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In this paper, we present a theoretical discussion of the form of the differential cross sec-
tion per unit solid angle per unit energy shift for the inelastic scattering by one-phonon pro-
cesses of low-energy electrons from the surface of a semi-infinite crystal. A number of gen-
eral features of the cross section are discussed, with particular attention to a comparison with
the results obtained from the kinematical theory of the scattering process. We have also car-
ried out a series of numerical studies of the dependence of the shape of the energy-loss spec-
trum on momentum transfer for an electron incident on the (100) surface of a model fcc crystal.
For a general value of the momentum transfer, the energy-loss spectrum consists of one or
more lines that arise from the scattering off surface modes, and a band that has its origin in
scattering produced by bulk modes. The shape of the latter feature, as well as the position
of the surface-mode peaks, is found to be quite sensitive to the values of the atomic force con-
stants appropriate to the surface layer. It is suggested that the experimental study of the shape
of the loss spectrum will provide a powerful means of probing the frequency spectrum of the
atomic vibrations near the surface.

I. INTRODUCTION

In recent years, a considerable amount of ef-
fort has been devoted to the study of the vibrational
amplitudes of atoms in crystal surfaces. A num-
ber of theoretical approaches to the. problem have
been developed. ' Experimentally, one may infer
the amplitude of the mean-square displacement in
the surface from the temperature dependence of
the intensity associated with the elastic scattering
of low-energy electrons from the surface. If one
utilizes a kinematical description of the scattering
process, then the temperature dependence of the

low-energy-electron diffraction (LEED} intensity
has its origin in the Debye-Wailer factors thai
appear in the expression for the cross section.
When the Debye-Wall. er factors are extracted from
the data, one may obtain information about the
magnitude of the mean-square displacement in
the surface, as well as the anisotropy that results
from the lowered site symmetry in the surface
layer. Most analyses carried out by this method
assume the validity of the kinematical theory.
Laramore and Duke have recently completed a de-
tailed analysis of the temperature dependence of
the LEED intensity; we refer the reader to their
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work for a careful discussion of the limits of va-
lidity of the kinematical description of the tempera-
ture dependence of the LEED intensity.

Even if the kinematical description is a, sufficiently
accurate one, one obtains information only about
the magnitude of the mean-square displacement in
the surface layer. It is also of very great interest
to study the frequency spectrum of atomic vibra-
tions near the surface. The study of the frequency
spectrum will provide a much more severe test of
lattice dynamical models of the surface region
than the information obtained from the Debye-Wai-
ler factors, much in the same way that knowledge
of the phonon-dispersion curves of bulk crystals
allows a detailed comparison between theory and
experiment in a manner not possible on the basis
of thermodynamic data alone.

In principle, one may obtain information about
the frequency spectrum of atomic vibrations in the
surface by studying the inelastic scattering of low-
energy electrons. When the electron scatters from
the surface, it can gain (lose) energy by the ab-
sorption (emission) of phonons. Since the magni-
tude of the matrix element that describes scatter-
ing of the electron by a particular phonon mode
clearly depends on the amplitude of the atomic
vibrations near the surface associated with the
mode, the shape of the loss spectrum provides
a probe of the frequency distribution of the atomic
vibrations in the surface region. The purpose of
this paper is to present a theoretical study of the
inelastic scattering of electrons by phonons. We
confine our attention to the case where a single
phonon is either emitted or absorbed in the scatter-
ing process. We present a derivation of the form
of the cross section, and we have also completed
detailed studies of the dependence of the shape of
the energy spectrum on momentum transfer and
on the values of the atomic force constants in the
surface layer. We find that measurements of the
energy-loss spectrum indeed provide a sensitive
probe of the vibrational properties of the surface
region. The theory presented below does not ap-
ply to ionic crystals, where lattice vibrations of

long wavelength give rise to spatia. lly extended
macroscopic electric fields outside the crystal.

It will be very difficult to make detailed experi-
mental studies of the energy-loss spectra studied
in this work, of course. If the electron loses
(gains) energy by emitting (absorbing) a single
phonon, then the change in kinetic energy of the
particle is only a small fraction of its total energy.
The energy change will be the order of 0. 05 eV
or less. With techniques currently available, it
is difficult to obtain electron beams with an energy
spread small compared to 0. 05 eV. However, two
experiments in which energy transfers of this order
of magnitude have been detected have been reported

recently. Propst and Piper' have observed the in-
elastic scattering of low-energy electrons by hydro-
gen and by a number of molecular species adsorbed
on a tungsten surface. Also, Ibach' has observed
energy-loss peaks associated with inelastic scat-
tering of low-energy electrons by surface optical
phonons in the ionic crystal ZnQ. The scattering
observed by Ibaeh arises from the presence of a
macroscopic electric field outside the crystal
that is associated with surface vibrations of opti-
cal character with wavelength long compared to the
lattice constant. This scattering is much stronger
than the scattering produced by short-wavelength
phonons, or by phonons in covalent or metallic
crystals. Ibach's measurements are in impressive
agreement with the theoretical analysis of Lucas
and Sunjic. These long-wavelength surface op-
tical phonons are not sensitive to the properties
of the surface layer itself, unfortunately, since
the displacements associated with the mode pene-
trate deeply into the crystal. The experimental.
work of Propst and Piper and of Ibach demonstrates
that detection of energy transfers of the order of
magnitude of those considered here is possible,
although the experiments are difficult to carry out
in practice at the present time.

As mentioned earlier, we are concerned in this
work with the inelastic scattering produced by
phonons with a wavelength comparable to the lattice
constant. The loss spectrum associated with the
scattering produced by these modes is quite sen-
sitive to the details of the atomic force constants
near the surface, as we shall see. If one examines
the energy spectrum of electrons scattered inelasti-
cally into a particular solid angle, two features are
predicted. A discrete loss peak appears that is
produced by scattering from surface waves. In
addition, a broad band associated with scattering
by bulk phonons is present. The integrated inten-
sity of the bulk-phonon band is comparable to the
integrated strength of the surface-wave peak in
mostof the instances examined. The shape of the
bulk-phonon band is sensitive to the parameters
of the surface region. It should be mentioned at
this point that in this paper we are studying the
energy spectrum of the electrons that contribute
to the thermal diffuse scattering. 7 An estimate
of the intensity of the inelastic scattering described
below may be obtained by noting that upon in-
tegrating our differential cross section for scatter-
ing into the solid angle 40 with energy transfer
between cu and ~+4~, over energy transfer cu, one
obtains just the contribution to the cross section
from one-phonon processes for thermal diffuse
scattering into the solid angle &Q. At high tem-
peratures, this differential cross sections is pro-
portional to the temperature T of the crystal.

