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The contribution of dragging of point defects attached to dislocation lines, to dislocation
damping, to elastic modulus, and to logarithmic decrement, is developed. It is shown that the
dragging leads to an initial increase in decrement in a suitable frequency range, determined
by other related parameters: dislocation loop length, line tension, and damping constants.
The theory predicts a dependence on frequency of v, in contrast to the Koehler-Granato-Lucke
(KGL) frequency dependence of cu, explaining the failure of previous experiments to confirm
the KGL theory. In a similar manner, the generally accepted dependences on point-defect
density are shown to be incorrect at lower frequencies, below a few kHz in copper. For ex-
ample, it is shown that the dislocation decrement should be proportional to the two-thirds
power of the modulus defect, rather than proportional to the square of the modulus defect as
previously expected, at large point-defect densities on dislocation lines.

I. GENERAL INTRODUCTION

Some thirty years have passed since Read sug-
gested that dislocations contribute notably to the
internal friction of metals. Since then, several
mechanisms for this contribution have been pro-
posed and developed. ~'3 The most successful of
these, the one most commonly used for interpre-
tations of experimental observations, was initiated
by Koehler in 1950. The model was shortly there-

afterr

developed in more detail by Granato and

Lucke. ' Henceforth we shall refer to this as the
KGL theory of internal friction.

The KGL model is a string model for a dislo-
cation. In this model the dislocation is endowed
with all the attributes of a string so that the math-
ematical formalism begins with a string equation

~+a ~-C8 8 8~

8t 8t 8x

In Eq. (1), A is the effective mass per unit
length of dislocation, B is a viscous damping con-
stant, C is the effective line tension of the dislo-
cation, assumed constant, b is the magnitude of
the Burger's vector of the dislocation, ao is the
amplitude of the applied harmonic stress of angular
frequency co, y is the displacement of an elemental
portion of the string at a distance x from one end
of the string, and t is time. A=mph~, where p is
the mass density of the material. Each term in
Eq. (1) is a force per unit length of dislocation.

The problem is formulated for a dislocation of
length l at zero stress so that the boundary con-

ditions on Eq. (1) are

y(o, t) =y(I, t) = o.

In all of this article we shall be concerned with
frequencies sufficiently low (lower than about 10
kHz), so that the inertial term (the first term in
the string equation) may be neglected. This may
be verified by inserting generally accepted values
of 8, greater than 5&10 ' dyne seccm, and dis-
location velocities, limited by (and well below) the

speed of sound, in the first two terms of Eq. (1).
Having disposed of the first term in Eq. (1), one

may still question the appropriateness of each of
the remaining terms: (i) & &y/St. This term rep-
resents the viscous damping of dislocation motion,
under stress. Since actual dislocation motion in-
volves the creation and motion of kinks, the mount-
ing of Peierl's barriers, etc. , the concept of simple
viscous motion is an idealization, but the work of
Trott and Birnbaum shows that these complexities
are reasonably well averaged over in a string
model. Furthermore, Leibf ried has calculated
B in a model of phonon scattering at dislocations,
lending further credence to this term. ~ We shall
continue to adopt a viscous-force term but with res-
ervations. As developed later, we believe that
impurity effects have been underestimated and,
concomitantly, the actual dislocation-line damping,
overestimated. Also, the possible validity of
other frictional terms should be considered. The
classical case of constant sliding friction may be
important, for example. (ii) C S2y/Bx . This
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and

5=a, (mEb /C ) +BAl

DE/E = ae (Eb 2/2C ) Pl2

(4)

(5)

where a, and a~ are numerical factors whose value~
depend on the type of function adopted to describe
the distribution of lengths l. If all dislocations
are taken of equal length ("5-function distribution"),
a, = (5I )

~ and ae = (3() ~; if an "exponential distri-
bution" is assumed, a, =a~=1.

The actual values predicted by Eqs. (4) and

(5) are important. To make the comparison with

term represents the line tension of a dislocation.
Since the existence of a line tension implies a line
energy and since such an energy is rather well
established, a line-tension term seems justified
although other restorative terms can be envisioned.
It is also likely that C =C(x) but the disregard of this
point seems trivial, particularly at lower stresses.

Mott and Nabarro' give

C = 2G b /m(1- v) = —,
' G b

where G is the shear modulus of the material and
v is Poisson's ratio. (iii) crobe'"' Th. is is the
driving-force term. The major concern here, as
discussed recently by Trott and Birnbaum, lies
in the neglect of orientation factors. In metals,
the dislocation motion considered here is re-
stricted to glide planes inclined at various angles
to the direction of the applied stress. A simple
average over direction generally assumed as part
of the KGL driving term, may be the source of
considerable difficulty, particularly if the sharp
dependences on dislocation loop length l predicted
by Granato and Lucke are correct.

We shall adopt the position that Eq. (1)—or an
expanded version of this string equation, proposed
below —is substantially correct and explore the con-
sequences. We do this, however, with two reser-
vations. First, we will restrict our attention to
sufficiently small stresses where the internal fric-
tion is amplitude independent. The theory of ampli-
tude-dependent internal friction will not be presented
at this time. There is considerably more reason
to question the adequacies of Eq. (1) for amplitude-
dependent internal friction. Second we would not
be surprised if some observations fail to adhere
precisely to predictions based on Eq. (1) consid-
ering the reservations just cited above. In fact,
it will be shown in the accompanying paper that
observations coincide with the predictions of an
expanded form of Eq. (1) with remarkable accuracy.

