -X4

1.89
(1.92)
[2.oo]

I'~s - I"2s I'2 - I'2s
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FIG. 1. Solid lines are the 6K-
change self-energy for the A5 and A3
bands calculated using the static Penn
dielectric function with a Hubbard cor-
rection factor. Dashed lines are
Slater's p ~ approximation with 0.
=0.88.

of pseudopotential wave functions, the neglect of
"umklapp" nondiagonal terms in the dielectric func-
tion, and the use of the RPA approximation.

The static Penn dielectric function is a monotoni-
cally decreasing function of q whose value at small q
is fixed by experiment. In view of the relative in-
sensitivity of the exchange energy to the high-q de-
pendence as evidenced by the results in Table II

with and without the Hubbard correction, we do not
think the dielectric function is a serious source of
error apart from possible "umklapp" nondiagonality
terms.

Although some results using the dynamic dielectric
function are given in Table II, the more detailed
calculations which we present in Figs. 1-3were
computed using the static dielectric function.

A-12—

FIG. 2. Solid lines are the 8K-
change self-energy for the 4~ and

A& bands calculated using the static
Penn dielectric function with a Hub-
bard correction factor. Dashed lines
are Slater's p ~3 approximation with
Qt, =0.88.

—14—
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8

—12—

2'

Ising

2

FIG. 3. Solid lines are the ex-
change self-energy for the 42. and

A& bands calculated using the static
Penn dielectric function with a Hub-
bard correction factor. Dashed lines
are Slater's p approximation with
(x =0, 88.

—14—
I

rk~

A value of n = 0. 88 was selected to give agreement
for the I'». valence-band state. The values of

p„„(r)were taken from Brinkman and Goodman~ and

the exchange self-energy defined by

~sl t (@ k(r)
~
~s1 t, I

+.~(r)) (28)

was computed using pseudopotential wave functions
for C „„-(r)."

Comparing the two results in Figs. 1-3, we see
that some features agree surprisingly well while in
other cases the agreement is quite poor. The I'2,.
—I'» gap is quite accurate while the I'» —I"&. gap
differs by 0. 4 eV. The lowest A& and A3 conduction
bands and the As valence band agree very well (see
Figs. 1 and 2) while the b, bands disagree by 0. 5

Points were computed at —,'nX and 4nL and the bands
sketched in by hand.

For comparison, we have also computed the same
bands using the Slater approximation

(27)

to 1 eV at the X point. The lowest valence band

(A, —h~) disagrees by nearly 2 eV.
Strong structure such as that in the A~ —&~. con-

duction bands in Fig. 3 agrees qualitatively but is
significantly less pronounced in the screened-ex-
change bands compared to the Slater bands.

There is a definite indication in the figures that
the valence bands near I'~5. are flatter for screened
exchange than for Slater exchange. The mesh size
was not small enough to determine curvatures reli-
ably. In a previous paper it was found impossible
to fit both gaps and curvatures at I' using a local
potential. The differences found here are in the
right direction to resolve this discrepancy but we
cannot obtain accurate numbers for quantitative
comparison.

We conclude that Slater's "p " approximation is
not reliable enough for "first-principles" calcula-
tions even when n is treated as an adjustable pa-
rameter. It appears that more attention should be
given to the problem of calculating screened ex-
change.
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A variational iteration technique is developed for calculating the distribution function and

electrical resistivity for semiconductors with anisotropic band structure. When only a sin-
gle iteration is performed the result for the resistivity is identical to that obtained by an ap-
plication of Kohler's principle with a relaxation-time approximation and the calculated dis-
tribution function includes anisotropic corrections to the zeroth-order energy-dependent re-
laxation time. The accuracy of the technique is demonstrated by comparing the results of a
first-order calculation with the exact solution of the Boltzmann equation for the transverse
resistivity and the distribution function for Brooks-Herring scattering by current carriers
moving on an ellipsoidal constant-energy surface in the limit of infinite-mass anisotropy.
The technique is applied to the calculation of the longitudinal resistivity and Hall y coefficient
of saturation-stressed degenerately doped n-type Ge at T=0'K. We find that z is within 5%
of unity, thus justifying Katz's determination of the number of carriers from his Hall data
but the theoretical upper bound to the resistivity is found to significantly underestimate the
experimental results. However, when the calculation is approximately corrected for the known

inaccuracies of the Born approximation together with contributions from multiple scattering
and dressing effects, the theory is found to be in good agreement with experiment.

I. INTRODUCTION AND CONCLUSIONS

When stress is applied to germanium it is pos-
sible to lower the energy of one of the four con-
duction-band minima relative to that of the other
three. ' If the semiconductor is degenerately doped
and saturation stress is applied, the conduction
electrons will make a transition into the lowest con-
duction-band valley and only this valley will be oc-
cupied at T= 0 'K. The cubic structure of unstressed
Ge gives rise to an isotropic resistivity. However,
since each conduction-band valley is highly aniso-
tropic with an effective-mass ratio m„/m, =19,
saturation-stressed degenerately doped Ge should
exhibit anisotropy in the resistivity. This resis-
tivity anisotropy has been directly observed and

has stimulated renewed interest in the transport
properties of electrons moving on ellipsoidal con-
stant-energy surfaces, a subject which is of signi-
icance not only for many semiconductors, but also
for semimetals.

In an earlier works (hereafter referred to as I)
upper and lower bounds to the transverse resistivity
predicted by Brooks-Herring scattering were ob-
tained. This was accomplished by exactly solving
the Boltzmann equation for two other scattering
functions which were either greater than d'or equal
to ) or less than (or equal to) the scattering rate

corresponding to the Brooks-Herring matrix ele-
ment but were not significantly different from the
latter. It is, however, not practical to use this
method to calculate bounds on the longitudinal resis-
tivity because to do so requires replacing ~

k„—k„' I

by either )k„)+ )k„' ) or ) k„) —)k„' ), which signifi-
cantly changes the value of the scattering function
and hence leads to results considerably different
from an exact calculation. A second method em-
ployed in I was the use of Kohler's variational
principle' with a simple trial solution for the change
in the distribution function. This technique led to
an upper bound for the resistivity that was at most
approximately 20% higher than a lower bound pre-
viously derived and hence an accurate estimate of
the resistivity was obtained for Brooks-Herring
scattering without any isotropic-mass approxima-
tions.

In Sec. D we show that in the limit of infinite-
mass anisotropy a simple application of the vari-
ational principle overestimates the exact transverse
resistivity by less than 1%. Since the variational
principle with a re1.axation-time approximation is
expected to improve with decreasing anisotropy,
a similar claim can be made for the accuracy in
the case of Ge, thus justifying a statement in I.
Furthermore, by an iteration process we derive
the distribution function for the infinitely aniso-