In Sec. II, we derive the form for the differen-



THEORY OF THE INELASTIC SCATTERING. . .

In this section, we derive the form of the cross
section for the scattering of an electron from a
semi-infinite crystal for the case where a single
quantum of lattice vibration is emitted or absorbed
in the process. The derivation fully includes the
effect of the static crystal potential on the elec-
tronic wave functions; i. e. , the electron wave
functions of the rigid lattice are supposed to be
the Bloch functions appropriate to the semi-in-
finite geometry. As noted below, there are irn-
portant qualitative differences between the general
form we derive in this section and the result of
the kinematical description of the inelastic scatter-
ing process. ' In the numerical computations de-
scribed in Sec. III, we have used an idealization
of the general expression. The simplified form
employed in Sec. III differs in important qual-
itative ways from the kinematical result.

We begin by introducing the following Hamil-
tonian:

H=Hz+ H»+ V

In this expression, H~ describes a single electron
moving in the effective potential of the crystal lat-
tice, H» describes the lattice vibrations, and V

describes the electron-phonon interaction. We

do not explicitly include el.ectron-electron inter-
actions in the Hamiltonian. In the present theory,
the effects of electron-electron interactions may
be included in a phenomenological fashion by the
use of a complex crystal potential in H~. It will
be convenient to employ the specific form

Q2as= + $ v, (r —LL',-o)), (2)

where r is the position of the electron, 8», ' is the
equilibrium position of the ion at site 1, and

v(, ( r —Rf ) is the potentialproduced by the ion.
The surface is in the xy plane, and the subscript
l, allows the potential appropriate to an ion in or
near the surface to be different than for an ion in
the bulk. The sum over I ranges over the semi-
infinite lattice. We confine our attention to mon-
atomic crystal lattices and ignore the possibility

tial cross section per unit solid angle per unit fre-
quency associated with the inelastic scattering of
electrons from the surface by phonon emission or
absorption. Some general features of the cross
section are also discussed. We have carried out
a detailed study of the shape of the l.oss spectrum,
its dependence on momentum transfer and on the
atomic force constants of the surface region for
a model of a fcc crystal with a free (100) surface.
The results of this work, along with a discussion
of the general features of the loss spectrum, are
presented in Sec. III.

II. FORM OF SCATTERING CROSS SECTION

of surface reconstruction. The eigenstates of H~

have the character of Bloch waves in the x and y
direction. We designate the eigenfunctions for an

electron in the rigid semi-infinite lattice by the
notation ('„-"(r„,z), and write

(I)-'„"(r„,z) = e '"" " U'-"(r„, z) . (3)
II II

In Eq. (2), r„=xx+ yjI is the projection of the vec-
tor to the electron's position onto a plane parallel
to surface layer, k is a wave vector parallel to
the surface, and U(" (r„,z) is a periodic function

II

Of rII, i. e. ,

II II

where the semi-infinite lattice is invariant when

translated through the displacement t, . In general,
the subscript Il designates vectors which lie in the
two-dimensional plane parallel. to the surface.
Finally, in Eq. (2), the superscript s designates
the outgoing or incoming wave solution of the
Schrodinger equation; i. e. , (I)'„-' describes a wave

Il

which in the upper half-space (above the crystal)
consists entirely of waves that radiate away from
the crystal, while g- ' contains in the upper half-
space a single incoming component and a number

of outgoing Bragg-reflected waves. The function
(I)-' describes transmission through the surface of

kII

an electron incident upon the surface from within

the crystal, while (I)'-„describes refLection from
II

the surface of an electron incident from the vac-
uum above.

We treat the lattice vibrations in the harmonic
approximation, so that (with h = 1)

(4)

where, for the moment, the single quantum in-
dex n refers to the nth normal mode of the semi-
inf inite lattice.

Finally, we write

v,, (r —R;) =—Q v,,(q) e'~"-"f),
~f
a

where is a quantization volume, and R; = 8';"'
+ u; is the instantaneous position of the lth ion,
where u; is its displacement from the equilibrium
position R; '. Then

y gP ( ) eil(LR- ) (
(uu-1 (p)

1

Let an electron in the state I (I),) be incident on

the crystal. The initial state vector of the system
has the form I go) =

I (C)g I fn, j), where I fn )) de-
scribes an eigenstate of H» in which the nth vi-
brational mode has n„phonons excited. The state
vector at time t may be obtained by writing the
Schrodinger equation in operator form,
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= lto«)&+ l~(«)&.

We calculate the amplitude of the scattered wave
I fl(Ii& that is produced by the ionic displacements

within the first Born approximation. We thus re-
place the factor of I g(t ) & in the expression for

I fig(t) ) by the unperturbed wave function I (0(t) ):

where G(rr;E) is the solution of

(H~+E) G(rr'; E) = 5 (r —r') . (10)

We presume G(rr; E) has the boundary conditions
appropriate to the present scattering problem ap-
pended to it. One may easily show that

8
H~+ (v, —t — F (r, t)

We shall consider the scattering produced by V into
those final states in which a single additional quan-
tum of lattice vibration has been excited. This
will then lead us to an expression for the cross
section for the scattering of an electron, when it
is accompanied by the emission of a single phonon.
If E, is the vibrational energy of the state I {n )&,
then upon writing

lgo(t)&=e '"' I{n )&I't' (t)&

one has

I
f'(I'(t)&= ——„&v(, (q)

1

ql

X
{n ')

I {n,j&({n,} l(e ""i-1)
I {n,}&

Hs+ E ~ —E, —j 8/&t

&F.
l

~C«)&= — ~ v(. (q)&F.le *'"ilI„&e
q, f

X 0 + —i — e~~~~Rl ) t 9

y e(r('(F-a )I y (t) ) e-(E(((t (8)

To make the notation compact, let us denote the
initial vibrational state of the lattice I{n )& by
II„). Consider the matrix element that describes
transitions to a state in which the lattice is de-
scribed by the state vector IF„). We shall pre-
sume that in the state IF„), the vibrational quantum
number n, of a particular mode s has increased
from n, to n, +1, with all remaining occupation
numbers unchanged. Then

E~o —E~o = +~,

where &, is the frequency of the phonon created in

the scattering process. Then

dar dt G, (rr; t —t )F(r, t ).