With these limitations, we shall present the ex-
act solution to Eq. (1) subsequently. By approxi-
mating this solution to the same degree as in the
KGL model, we will then arrive at the well-known
results presented by Granato and Lucke:

theory, we take representative values of the param-
eters: 8- 4x 10 dyne cm sec, C- 4x 10 dyne,
l- 5x10 cm. From experiment, bE/E= 2x10 ~.

Calculating at 1 kHz (&u = 2m x 10' sec ~), we find

5= (a,/ae) 2m((uB/'/C) nE/E- 2x10-'-2 xl0-'

depending on which of the (extreme) values of a,
and a~ are adopted. But experimentally, 10 & 5
& 10 is common. No sensible readjustment of
parameters will produce agreement. The impli-
cation is that Eqs. (4) and (5) can be valid only at

.frequencies well above 1 kHz. Equations (4) and

(5) (and related predictions) will subsequently be
referred to as the GL predictions.

The salient features of Eqs. (4) and (5) are the
dependences of 5 on l4 and of bE/E on l2 and the
dependence of 5 on &u: (i) Frequency dependence:

Of the two features, this has received the
least attention. The situation is best summarized
by Heiple and Birnbaum who show that, below
about 30-40 kHz, the damping is essentially inde-
pendent of ~ in copper. The observations of
Heiple and Birnbaum are probably the most com-
plete ones, but other investigators have noted this
discrepancy between experiment and the GL pre-
diction. In fact, Routbort and Sack reported that
the decrement increased with decreasing frequency
in copper below 40 kHz. " By way of contrast, the
GL predictions are well borne out in the MHz
range. We propose that the damping at low fre-
quencies is determined by another mechanism
which results in considerably larger losses.

The mechanism which we shall explore below
was, in fact, anticipated by Koehler when he wrote:
"If the frequency of the applied stress is in the
kilocycle range, the impurity atoms are completely
unable to follow the alternating stress, since dif-
fusion is an extremely slow process at room tem-
perature. " (Koehler was concerned with damping
in copper with small impurity additions. ) We pro-
pose that "pinning points, " to be identified with
impurity atoms in Koehler's quotation, do follow
the motion of dislocations to varying extents and
that this "dragging" is highly dissipative. The
most conspicuous evidence for this was recently
reported. ' It consists of an initial increase in
5 as dislocation lines were loaded with "pinners";
the GL prediction calls for a monatonic decrease,
as presented in the paragraphs below and, in more
detail, subsequently. (ii) Length dependences: 5
~l and 4E/E~ l~. These dependencies are cer-
tainly the most noted ones in the literature on dis-
location damping. In comparing experimental ob-
servation with theory, the results of irradiation
experiments have played a central role. The unique
opportunity provided by irradiation experiments
has been based on the following logic: (a) The point
defects created by irradiation (vacancies, inter-
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stitials) act as new pinning points on arrival at
dislocation lines. (b) The concentration of new
pinning points can be controlled exceptionally well
in irradiation studies. In contrast, periodic
doping experiments, where impurity atoms act as
pinners, are a good deal less controlled. Further-
more, the concentration of pinners which are most
effective in pinning dislocations is very small,
compounding the difficulty of impurity-doping ex-
periments. (c) The concentration of point-defect
pinners can be simply added to the concentration
of pre-existing pinners consisting of original im-
purity atoms and network nodes (nodal points) in
the dislocation network of the material. (d) The
sole factor effected by the addition of point defects
is the average dislocation loop length / appearing
in Eqs. (4) and (5). (e) The manner in which I is
effected is given by

I =I /(I+n) (6)

where n is the number of pinners added to the dis-
location of initial length lo.

With these assumptions, it is clear that a test
of the model lies in plotting 5 and nE/E against the
number of point defects which have been created
and subsequently diffused to dislocation lines. In
fact, the absolute value of n is not generally pre-
cisely known for three reasons. First, the actual
number of point defects created in the entire lattice
is known only through a displacement cross section
which is always more or less open to question.
Second, of these displacements, only a fraction
reach dislocations since a diffusing point defect may
be "captured" by a number of other competing
traps. Third, the point defects reaching disloca-
tions may not be stable there but may diffuse along
dislocations lines ("pipe diffusion" ), thereby pos-
sibly arriving at dislocation nodes and ceasing to
act as pinners, or "boil off" dislocations entirely.

Much of the details of the potential defect-dis-
location interactions are determined by other fac-
tors such as impurity content and temperature of
the material. For this reason, it is desirable to
circumvent the hazards which lie in individual plots
of 5 vs n and bE/E vs n by making a single cross
plot of 6 vs (bE/E) . This plot, according to Eqs.
(4) and (5), should be linear. It is in this sense
that assumption (b) above is entirely correct. How-
ever, full verification of the GL predictions re-
quires still more, since models other than the
string model may produce such a cross plot:
-(«/E)'.

Most of the reported investigations in which the
cross-plot test have been applied have failed to
demonstrate a linearity between 5 and (nE/E),
The most prominent successful demonstration of
the cross-plot test was made by Thompson and
Holmes ' at -11 kHz. Generally the failures to

meet the cross-plottest or to observe the pre-
dicted length dependences of 5 and &E/E have been
explained with the introduction of another degree
of complexity —a two-dislocation description. "'
Briefly, it has been proposed that both the friction
and modulus-defect expressions are due to two
families of dislocations, presumably screw and

edge types, each with its own set of parameters:
average loop length, dislocation density, etc.
With further parameters at hand, further agree-
ment with the GL predictions has been effected.
Further information concerning the nature of two-
dislocation types is provided in the accompanying
paper.