Thus, upon replacing I (t,(t) & in Eq. (9) by the ex-
plicit form (I(,(r)e-'oo', where 8, is the initial elec-
tron energy, we obtain

&F,
l

6(t((r, t) &
= ——g vi (q) &F„fe "'"i II„& e 's~'

K~l

e'" "~' d r dt G(r, r;E)

io (P'- (((O&~q
( «) -it'(E+$0-+~i (11)

To proceed, we require the form of the elec-
tron Green's function that appears in Eq. (11).
Let the symbol n refer to the eigenstate labels for
the eigenstates g„(r) of Hs. Then, if g„ is the
energy of (t „(r), we have

The zeros of the denominator have been positioned
so that G(r, r, t- t ) vanishes for t & t. Upon in-
serting Eq. (12) into Eq. (11), the integral over E
and over t may be carried out. One obtains

Z vi, (q)(F.le "'rlI„&e ""i'
~l

x e ((E(«moo+i(-( )t Q q (r ) (13)(n Ie"'I e)
8„—8,+ ~,+iq

We define

(n
I
e"

I
e) = f d'x (t(„*(r) e"'" (I(,(r) .

Let us introduce

M("(n, e) = —g v, (q) (F,le
"

'I I„)e "'
ql

We introduce an electron Green's function
G, (r, r', t —t ) appropriate to the motion of the elec-
tron in the rigid, semi-infinite lattice. Then G,
satisfies

H~+, —i G, rr; t —t =& r-r & t-t~

~

If we write G in Fourier-transformed form, we
flnd

Then from Eq. (13) it is straightforward to show
that the number of transitions per unit time from
the initial state g, to the final state (t„accompanied
by the emission of a phonon of frequency ~, is given
by

E„=2~I m" ( , )nI
'e6(S„- h, + ~,) .

Before the transition rate is converted into an
expression for the total differential cross section
per unit solid angle per unit frequency, it will be
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useful to simplify the matrix element in Eq. (14)
and also to discuss the kinematics of the scattering
process.

First consider the vibrational part (E„le ""iII„&
of the matrix element. If P denotes the quantum
numbers of a particular normal mode of vibration
of the semi-infinite crystal lattice, then

.;=K,, (16)

In Eq. (16), &d~ is the frequency and e~(1) is the
eigenvector of the vibrational mode p, while a~
and a~ are the phonon annihilation and creation
operators. M is the ionic mass. The eigenvector
e~(l) is normalized so that/;le~ (Ql I = 1.

The state I I, ) is characterized by a well-defined
set of phonon-occupation numbers (n,}. The set
(n }associated with the final state IE„& is the same
as the set (n }save for the occupation number of
mode s, which has changed from z, to n, +1. The
matrix element over the phonon coordinates may
then be replaced by

S/2

&s
~

-"'"
~

s ) = — (
""& *&

2M(d,

&«xp [ —-'& (q ~ ul)'&r1, (17)

w"ere n(&d,) =(e "'—1) ' is the Bose-Einstein factor,
p is 1/kT, and ((q ~ u-,) &r is the thermal average of

(q ~ u, ) . Note that ((q ~ u;)~&r is a function only of

l,. It is then useful to introduce a renormalized
effective potential 8, with a Fourier transform
given by

~&, (q) =~&, (q)exp' —k&(q uf)'&r j.
Then Eq. (14) becomes

( ~ 1/2
&)( )

& ~ ( )~
1+n(~)

x q' e.(l) e '~

Next consider the matrix element over the elec-
tronic coordinate r. The incident state g,(r) is a
Bloch function of the form

&0) (rii z)= e " "fI- &0) g (ro z) ~

&II ",P ~~p

The superscript (-) indicates a Bloch function
that describes an electron incident on the crystal
from above, as described earlier in this section.
We presume rg &'o& z is normalized so that in the

kll
region z &0, thesingle incoming component is pro-

~5». ;portional to e'k '', where k' ' is the wavevector of
the incoming electron. Once kll

' and the energy Sp of
the incoming electron is specified, then P &0& z
is uniquely specified. For the outgoing state
g„(r), we require the function &I)i„'&),

& q, this choice
is dictated by the boundary condition imposed on
the Green's function G(r, r; t- t ). For simplicity,

we assume the outgoing state is completely speci-
fied by the two quantities k',I' and S„although
there may be cases where additional quantum
numbers may be required to specify the outgoing
state. We also use the reduced zone scheme to
label the wave vectors, i. e. , both k,', ' and kl'" lie
in the first Brillouin zone of the two-dimensional
reciprocal lattice appropriate to the surface layer.
One then finds that

&n( e«'(. & -=&k, ,
&, g,

~

"~'~k ' g &

=g pf g- (s)-&pc g kll o k

+G ((P', g, (e"~'e' ~~'~~(k„o& g )&

In this expression, N, is the number of atoms in
the surface layer of the crystal, A, the area of a
unit cell, and 5& ~. ——1 if q = q, and vanishes other-
wise. If k„' —q„ lies in the first Brillouin zone
associated with the surface layer, then Gl, = p.
Otherwise 6, is that (unique) reciprocal lattice
vector which places k '- q„+0I in the first zone.
Finally we define

p~ D

&&k( ) g
~

gl| 'k~ jID) g )) dz
one unit cell - c

ftt
& &,b, (ro z) e U)T„(0&,$

The integral over r
I
is confined to that unit cell of

the surface layer which contains the origin of the
coordinate system, and the integral over z is con-
fined to the region z & 0, since the scattering po-
tential vanishes for z & 0. Upon writing the quanti-
zation volume Q=NQ, L, Eq. (14) becomes

M'"(k"' g„k'„"'g&))

&& ((k&„",g,
)

e" 'e' ' ~k'„", g, &&. (16)

The vector R has the components

R„= k&,'&- k'„'&+ P„„Z.= q, .