During the developments in this paper we shall
need to consider the distribution of dislocation
loop lengths. We merely remark at this point
that the relationship Eq. (6) is generally not ap-
plicable, despite its wide-spread use. The ex-
pression is due to Koehler who derived it for the
case of impurity atoms pinning dislocations. In
this case, the number of pinners is relatively
large so that it is reasonable to derive a distri-
bution function which treats the position of all
pinners, including nodal points, as random on a
very long line. The resulting distribution is ex-
ponential:

yP) = A(I )-"-"',
where l is the average loop length and A is the
density of dislocations. Only the exponential dis-
tribution retains its analytical form as the num-
ber of pinners is increased, subsequently making
Eq. (6) valid. Any other distribution does not
lead to Eq. (6) except in the limit of large num-
ber of added pinning points n. Unfortunately, most
of the more interesting investigations using irra-
diation techniques involve depositing a very few
pinners on a typical dislocation-line segment.

Regardless of the nature of the dislocation
length distribution, the GL predictions as given by
Eqs. (4)-(6) never lead to an increase in 6 upon
irradiation unless one assumes that the defects
created during irradiation and arriving at dislo-
cations depin dislocations —i.e. , remove some
pre-existing pinners from the dislocation line.
Indeed, Nielsen, upon observing the decrement
initially increasing in copper bombarded with pro-
tons at 20'K, casually speculated that this was
the case. ~7 The details of the initial decrement
increase have now been too deeply explored here
to allow this explanation. We shall show in the
subsequent paper that a model in which defects
are dragged with the dislocations is particularly
successful in accounting for this increase and its
accompanying characteristics.

The concept of an increase in the decrement is
sufficiently novel that a physical argument is in
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order. Suppose that the dislocation line gives
rise to no (or very little) energy dissipation when
oscillating under an applied stress. Now add one
point defect to the line. Any significant drag of
this defect must add to the energy losses observed.
This simple, intuitive explanation can be extended.
Suppose more point defects are now added. Each
defect will contribute to the total energy dissipa-
tion; however, the amount of dislocation motion
becomes more restricted with additional point
defects, tending to minimize the energy dissipa-
tion per attached defect. These two effects finally
balance so that continuing addition of point defects
to a dislocation line must inevitably lead to an in-
ternal-friction decrease-the decrement must go
through a peak value. It is also clear that the
ability of a defect to be dragged depends on the
frequency of the stress, dragging being more
easily effected at lower frequencies. Thus the
dragging peak in the decrement should be impor-
tant at low frequencies. This is clearly not con-
sistent with the frequency dependence of Eq. (4).
Note that the dragging effect should go through a
maximum as a function of frequency since, at
very low frequencies, the dragged defect will keep
up with the bowing dislocation which never attains
appreciable velocity. Since the loss term is pro-
portional to velocity, the loss goes to zero.

Models have been proposed previously which
could account for an increase in 6 due to the ad-
dition of defects into a crystal. Kamel' suggested
that oscillating dislocations drag vacancies through
the lattice, but failed to present any quantitative
description of such a model. Kessler considered
the case of a dislocation oscillating through a di-
lute cloud of impurity atoms. He did not consider
the details of the dislocation displacement; only
the average effects were treated. He did, however,
show that within his approximations the decrement
was proportional to the defect density. Both of
these two models and the one to be explored in
this paper are concerned with the motion of drag-
ging points perpendicular to the dislocation line.
Yamafuji and Bauer2P considered the case of stress-
assisted diffusion of a defect along the core of a
dislocation. They showed that such a mechanism
can give rise to a relaxation-type peak. However,
they assumed that the diffusivity of the defect along
the core of the dislocation is much greater than
the diffusivity of a defect in the pure lattice. Re-
cent measurements by Thompson et al. show that,
in copper, the reverse is apparently true below
about 400 'K. ~

A modification of the original zero-point-tem-
perature theory of Granato and Lucke, by Teutonico
et al. , to include the motion of dislocations in the
stress field of point defects could possibly result
in an increase in the decrement. However, their

analysis is rather intractable and it is difficult
to discern the consequences in its present form.

With this background we are prepared to pro-
ceed to the analysis of our proposed "dragging
model. " In this analysis we accept certain con-
cepts ad hoc, leaving further discussion to later.
For example, what really comprises dragging'7
One further comment is in order, however. The
reader should note that our analysis does not
directly ever speak of the shortening of the dis-
location loop lengths by the addition of dragging
points, such as Eq. (6) would predict. In our
analysis, a dislocation loop is endowed with a
length determined by the distance between nodal
points prior to the addition of dragging points and
this length is unaltered in any way.

II. DISLOCATION DRAG OF POINT DEFECTS

A. Introduction

In this section we shall calculate the conse-
quences of our model in the dragging of point de-
fects by oscillating dislocations. Following the
general procedures of Nowick, we take the ap-
plied stress as

0'= 0'p& ™
and the resulting strain & to consist of an elastic
strain &, and an anelastic component &„due to the
dislocation motion

We further anticipate that the dislocation strain
will include a component out of phase with the ap-
plied stress and take

(10)

With these definitions of stress and strain and the
additional assumption that Ic„~ «e, (true even in
cases of "high" decrements), the appropriate
measure of the internal friction is the logarithmic
decrement,

The modulus defect —the apparent fractional
decrease in elastic modulus due to dislocation
motion —is AE/E:

(12)

Taking y as the average displacement during os-
cillation of a dislocation segment from its equilib-
rium position and A as the density of dislocations
(lines per cmm)

&„=Aby

Equations (12) and (13) will be used to calculate
the modulus defect. Note that the logarithmic
decrement is formally defined through energy e on-
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sider at"'ons

06 dt (14)

with the operator 2 defined by

dZ=n z +1
dx (20)

the ratio of energy dissipated per oscillatory cycle
to twice the total "stored" energy. Equations
(14) and (11) are, however, equivalent if ~e„~ «e, .

We will first consider the case of a dislocation
loop containing only a single dragging point. Later
we will extend the calculation to consider several
dragging points on a loop. To relate these calcu-
lations to measured parameters (i. e. , 6 and bZ/
E), it is necessary to also consider the statistical
distribution of the number of point defects on dis-
location loops. As a very helpful prelude to these
complexities involved in the multidragging-point
case, we will consider a limiting form of a con-
tinuum of dragging points uniformly distributed
along dislocation loops.

B. General Formalism

o. -=iC/(uB,

The Green's function for this operator is

G(x, x') = [I/n sinh(l/n)]

(21)

x (sinh[(l —x')/o. ] sinh(x/o. )e(x' —x)

+ sinh(x'/o. ) sinh[(l —x)/o ]6(x —x')}

where 9 is the Heavyside function defined by

~~ ID
ao

(23)

The value of the displacement y is obtained as

B( ) ( )
y(x, t)

Q y(x, t)
Q

l4)f

et ~x
(15)

Neglecting inertial effects, the general equation
of motion of an oscillating dislocation dragging
defects is

y(x) = G(x, x') ' dx'
(dB,

so that

n

Z 5(x' - x,.)y(x')G(x, x') dx',
Jo

(24)

y (0, f) = y(l, f) = 0. (16)

The distance l is now taken to be the distance be-
tween absolutely firm pinner points, such as
clusters of defect or nodal points.

To solve Eq. (15) we assume the steady-state
conditions of

y(x, t) = y (x) e '"'

We take the ease of n dragging points, the ith one
located at x= x&. With each dragging point, we
associate a viscous drag constant B„. Retaining
a frictional contribution B, due to the dislocation
line itself, we have

B(x)p(x)-B, + Z B, &(x —x;) (16)

(note that B, and B„are not dimensionally equiva-
lent). We now have the time-independent equation

n

Zy(x)= ' ——' Z 5(x —x;)y(x)B, B,

where p(x) is the density of dragging point (or the
line itself) and B(x) is the viscous drag constant
for the defect which is at the point x. In this for-
mulation, B may be associated with several types
of defects: impurities, self-interstitial, vacancies,
etc. In the usual KGL treatment p(x) is unity and

B(x) is the constant dislocation line damping
term B,. Again the boundary conditions on Eq.
(15) are

tt

y(x)=yo(x) ——' Z y(x;)G(x, x;)
l i-"I

with

( )
icrob

&uB, sinh(I/n)

(25)

With only one dragging point on a dislocation
loop (n=1), Eq. (25) reduces to

y(x) = yo(x) (Ba/B~)y(x&) G(» x&) (2'f)

with

y(x;) = yo(x;)

xf sinh(l/o, ) —sinh(x/o. ) —sinh[(l —x)/n]}.
(26)

Note the Eqs. (25) and (26) also give the displace-
ment in the absence of point defects (n = 0 or B„=0)
for any segment of length l.

Whereas Eqs. (25) and (26) constitute the full
solution to our problem, they are of limited direct
value since the forms are not particularly re-
vealing and since this solution applies for a par-
ticular set of dragging points —i. e. , n dragging
points at positions x;. A suitably averaged effect
is noted from experiment. With these complica-
tions, further discussion of the general solution is
delayed to Sec. IIIB.

C. One-Dragging-Point Case
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/ ax sinh(x, /a)sinh[() —x,)/a]
)B, ci sinh(l/o. )

y(x) = (boo/2C) x(x; —x) for 0 & x & xi (30)

the equation of a string pinned at x= 0 and x= x&,
and

y(x) = (boo/2C)(x —xi)(l —x) for xi & x& I, (31)

the equation of a string pinned at x= x; and x= l.
From Eq. (29) and Eq. (12), the modulus defect is

aa hahs s $(xBs)s[x,(l —x, )]'
E 12C (IC) + [(()8~xi(l —xi)]

(32)

If (dB, -~, it is a simple matter to show that AE/
E is equivalent to the result for two loops of
length x; and l —x;. For intermediate frequencies
Eq. (32) correctly predicts the value of the modu-
lus defect. It is straightforward but tedious to
extend the calculation to the several-particle case.
This will be examined later.

To calculate the decrement we retain B, to the
lowest nonvanishing order in the solution for
y(x). The result for the one-pinner case is

6=mAEb ur
B)l
5tC

DB„[x;l(x;—I)]
(4lB, (loC) + [(dB~x;l(x; —l)]

with

D = loB, + ~~~ B„(o)B,/C)alo[y —1+(1—y) ]
(s4)

and x& has been replaced by ~l.
Again if o)B~-~, Eq. (33) correctly predicts

the decrement for two loops of length x,. and l —x, .
The term in the square brackets of (34) is

and G(x, x;) given by Eq. (22) with x' = x, .
Equation (27) is reasonably simple, but for

purposes of calculating the modulus defect, the
portion of the line-damping term containing B, is
small and can be ignored. This is not true for
calculations of the decrement, however. Nor is
it true that the effects due to the dragging points
can be neglected, as is clear from the following
solution.