We proceed further in the reduction process by
noting the nature of the normal modes of vibration
of the semi-infinite crystal. Since formation of
the surface does not destroy the translational in-
variance of the crystal in the two dimensions paral-
lel to the surface (recall that we ignore the pos-
sibility of surface reconstruction in this work),
the normal modes of vibration have the character
of plane waves as far as the two directions normal
to the surface are concerned. Thus, we write

where the index s of the phonon mode is replaced
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by the set k'~', n. The index & labels the particular
mode with wave vector k(+~' parallel to the surface
under consideration; n may refer to either a bulk
wave or a surface (Rayleigh) wave. Upon insert-
ing Eq. (19) into Eq. (18), the sum over 1~, may be
carried out. Upon introducing a more explicit no-
tation for the matrix element, we find

tained from the kinematical theory may be ob-
tained from Eq. (23) only by presuming the wave
function of the electron to be plane-wave-like (and

unattenuated) in the z direction. More specifically,
suppose that in the crystal U.„„~(r„,z) is well ap-
proximated by the form

M" (k„' S, ;k„'S())—:M(k' g k 'S 'k 'n)

where

M(k( & S„k(„"S„k'„"~)

i / N [1+&&(0&-&s& ) ]'~0 5- -(s&
I. i 2M~»~» k((, 0& k)) s kitki(, at

x g v, (K)[K ~ e"„&» (l,)]e "s's
qual g

x (( k„,S,
~

e'" e"-' $,',", g,&& . (20)

It will be convenient to write Eq. (20) in a more
compact form. Define

(
"' S k,', "S,) =—Q v (K) e " '

Qg

(o .0
~

k (0) g ))

PqsV) (K)e zs

x ((k'& g
~

e"s' e(~~~'~~
~

k"' S &)

Then it follows that

((k,(,
" S,~e"" ~k(0& S &&

I I( k(s) g . k(0& g ) 5 (0) (s& (24)

where I(k,',"S„k,', 'S0) is independent of q, . Intro-
duce the vector

k(o) k( & G P(y(0& y( ))

Then from Eq. (24), one has

m, (k"'S, ; k' 'S )=iv, (Z)I(k'„"S,;%,', 'S0)e"~ s,

and

independent of I, . Thus, we may replace Q by &,
in this approximation. The matrix element in Eq.
(23) then assumes the form

M(k S 'k S 'k )= — g„,)( ( ii
'

Il 0)

Z

m, ,(k'"S k'" S)
em, .(k&, &g„k&0&g,)

(21)

x &~ v), (&)e'" * [ b ~ e)-,(s&„(l,} ]
1'8

x(Ns/2M(og&s&, ~) i [1 +n((s)fp (,&)] i

(25)
The result displayed in Eq. (25) is equivalent to

the result obtained from a kinematical description
of the scattering process, ' for all practical pur-
poses. The assumption required to obtain the form
of Eq. (25) is a very severe one, unfortunately.
There are three fundamental reasons why the assump-
tion about the form of the wave function in the crys-
tal will provide a very poor approximation to the
true wave function. First of all, the crystal po-
tential produces strong distortions of the wave
functions away from the plane-wave form. This is
particularly true in the transition metals, where
the wave functions have strong d character. Sec-
ondly, because of the presence of the surface, the
wave function in the solid will consist of an admix-
ture of infinite-crystal Bloch waves, in. order for
the wave function to match properly to the plane
waves in the vacuum outside the metal. For ex-
ample, g„", will contain a wave incident on the sur-
face from below (from within) the crystal, as well
as reflected waves. Finally, the electron wave is
very strongly attenuated as it penetrates into the

Then, finally let the vector Q have the form

Q =k,(,"+z q.(I,).
With these definitions, Eq. (20) becomes

M(k&, &S„k(0& g„k,',"~)

= —(N, /2M(d.„&»,)' ' [1+n((d1&», )] 5„&»

x P, [Q
'

e-„&) & (l, )] m, (k,',"S„.k,',"S,) .

(23)

We could now proceed to discuss the kinematics
of the scattering process, and then to construct an

expression for the appropriate differential cross
section from the transition rate displayed in Eq.
(15). However, we prefer to first point out an
important feature of the matrix element displayed
in Eq. (23).

We wish to consider the relationship between
the matrix element displayed in Eq. (23) and the
kinematical description of the inelastic scattering
process. A matrix element equivalent to that ob-
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crystal, because of electron- electron interactions.
To properly compute the matrix element, one should
employ an optical potential, or a potential with a
complex part. Thus, even if the periodic part of
the crystal potential is well approximated by a weak
perturbation, the incoming and scattered beam are
strongly attenuated in the medium, and the wave
functions will be best approximated by strongly at-
tenuated plane waves. Duke and Tucker havedem-
onstrated that it is absolutely essential to include
this feature of the propagation of the electron in
the crystal before one can make contact with LEED
data. The mean free path of electrons in the crys-
tal is, in fact, comparable in magnitude to the de
Broglie wavelength for energies typically encoun-
tered in LEED experiments.

Thus, we expect in general that the kinematical
theory will provide a very poor description of the
matrix element that describes the inelastic scat-
tering of low-energy electrons by lattice vibrations.
It remains to examine the general form of Eq. (23)
to see what features of the kinematical description
remain. First, consider the contribution to M
from ionic motion parallel to the surface. This
portion of M (we call it M for convenience) is ob-
tained from Eq. (23) by retaining only the compo-
nents of the eigenvector e„-&q& (I,) parallel to the
surface. One can see thalt since

M, can be written in a from quite similar to
the analogous portion of the right-hand side of Eq.
(25) provided the scattering amplitude associated
with each plane [the factor v), (Z) e"' ' in Eq.
(25)] is replaced by a more complicated quantity.
Thus, the contribution from lattice motion parallel
to the surface to those properties of the inelastic
scattering that are not sensitive to the precise form
of this scattering amplitude are correctly described
by the kinematical theory, provided one regards the
planar scattering strengths as phenomenological
parameters. For example, we expect the contri-
bution from lattice motions parallel to the surface
to the dependence of the intensity of the thermal
diffuse scattering on scattering angle to be cor-
rectly given by the kinematical theory. The ma-
trix element for scattering produced by lattice mo-
tion normal to the surface (call the contribution
from this motion to the matrix element M, ) that
results from the kinematical theory is seriously in
error, however In gene.ral, the parameter Q, on
the right-hand side of Eq. (23) depends on all the

parameters of the scattering geometry (k,',", 8„
k(o), 80) as well as l„as one can see from its def-
inition. It is not related to the parameter 0,' '

—k,"'of the kinematical theory in any simple fash-
ion. Thus, in contrast to the situation with M I,
M, cannot be written in a form that differs from the

kinematical expression only by virtue of a more
sophisticated expression for the planar scattering
amplitude. This difficulty will make difficult the
detailed analysis of the energy-loss spectrum of
low-energy electrons that results from phonon
scattering. However, we shall see that one can
still obtain a large amount of information from
qualitative features of the spectrum.