If we let B,-O, then we obtain for the displace-
ment

boo / (I )
io)BN xi(l —xi)

2C ~~ IC+io)B„x,(x, —I)

x [(x,. —)) xe (x,. —x) s (x —() x,. SS(x x )])
(29)

In the limit that coB&-~, i.e. , the point defects
behave as hard pinners, Eq. (29) reduces to

always negative. Thus D can be positive or neg-
ative depending on the magnitude of the other
parameters. In particular, note the strong de-
pendence on e and l. For appropriate loop lengths
and frequencies, the decrement increases with
the addition of point defects to the dislocations.

To facilitate the examination of the dependence
of the decrement and modulus defect on the drag-
ging term, we will place the defect at x, = —,'l. It is
also convenient to define the dimensionless param-
eters

p, , —= +B,l~C ~ and p.„=(uB„lc ~ (s5)

With these simplifications we have for the modulus
defect

t h)=(1/ 2)i

AEb l 3 p,

(RC 4 ()6+a,') ) '

and for the decrement

)iAEb I i/i pg(16 —
2 i/, gii))

C 5[ '
64(16 + ')

Note that in the limit that p,„-~, both Eqs. (36)
and (37) reduce to the usual GL values. Further-
more, the dependence of the dragging terms on

shows that the dragging mechanism should be
of particular importance at low frequencies.

The form of Eq. (37) shows that the decrement
can increase due to the addition of a single pinner
to the line provided p„p, - 32. Therefore, let us
examine the displacement of the dragged defect
assuming the above conditions to be held. Using
typical values of C=4&&10 dyn, B, =4&10 ' dyn
cm ~sec, l=5&&10 cm, as previously, and (d =3
x10' sec ', one obtains p, -0.75&10' so that p„
&4&&10'. From Eq. (29), the displacement is given

y 1.,-(i/3» = (boof /SC)[1+(4 ~g) ] "'
Since p„»1,

(ss)

y I x, =[i/3&r bool '/2C'
Assuming a strain amplitude of 10 and a value of
E= 4x 10'~ dyn/cmo yields

-10
y I'=(1/2)l 10 cm.

A displacement of the defect by only 10 oao(ao is the
lattice parameter) contributes as much to the dec-
rement as the line damping does. Clearly, this
dragging mechanism must be an important source
of internal friction, particularly for low frequencies.

The previous calculation —that little displacement
of point defects dragged by dislocations is needed
to account for appreciable energy loss —suggests
that a significant portion of the "background damping"
(the decrement in a sample before the addition of
point defects) may be due to dragging losses rather
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than to the line losses as usually attributed. Further
evidence for this suggestion comes from the KGL
theory or, equivalently, from Eq. (37). In the
absence of dragging betting B~-0 in Eq. (37)],
theory still predicts a linear frequency dependence
of decrement on frequency. This is, as stated in
the Introduction, at variance with observation, by
a factor of perhaps 10 in the range below 1 kHz.
It is our contention, supported by experimental evi-
dence presented in the following article, that point-
defect dragging is unexpectedly lossy. Since the
number of point defects which are involved in much
of those observations is typically small, a few per
dislocation loop, it seems reasonable to speculate
that dragging of intrinsic point defects, jogs, and

impurities, may contribute appreciably to back-
ground damping. Again, we postpone discussion
of the nature of dragging until a later section, but
note that, if background damping is indeed due in
large part to the dragging of impurities, the treat-
ment of Sec. II D should be generally applicable.

D. High Defect Densities

In some experiments one is interested in mea-
suring changes in the decrement and modulus de-
fect due to the presence of many defects on dis-
location lines. Indeed, a salient feature of such
experiments frequently is that enough defects can
be added to the dislocations so that all dislocation
motion is essentially eliminated. Moreover, ex-
perimental conditions may be such that an appreci-
able density of defects exists on the dislocation
prior to the experiment, as stated in the previous
paragraph. Thus it is important to examine the
solution to the vibrating-string equation when the
density of defects is large enough so that they can
be regarded as distributed uniformly along the dis-
location segment. For this case, Eq. (15) reduces
to

p

B ——C -=go. e8J
Bt Bx

The above expressions for 6 and &E/E differ
slightly in magnitude from those given by GL due
to their retention of only the first term in the
Fourier-series solution of Eq. (39).

The effect of adding defects to dislocation is,
of course, to increase B. Thus B should go as

B = Bo+m B„ (44)

I6XtQ

where Bo is the viscous drag constant for defects
which produce the background damping (preir-
radiation damping), I is the number of defects
added per unit length of dislocation, and mB„ is
the additional drag due to these defects.

A graphical representation of the decrement and
modulus defect as a function of the universal param-
eter )J, = (&uBl /2C)'~2, given by Eqs. (40) and (41)
is presented in Fig. 1. The effect of adding de-
fects to the dislocation is merely to increase p.
We note that if po-=(&uBol /2C)~~, the initial value
of p before irradiation, etc. , is less than p~, then
the decrement will increase as p is increased.
Thus, an increase in decrement due to the addition
of point defects is seen to be a potentially general
effect. However, if po !U~, then both the dec-
rement and modulus defect decrease monotonically.
We note that a change in po may produce a large
change in the magnitude of the modulus defect, i.e. ,
if po is small, the modulus defect is large. Merely
increasing po from a value of one to two reduces
the modulus defect by a factor of two.

For high defect densities (p& 3) the decrement
and modulus defect change according to

The solution to Eq. (39) is given by (26) with the
substitution B,-B. (See also Refs. 23 and 24. )
The decrement is

mEb'l'A 1 sin p, + sinh p,

2C p,
~

p, cosh'+ cos p

and the modulus defect is

I ~
CV~ 4
M~

Lal

l2
I ~
'OJ

M

N~
8 QJ

LLj

UJ

AE Eb Al sinhp —sing
E 2C LL(, coshp+cos p

(41)

with p, =&uBI2/2C. For small p the decrement and

modulus defect are 0 I 4 5 6 7 8

& = vAEb +Bi /S! C

bE/E=AEb l /12C

(42)
FIG. 1. Decrement and modulus defect plotted as a

function of the parameter p for the continuous-distribu-
tion case.
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and

mEb l mAEb

2C pa (u(Bo+ mB~)

AEb l
E 2Cp3

(46)

ners per segment and (ii) average 5 and bE/E for
all possible positions of the K pinners along the
line. Of course it is assumed that pinners arrive
at the dislocation in a completely random manner.

For the hard-pinner case, the effect of adding
pinning points is to increase the number of loop-
lets and to shorten the average loop length.

mEb~
+B, Zl; )3=j.

From these expressions we see that the modulus
defect should decrease at a fastev rate than the
decrement. Indeed, a ln-ln plot of 6 vs b.E/E
should have an asymptotic slope of -', . This result
is entirely contrary to the standard interpretation
generally quoted from the GL prediction that the
decrement decreases more rapidly.

The solutions to Eq. (39) for 5 and bE/E, given,
respectively, by Eqs. (40) and (41), should be ex-
amined closely to note the identity and contrast to
the standard GL solutions. The solutions, Eqs.
(40) and (41), are exact and hold in the domain usu-
ally ascribed to GL predictions, as well as in the

dragging model. In the framework of the GL pre-
dictions, these solutions are guides to experiments
in which the number of defects on dislocation varies
by their change in the value of l; for examp1. e, Eq.
(6) may hold. In the dragging model, variations
appear due to change in B. The result of this new

orientation, from a variation in / to one in I3, is
that the low-frequency GL solutions, Eqs. (42) and

(43) become high-frequency dragging solutions and
5~ ~ is a valid conclusion for relatively high fre-
quencies. In the dragging model, the dependence
on frequency is cu ', corresponding well to the
behavior of the 5-vs-p, plot of Fig. 1 for p. »p, ~.
This change in frequency dependence explains the
reputed failure of experiments to match theory at
relatively low frequencies where dragging domi-
nates over line damping. For a fixed concentration
of pinning or dragging points, the frequency depen-
dence of decrement should be given by Fig. 1, with
~ the variable in the abscissa parameter p, , but
with a linear increase becoming dominant for
p, » p&. For much higher frequencies, inertial
effects become important and the theory has been
given by Granato and Lucke.

III. STATISTICAL TREATMENT OF DISLOCATION PINNING

A. Firm-Pinner Case

The experimentally measured quantities (5 and
b E/E) are in effect determined by the average
contribution from all dislocation segments. Since
the theory is couched in terms of the number of
pinners per dislocation segment, it is necessary
to (i) determine the number K of pinners per seg-
ment when on the average there are n added pin-

(46)

where N is the total number of dislocation seg-
ments per unit volume and l; is the length of the
ith segment. For dislocation loops of constant
length l, N= A/I. Now since N-10'0 cm '. we can
replace the sums by integration, provided we
know the distribution function for the l s; i. e. ,

mEb5= Ca (uB, p(l) l dl
0

(49)

aE EIt'
p(l) f3dl

0
(60)

From the forms of Eqs. (47) and (48) we see that
only under very special conditions will

6~ +B,(b,E/E) (61)

In fact, the only condition for which this is true
when defects are added randomly (i.e. , in radia-
tion-damage experiments) is when the initial dis-
tribution of /&'s is exponential. This problem was
considered some time ago by Thompson and

Holmes. "
If one knows the loop-length distribution F(l, n)

as a function of n, then one merely averages the

decrement and modulus defect over all possible
values of l. Thompson and Holmes evaluated
F(l, n) when the initial distribution F(l, 0) was taken
to be exponential in l; see Eq. (7). They showed
that for this special case, the distribution re-
mained invariant in form and that l could be re-
placed by

I = lo/(1+n) (62)

Since that time, Eq. (52) has been used intact,
although Trott and Birnbaum have recently em-
phasized the perils of this course. It seems more
reasonable that for high-purity well-annealed
samples, the initial (preirradiated, say) loop-
length distribution should be better approximated
by a delta function. With this in mind we recal-
culate, according to the hard-pinner model, the

change in 6 and b,E/E due to the addition of pinners,
to an initially 5-function dislocation distribution.
This calculation will also serve subsequently as
a guide for the pinning-point drag model.
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P(K, n) = e "n»/K! (53)

Now let yK be the average modulus defect when K
pinners are on a segment. The total modulus de-
fect will be

If all segments are the same length and if the
pinning points are placed on the segments com-
pletely randomly, then the probability that a single
segment has K pinners when the average number
of pinners is n is given by the Poisson distribution

P(n)=
f

Z y»P(K, n)
A

0 K=O
(54)

Thus our problem is now to calculate yK. Ac-
cording to Eqs. (4V) and (48) the contribution to
the modulus defect for a single looplet of length
l is proportional to l and to the decrement is pro-
portional to ls. We will work out the general case
for a looplet of length (x, —x; ~) to the Pth power.
We have K+1 looplets per segment and average
by letting x, range from 0 to x2, x2 range from
0 to x3 xK range from 0 to lp. This averaging
can be written as

'0 xK x2 K+1 K x2
GJ, » = dx» dx» q

''
ll dxg 5 (x; —x; q) dk» dx» q'' dxq

0 0 dp 1=1
0 0

with xp=—0, xK,1
= lp. Performing the indicated

integration yields 2

Gp»= (K+1)!pl la/(K+p)! .