We now proceed to obtain the form of the dif-
ferential cross section for the inelastic scattering
of electrons by emission of a single quantum of
lattice vibration. First, some remarks about the
kinematics of the scattering process will be use-
ful. The discussion we present here is very simi-
lar to an earlier description by Mills, Maradudin,
and Burstein of the inelastic scattering of photons
by optical phonons in opaque crystals.

The incident electron has energy So and wave-
vector component k,(0) parallel to the surface. The
direction of the incoming beam may be determined
by noting that

y(0) [2 g (k(0))2] &/2

Let the electron strike the crystal and scatter from
it by a process that involves emission of a phonon
of frequency v„-&» with wave-vector component
k'i~' parallel to the surface. The electron is scat-
tered into the state )i)f&'&, where

k(s) k(0) k(P) + G
II II

'
II II )

as we have seen. The outgoing electron thus has
energy

(26)g —g g~() ~

The state )I)») can contain more than one outgoing
current; in general, outside the metal, it consists
of a linear conbination of all possible plane waves
with energy 8, and wave vectors k,', "+g„parallel
to the surface, where g, is any reciprocal lattice
vector associated with the crystal surface. A

plane wave characterized by any reciprocal lat-
tice vector g, I

such that

k '=k ' -k ~'+G

and the statement that

(2V)

S, —(I/2m) (ij(,"+g„)' ) O

can occur in the propagating part of the outgoing
wave, provided it is allowed by the boundary con-
ditions to mix in the wave function.

Consider an outgoing wave characterized by
some particular g . Given k,',~', the frequency
~p&,» of the particular phonon involved in the
scattering process, and the incident scattering
geometry, the direction of the outgoing wave is de-
termined by Eq. (26) combined with the statement
of conservation of total wave vector parallel to the
surface ~
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0,")(g„)= [AS, —(k" +g )']'" (28)

—RAYLEIGH-0/AVE
BRANCH

k„

FIG. j.. Sketch of the phonon spectrum of a monatomic
semi-infinite lattice. Associated with a given wave-vec-
tor component k~~ parallel to the surface, one has a Ray-
leigh surface wave as well as a band of continuum modes.
All modes with the same value of jh„scatter an incident
low-energy electron in the same outgoing direction, to
a good approximation.

Consider the relative order of magnitude of the
quantities that appear in Eqs. (26)-(28). In general,
under conditions appropriate to standard LEED
experiments, one finds that k' ', k"', 6„, and g„
are all the same order of magnitude, since the de
Broglie wavelength of the incident and scattered
electron are comparable to the lattice constant.
Similarly, we shall look at scatterings for which
the phonon wavelength is comparable to the lattice
constant. However, &ok&» «$0 and 8,. Thus
little error results if the phonon frequency that ap-
pears in Eq. (26) is ignored. When this is done,
the direction of the outgoing electron depends sensi-
tively on the wave-vector component k,'~~' of the
phonon parallel to the surface, but not on its fre-
quency. Thus, a Rayleigh wave and a bulk phonon

will both scatter the electron into the same solid
angle &0, provided they are both characterized by
the same wave-vector component k', ' parallel to
the surface. This feature of the kinematics of the
scattering process will greatly simplify our subse-
quent analysis. Also, it should make interpretation
of data relatively straightforward, since one can
associate the loss spectrum associated with elec-
trons scattered into a given solid angle ~Q with an

easily visualized portion of the lattice-vibration
spectrum of a solid.

In Fig. 1, we present a sketch of the vibrational
spectrum of a semi-infinite solid in a form suitable
for a discussion of the loss spectrum associated
with one -phonon processes. The figure illustrates,
for each value of k„ the bands of vibrational fre-
quency allowed for the solid. The sketch is pre-

sented for the purposes of illustration only, and in
any specific situation the details may differ sub-
stantially from this figure. In the figure, for each
value of k, one has a Rayleigh surface wave. In

addition, a band of bulk vibrations ranging between
a minimum frequency ~,„and a maximum fre-
quency ~,„occurs. In a typical case, speaking
somewhat loosely, a phonon propagating parallel
to the surface with wave vector k„may have the
frequency cu,„, while (d,„may be associated with
a phonon moving more nearly normal to the sur-
face, with a large value of k, and wave-vector
component k in the plane parallel to the surface.
As stated earlier, all modes with the same value
of k„scatter electrons into the same solid angle.
Thus, all the modes that lie on the vertical line in
Fig. 1 scatter into the same outgoing direction.
Examination of the shape of the loss spectrum as-
sociated with this outgoing direction will thus show

a discrete loss peak associated with scattering off
surface waves, and a broad band that ranges from
co,„ to co,„produced by scattering from bulk pho-
nons. The shape of the broad band is sensitive to
the parameters that describe the lattice-dynamical
properties of the surface region, as we shall see.
Qf course, the frequency of the surface wave and

intensity of the scattering from this mode are also
dependent on these parameters.

The crucial feature of the argument just pre-
sented is the observation that $0, 8,» copy)

Thus, if one observes inelastic scattering of slow
atoms by one-phonon processes from the surface,
then $0, S„and the phonon frequencies are com-
parable. The atoms scattered into a given solid
angle ~Q will have scattered from modes that lie
on a curved trajectory in the plane of Fig. 1. Since
the shape of this trajectory depends on the details
of the phonon spectrum, it may be less straight-
forward to associate features in the energy-loss
spectrum of slow atoms with well-defined features
in the vibrational spectrum of solid.