For example,

G~ » = 6l o /(K+ 2)(K+ 3)

and

(56)

(57)

for small n of Eqs. (59) and (60) are

AEb 2l p2 (1-~+~ ~ ~ )

A&b 8 f (1, )C2 5t

(64)

(65)

G, , „=5!f,'/(K+2)(K+3)(K+4)(K+5) . (56)

&AEb (dB )lp 1 1 3 4
C2 e 2+ 3 +~+ sn n n

4 1
, + , . (60)

n n

For large n, Eqs. (59) and (60) tend to

(61)

Averaging these quantities over the Poisson dis-
tribution gives

~E AEb lp

(59)

and

For the &-function initial distribution the initial
rate of change of the modulus defect and decrement
are —,

' and 6 as fast as corresponding changes for
the exponential distribution. Also the / —l de-
pendence clearly is not observed in the modulus
defect and decrement for small n.

B. Dragging Case

The formal procedure for calculating the average
modulus defect and decrement are the same for
the dragging case as for the firm-pinning-point
case. One merely evaluates the modulus defect
and decrement contributions for a line segment
containing K defects. We have already shown
that the line damping can be neglected in calcula-
ting the modulus defect and that it probably does
not contribute much to the decrement. We there-
fore consider only the dragging of point defects in
this section. Equation (15) reduces in this case to

AEb co B EP (62)

K
Z a„6(x-x,)

2——C — = bo e
8g ex (66)

which correspond to Eqs. (4) and (5) with

l = fo/n (63)

Analogous to Eq. (25) we have

y(x) =y!!(x)— G-' Z y(x;) G'(x, x;)
i=i

(67)

Equation (63) is, of course, equivalent to Eq. (52)
at large n, bringing together conclusions based on
initial dislocation length distribution functions of
the exponential and 5-function type. The limits

with

G'(x, x!)= (1/l)Ix(x! —f)e(x; —x)

+ x, (x f )e(x x, )j .(66—)—.
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O
cu

Ol~

Ol~
UJ

0.3

~ 2.5
1.67

lo y(id) ~ ys(id' xl 2 '' xx)
a=i

(74)

of solution for p,„=0and p„=~ and for cases near
these extremes, see the matrix developments by
Rosenstock. '

This averaging was performed numerically by
us by using the Monte Carlo technique on a UNIVAC
1108 computer. Random numbers were selected
for all x&'s and the following sum and average was
evaluated:

0. 1 ~0,25
~ 20

oo I

4

FIG. 2. Decrement plotted as a function of n, the aver-
age number of defects per dislocation segment, for the
discrete case. Values of p„=cuB„$/C are listed beside
each curve.

Usually N was taken as 1000. Plots of the dec-
rement and normalized inverse modulus defect
are given in Figs. 2 and 3 as a function of n, the
average number of defects per line segment. This
averaging was performed by using the Poisson
distribution according to Eq. (54) with K ranging
from 0 to 10. Cutting the sum off at K=10 intro-
duces a negligible error provided n is no larger
than five. We see that the dragging mechanism
is significant only over about one order of mag-
nitude range in p,„. For low frequencies p,„~1 the

modulus defect changes slowly with n and the dec-
rement increases. Thus for low-frequency ra-
diation-damage experiments, one would predict
an increase in the decrement as point defects were
added to the dislocation line.

y Q(x) = b 0'0 x(l —x)/2C

We are interested in the average displacement

lp
y(x;x„x~, ~, x„)dx

0 p

=y (x, , x„,xr),

(69) IV. FURTHER DISCUSSION

In this paper we have examined, in some depth,
the behavior of dislocation damping if attached im-

'oooo.'io
averaged over all possible x&'s subject to the
ordering conditions leading to Eq. (55). However,
in the case considered here in which defects are
dragged, averages of (x; —x; ~) no longer suffice.
Contributions to the modulus defect and decrement
depend on the displacements of the dragged points,
as well as on their position along dislocations.

To calculate y, it is first necessary to calcu-
late y from Eq. (67) and this requires evaluation
of y(x, ). For E defects on a line Eq. (67) repre-
sents E simultaneous equations in the E values of

y (xg):

I

LLj

LU

2
0

LQ

LLI
&I

I— 2.5

y(x, )=yo(x, ) — G' Z y(x;) G(x„x,)
)=i

or, in parallel operator form,

Yo= (G+I) Y

with formal solution

(71)

0 I 2

I.67

Y= (G+I) Yo

in which I is the identity operator. For fuller
description of these operators and general methods

FIG. 3. Norm. alized inverse modulus defect plotted as
a function of n, the average number of defects per dis-
location segment for the discrete case. Value of pz
= ~B&l/C are listed beside each curve.
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perfections are allowed to oscillate, albeit in a
restricted manner, with the dislocation line in
response to an alternating stress. The most dis-
tinctive feature of this dragging model is the pre-
diction of an initial increase in damping with the
addition of defects at suitably low frequencies and,
concomitantly, appropriate values of average dis-
location loop length, damping constants, etc.
Using typical values we have shown that the amount
of actual displacement of the defects may be truly
small —a fraction of an interatomic distance on
occasion. We have also shown that the dependences
of the modulus defect and decrement is altered
from the generally accepted characteristics, in
the appropriate range of parameters, and that the
long-standing discrepancy with the GI predictions
on frequency dependence of the decrement are re-
solved in the dragging model.