%ith these remarks in mind, we now obtain an
expression for the differential cross section per
unit solid angle per unit frequency for the inelastic
scattering of low-energy electrons from the sur-
face. We begin with Eq. (15), which we write in
the more explicit form

R(k(0&SO- k'„"S,) = 2)) ~M(k, ', 'S(), k,',"S„k,', 'o)
~

x 6(S, —So+(u;()& „) .
This is the transition rate into the single final
state (k;„S,) produced by the single mode k(~) o, .
First we calculate the total outgoing current. Out-

(+)
side the crystal, the state $k(~) has the form

~„(,)( ) (g)-(/2) (&a „' g„)~ rn ( ~(((„)s (s)( g )k)) II

where



THEORY OF THE INELASTIC SCATTERING. . . 1355

u (g„)=[2mB -(k(s'+g)']' '
When the argument of the square root is negative,
k, (g„) is chosen to have a positive imaginary part.
The outgoing wave into which the electron is scat-
tered thus consists in the general case of more
than one outgoing beam. If v"' is the group velocity
of an electron with energy 8, in free space, the
current f)j")(k,("+g ) carried by the outward wave

propagating in the direction k, ',
"+ g„+zk, ( g„) is

given by

(j"(k l" + g ) =(2«")/Q) la'(, &(g ) I'l~( ")I'

x 5($, —ho+(d&(p&, ) .

This expression gives the contribution to the

outgoing current that obtains from scattering into
the single final state (k,',", 8,). To find the total
outgoing current produced by scattering off the
single mode (k'„P', (&&), one sums this result over
the values of the wave vector of the final electron
state. Upon noting the factor of ~„», „-(~) that 3
pears in the matrix element [see Eq. (20)], we

obtain

Gj'"= ~~ ~~ 5j"'(k "+g )
(g

(s) L;fs~ Iw—t;
,

&& s»)
I

*.
I
I& )I'"

x ()(8, —So+&dan(p) )

V(s)
= „'&,&, , l

«(.&(g„)l' l
~(k'„"s„k,', "s„k,', 'n) l'.

We have taken the quantization volume 9 to have
area A (the area of the crystall and length i.. The
quantity v,'"(g„') is the z component of the group ve-
locity of the outgoing electron wave in the direction
k,', "+g„+zk,(g„).

All phonons with the same value of k'~' scatter
electrons into the same outgoing direction to a very
good approximation, as we have seen. Let the num-

ber of phonon modes with frequency between ~ and
co+ h~ and with wave-vector component k,',

~' parallel
to the surface be p(k~), (o)A(&. Then the contribu-
tion to the current in the outgoing direction from
those electrons which suffer an energy shift 80
—S, between ~go) and ~~(» + hen is given by

+(s)
, lai, ( &(g„)l'

l
M(k,',"S„k,',"S„k,',"n)l'

about the value kP that appears in Eq. (29). Suppose
these modes scatter the electrons into the solid
angle AQ. Then the total number of electrons that
suffer an energy shift between ~~(» and co~(~)

+b,~, while being scattered into solid angle ~Q, is
obtained by multiplying Eq. (29) by the number of
modes Ad k(P)/47& in the area d k,',P'. Since k,',P'

=k' ' —k"' —G „where k' ' is fixed, we have d k'~'

k)) Thus the current gJ " scattered into sol-
id angle AQ with frequency shift in the range a~ is

A d k'"
5J ' =5J' ' AQAu

4m2 an

Following an earlier discussion, '0 it is a straight-
forward matter to show that the kinematical factor
dok(, "/SQ is given by

d k'"/bQ = 0'" cos8, = mk'" v'" (g )

where 8, is the angle made by the outgoing beam
with the normal to the crystal surface. Thus, fi-
nally we have

zZ&" ml'"v'"
g~(s) g

EQl&, o& 4&(

xlM(k, ',o)ho, k'"S„kp', o.)l o(k,',p', (uf(» ) .

The cross section d (7/dQd&u associated with the
scattering process is obtained by dividing this re-
sult by the incident current. If, as mentioned ear-

(-)
lier, $I&o& is normalized so the single incoming

ll ~ %

component outside the crystal is e'"o', the incident
current is just the group velocity v' ' of the inci-
dent beam in the present units. Since v' ' and v'"
are very nearly equal, we have

2 s

, l
a-„& &(g„)l' llvi(k, (,"S„k,(, "S„k,(p), o.)l'

x p(k,(p), (u-„&p& ) . (30)

Ne next express the cross section in more con-
venient form. Let

(k(s)g k(o)g )
Z Z

=m (k'"h k' '&(l ) m*(k'"h k'"h )

Then

dQd(s& 8&& M

x [1+n(o&.„&p& )] [Q e.„&p& (l )]
k)) p

x p(k)(, (dg&p& n)do& ~ (29) x [Q eg(p) (l,'.)]*p(k, ',P', o&~&» ) . (31)

Consider the total scattering produced by all the
modes in the frequency range co~(», ~~(» + b,cu,

and with wave-vector component in the area d k',~'

of the first Brillouin zone of the k,',~' plane centered

This result may be written in a more convenient
form by introducing the phonon Green's function of
the semi-infinite lattice. Following Maradudin and

%allis, ' we let
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I & 8'.(I)e', ( I')
(Sla)

l, = f,'= 0. Thus,

where the index s refers to the quantum numbers
of a mode of the semi-infinite crystal lattice and
e', (1) is the ith Cartesian coordinate of the vector
e,(1). We write

U„(11', &u) = ~ U„(k„, l,l„~)e
S kll

where

U])(kl, , lgl, CO) =~
(d

2 2
kll, 0/

Introduce the spectral density function

A&/(kI~); l,l,';&))) = ( I/A&)[U/(k„, lglg, (u —i)))

(slb)

—U;; (k„, l, l,', v + 2)) )] .

The scattering cross section may be written con-
veniently in terms of the spectral density function:

and 6 '~
x [I +n((u)]Z Q& Q,*A&/(k, ', '; 0, 0, &d) . (33)

We will be interested primarily in the shape of the
loss spectrum observed when the electrons are
scattered into a particular outgoing direction by in-
teracting with lattice vibrations of some particular
wave vector k,'~' parallel to the surface; i. e. , for
fixed k',~' we will study the dependence of the right-
hand side of Eq. (33) on the energy loss ~. The
factors on the first line are independent of {d, since
8, and $0 are nearly equal. Thus, for our purposes,
we write

d2
=K[1+n(&u)]~ Q, Q,*A&/(kI~', 0, 0, &d), (34)

dQ40 &/

where for fixed k',~', E is independent of energy
transfer ~. To proceed, w'e need the value of the
vector Q. Recall from the discussion above that

q k&&) (36)
I

& & (k([ gyp kp gg)

x 5~ Q, Q/+A&/(k&, '; l, l,'; (u), (32)

where cu = 80 —8, is the energy lost by the electron.
The result displayed in Eq. (32) is the principal

result of this section. In Sec. III, we shall employ
a simplified form of this general result to explore
the nature of the energy-loss spectrum and its
sensitivity to the details of the lattice dynamics of
the surface region of the crystal. The cross sec-
tion for scattering by processes in which an elec-
tron gains energy by absorbing a phonon may be ob-
tained from Eq. (32) by detailed balance consider-
ations.

III. FORM OF ENERGY-LOSS SPECTRUM FOR MODEL
CRYSTAL

In this section, we apply Eq. (32) to the analysis
of the shape of the energy-loss spectrum, and its
dependence of the lattice-dynamical properties of
the surface region for a simple model crystal.

We shall first replace the general result exhib-
ited in Eq. (32) by a simpler approximate form.
As remarked above, a low-energy electron incident
on the crystal samples only the region near the sur-
face. As Duke and Tucker have pointed out, this
is so because electron-electron scattering pro-
duces a severe attenuation of the incident beam once
it enters the crystal. We assume that to a first ap-
proximation, one may suppose that the incoming
electron interacts only with the ions in the surface
layer itself. Thus, in the sums over E, and l,' that
appear in Eq. (32), we retain only the term with

Q f(q2 +k&P)2)l /2 (s6)

To obtain the result of Eq. (36), one employs Eq.
(21) for the case l, = 0 and notes that

Kl -k(,0) -k(s) +Gll =kl(IP)

The approximate expression for Q obtained by this
procedure bears no resemblence to the expression
that is produced by the kinematical theory. Notice
that our expression for Q, depends on the form of
the scattering potential, since q, enters Eq. (36)

while Q, must be computed from Eq. (21) with l, = 0.
To compute Q„we thus need the value of the ma-
trix element

((k&s) g
~

c&q~e&5„2~i~k&0) g

This matrix element will be calculated by employing
a vastly oversimplified form for the wave function
of the electron in the crystal. We presume that the
effect of electron-electron interactions is to cause
the effective wave function of the electron to assume
a form in the crystal well approximated by a decay-
ing exponential:

Uf, „q(r„, z) =f-„„q(r„)e'"' for 2&0 .
We also need the form of the Fourier transform
8(q) of the effective potential. As a matter of con-
venience, we take for this quantity the Fourier
transform of a Yukawa potential:

V(q) =I)/(q2, +q'),

where the range of the potential in real space is
(q, ) '. With this form for v(q) and Uf„~(r„, g), one
readily obtains for Q, the analytic form
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explicitly.
Once the expression for Q, is inserted into Eq.

(34), the computation of the energy-loss spectrum
reduces to the determination of the spectral den-
sity function A(~(k, ', ', 0, 0, &u). We now turn to this
question.

The spectral density function A(&(k(~', 0, 0, &u) has
been calculated for several values of k,'~' and for a
particular lattice-dynamical model. We have con-
sidered a fcc crystal with a free, unreconstructed
(100) surface T.he spectral density has been cal-
culated by two methods. First we consider the case
in which the atomic force constants in the surface
layer assume a value identical to the bulk-crystal
force constants. Then for a model with nearest-
neighbor central-force interactions between the
ions we have calculated the spectral density from
the formal expression for the Green's function de-
rived by Maradudin and Wallis, ' and used by them
to compute the surface specific heat of a simple
cubic solid at low temperatures. We have also
computed the spectral density directly from the
eigenvectors associated with a slab of finite thick-
ness (30 layers). In this instance, one can employ
a computer to obtain accurate values of the phonon
frequencies and the eigenvectors associated with a
slab of infinite extent to two dimensions, and with
a thickness of 30 layers normal to the surface. "
With this second method, we have explored the ef-
fect of changes in the surface force constants and
the range of the interaction on the shape of the loss
spectrum, for various values of k,'~'. For a slab 30
layers thick, the surfaces are sufficiently far apart
that one obtains a rather accurate approximation
to the lattice-dynamical properties of the surface
region of the semi-infinite medium.

We first describe the results of the work on the
model of the semi-infinite crystal, using the
Green's-function approach of Maradudin and Wallis.
We shall consider a fcc crystal with a (100) surface,
as mentioned above. The two-dimensional Brill-
ouin zone appropriate to this crystal face is shown
in Fig. 2. We have carried out calculations of the
shape of the energy-loss spectrum for the ten val-
ues of k' ' indicated in the figure. For the case
where the ions are coupled by nearest-neighbor
central-force interactions, we give the bulk-pho-
non dispersion curves in Fig. 3. For each of the
ten values of k'~' in the network of Fig. 2, we plot
&u2(k(~), )t.,) for 0& k, & 2)(/ao. The frequency units
have been chosen so that the maximum frequency
co ~ of the crystal is 2. These curves will prove
useful when we discuss the interpretation of the
shapes assumed by the energy-loss spectrum.

Before presenting the results of the calculation,
we make some comments on the numerical calcu-
lation. Maradudin and Wallis write the Green's
function U;&(ll', &o) in the form

2m'/a

27rgo

I
X

FIG. 2. Two-dimensional Brillouin zone appropriate
to the fcc crystal, with a free (100) surface.