Verification of many of these predictions has
been reported in a previous note and in the ac-
companying article. 9

A number of more speculative matters remain.
In particular, it is important to ask: What is the
nature of defect drag'P Here we distinguish be-
tween drag of self-defects (vacancies and self-
interstitials) and impurities. The capture of self-
defects at dislocations, a well-established effect
now, implies that the defect is located in a poten-
tial well with high slopes against release from the
dislocation. The evidence from the work of Thomp-
son et al. ~ and in the accompanying paper points
to a wall height in the direction along the dislocation
which is considerably lower. Thus motion laterally

along dislocations should be relatively simple com-
pared to the drag described in this paper. This
motion, discussed by Yamafuji and Bauer, ~ has
not been included in our calculations since the ease
of motion implies that defects can move in phase
with the dislocation in their lateral motion, thereby
giving rise to little additional friction above the
standard line damping. In contrast, dragging would

appear to be only slightly influenced by thermal
activation —witness the observations of Nielsen of
an initial increase in damping on proton bombard-
ment at 20'K in copper and our similar observa-
tions on electron bombardment, not yet reported
elsewhere. Thus we tend to equate drag with an
essentially athermal diffusion of self defects. In
the case of a self interstitial, this would be an
athermal interstitialcy diffusion: the interstitial-
atom identity is shifted as the dislocation oscillates.

The large dissipation due to defect drag com-
bined with the apparent inadequacies of line damp-
ing to account for background damping (in the
absence of defects) raises the question as to the
contribution to background from other defects,
notably impurities. In the accompanying paper,
the importance of thermal history on the nature
of the internal friction peak, depicted in Fig. 1,
points to the importance of impurities. This is
discussed further in that article.
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Contribution of Defect Dragging to Dislocation Damping. II. Experimental
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Detailed internal-friction and Young's-modulus measurements have been made in electron-
irradiated copper. The measurements confirm the defect-dragging-model calculations pre-
sented in the previous paper. In particular, an initial increase and subsequent decrease in
logarithmic decrement p is observed. This peaking effect is shown to be highly structurally
dependent, vanishing after a suitable high-temperature annealing treatment. The proportional-
ity of g to the modulus defect ~/E is demonstrated. This dependence, contrary to previous
expectations that 6 cc (~/E)t, is consistent with the dragging model. Agreement with the drag-
ging model is quite complete if two types of dislocations are assumed, as has been reported by
other investigators.

I. INTRODUCTION

In the previous paper, ' we have developed a model
for dislocation damping in metals-actually a low-
frequency extension of the Koehler-Granato-I ucke
(KGL) model. ' The predictions of this new formu-
lation explain some of the discrepancies noted by
many observers but rarely documented in any suf-
ficient detail. Furthermore, the formulation's pre-
dictions are notably different from those predictions
investigator s have generally drawn —incorrectly—
from the KGL theory.

This paper presents a more detailed investiga-
tion of damping at relatively low frequencies, to
test the predictions of our newer model.

II. EXPERIMENTAL PROCEDURE

A. Sample Preparation

The experiments for this work were performed
on high-purity (99. 999%%uc) copper from the American
Smelting and Refining Company. The copper was
received in an extruded and swaged rod -', in. in
diameter. From this material a sample was ma-
chined into the shape of a cantilevered beam with
active sample dimension in the form of a foil of
thickness (about 0. 006-0. 007 in. ), 1-cm length,
and &-cm width. After machining, the sample was
etched to a final thickness of 0. 004-0. 005 in. Cop-
per samples of these dimensions usually have a
natural resonant frequency of about 500 Hz when
resonated in the flexural mode. Following the final
etch, samples were mounted in the appropriate ir-
radiation apparatus without any intervening heat
treatment. The samples were polycrystalline.

B. Equipment

Our experimental arrangement allows us to con-
tinuously (every 2-3 sec) monitor the logarithmic
decrement and Young's modulus as a function of
time. To do this we employ a capacitive pickup
system (the sample forms half of a parallel-plate
capacitor) similar to that described by DiCarlo
et al. ,

' but with the advantage of automatic data
logging.

It can be shown' that the decrement can be related
to the force I' required to maintain a damped har-
monic oscillator vibrating at constant amplitude
through

5 = dc(QJ/(dc) F/Fs q (1)

where the subscript 0 refers to preirradiation val-
ues. Young's modulus E is obtained from the reso-
nant frequency of the bar by

E=kf (2)
The force acting on the sample is proportional

to the square of the voltage impressed across the
sample and drive plate. This voltage will be re-
ferred to as the drive voltage. The decrement is
now given by

d= ds((u/(us) V /Vs . (3)

Usually &u/&uc- 1, and so 5 ~ V . To measure dc,
the signal from the freely decaying sample ampli-
tude is stored in a storage scope. A photograph is
taken and the log decrement measured in the usual
manner. It is difficult to estimate uncertainty
limits u in the relative changes in the decrement
and Young's modulus, but typical values would be