U(&(il', &u) = Q Q e(($) e& (k'9) U(kX, k'X', &o)
17x

x eik' ' )ife' ~ )'
(37)

where e(k)() is the eigenvector of the infinitely ex-
tended crystal associated with the phonon of wave
vector k and polarization X. In Eq. (37), the nota-
tion differs slightly from that employed by Maradu-
din and Wallis. For the semi-infinite crystal, they
demonstrate that

U(k)(, k'X', m) = 5) ) 5 „)')[5 „))- '-)5 ))U ( 0&k&)

+ Up(kk, (()) t(kX; k'X', (d) Uo(k'X', ~)], (38)

where t(kX, k'X', (d) is the f matrix that describes the
interaction of a phonon with the surface, and

Uo(kX, +) = [(()~—(d2(kX)] '. The function
U(&(k„~), f, l'„(d) may be expressed in terms of the
result of Eq. (38):

x U(k, ', 'kg, X;k,', 'kg, X';(u)e' i's e'~~)~ (38')

The length of a large cube within which periodic
boundary conditions are imposed is L. By employ-
ing expressions derived bg Maradudin and Wallis,
the task of computing U(~(k, )+), l, l,', (d) can be re-
duced to that of evaluating certain functions of the
form

G(ko y (d) ~ 2 2 f(P)y )
(~) ~ f, (k,(~), k,)

co + zE —coy k,(( kg

where ~&(k)@)k,) is the frequency of a phonon in the
infinitely extended crystal with wave vector k
=k',~'+zk, and branch j. We refer the reader to the
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N 33
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27r
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FIG. 2. For each of the ten points in the Brillouin zone of Fig. 2 we plot 9(k„„kg for 0&k~&2m/ao for a fcc crystal
with nearest-neighbor central-force interactions.

paper by Maradudin and Wallis' for the details.
Since we encountered some difficulties evaluating
the functions in Eq. (39) accurately, we shall make
some comments about the procedures we employed.

In our first attempt, we chose a uniformly dis-
tributed set of values of k, in the interval —2~/aa
& k, & 2v/ao. The eigenvalues and eigenvectors were
computed for each value of k, . We then chose a
small but finite value of e (say, 5% of the maximum
frequency of the crystal), and approximated the
integral over k, either by a Riemann sum or by the
use of Simpson's rule. The notion was that if a suf-
ficiently large number of k, values were chosen,
then the integral should be accurately approximated
by this procedure and insensitive to the choice of
&, as it must be in the limit as E-0. This proce-
dure appeared to work poorly, in the sense that the
results did not appear insensitive to & even when
a large number (around 500) values of k, were
chosen. This is associated with the one-dimen-
sional character of the integral. If the sum over k,
is replaced by an integral over frequency,

G(k, ', ~', tc) =)tdtc' p(k, ',~', &c') . , „, (40)

then the function p(k„', &c') has square-root singu-
larities characteristic of the density of phonons
states for a one-dimensional lattice. Thus, even
though one may choose a large number of k, values
when the integral in Eq. (39) is replaced by a sum,
one obtains a much worse approximation to the inte-
gral than might be expected for the same size grid
if the integral were smooth. This problem is

presumably less severe for three-dimensional in-
tegrations in k space, where the density of modes
is never singular.

We then turned to a different procedure. In the
limit as &-0, one has for e& 0

Im[G(k, ', ', to)]

= —i ZZ f)(k„, ', k, ) 2 to((k, ', ~'k, )
Qt kg=kg

(41)
The sum over a includes all values of k, for which

(di(k(I, kg) = co

The expression on the right-hand side of Eq.
(4. 1) may be accurately evaluated without encoun-
tering the above difficulties. This may be done by
storing the phonon frequencies and eigenvectors
associated with a grid of k, values associated with
a particular value of k ', ~', then approximating the
derivative in Eq. (41) by a finite difference. This
procedure turned out to be both simple and accu-
rate.

We then obtain the real part of G(k '„~', &u) by
taking the Kramers-Kronig transform of the imag-
inary part. The same square-root singularities
that appear in the density of modes p(k, ', ~', &u) also
appear in Im[G(k„~', tc)], in many instances. To
obtain accurate values of Re[G(k,',~', &u)] it was thus
necessary to use a very fine grid in the vicinity of
the singularities of Im[G(kI, ~', v)]. In all the cal-
culations reported below, care was taken to ensure
that convergence had been obtained. There is also
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one point of the array in Fig. 2 (point 1) for which
we can find an analytic form for the spectral density
A, ~(k,',~', 0, 0, &u). Thus, we could obtain a check
on the accuracy of the numerical computation by
comparing it with the analytic form obtained for
point 1. The error in this numerical computation
was found to be less than 1/0 except for frequencies
very close to the singularity, where the real part
of U, ~(k '„~', 0, 0, ur) became somewhat less accu-
rate.

We should also note briefly the value of q, we
used in obtaining Q, from Eq. (36). We took q, to
be w/ao, since we assumed the range of the inter-
action I/q, would be roughly equal to the radius of
the ion, which is approximately ao /m. The values

q, = ~/2a„~/4a, associated with longer-range in-
teractions were also used, and it was found that the
qualitative shapes of the energy-loss spectra re-
mained the same.

We shall now discuss the results of the analytic
calculation done for point 1. At this point in the
zone, k„= 2m/ao, k, =0, and the equations of motion
of the infinite lattice are completely uncoupled so
that the normal modes are all linearly polarized in
the x, y, and z directions. As a consequence, there
are no off-diagonal components of U&, (k,', ~', 0, 0, &o

+ivy) for this point. All the z-polarized modes vi-
brate with frequency &u = v 2 using our scale, and

they form the flat branch of the dispersion curves
in Fig. 3. Each of these modes corresponds to a
single layer of ions lying parallel to the surface
vibrating while the other layers remain stationary.
However, the ions in the surface layer interact only
with the ones below them and hence vibrate at the
lower frequency co= 1. This mode is the short-
wavelength limiting form of the Rayleigh surface
wave for this point in the zone. Since this is the
only mode with a nonzero z component in the sur-
face layer, we find

Im[U (Q~~ 0 0 (d+iq)]=v5(&u —1),
where

We also find

Im[U„„(g „,0, 0, ur + ig) ]= Im[U„( g,', ', 0, 0, v + iq)]

2& co &4

=0, QP & 2) 47 &4

In Fig. 4 we plot the energy-loss spectrum for
point 1. It consists of a line corresponding to the
surface mode and a part due to the bulk modes po-
larized in the x and y directions. The shape of the
bulk contribution is due to two factors. We shall
consider scattering produced by the x component
of the surface ions' motion for Q„along the x direc-

FIG. 4. Energy-loss spectrum appropriate to point 1
of Fig. 2, Tc„= (2w/ao, 0).

tion. This means we need to consider U„„(g„,0, 0,
ur+iq). This function is proportional to both the
density of states p(g„, &u) of modes with a fixed
wave vector Q„parallel to the surface and le„(Q„,~)12,
the square of the x component of the surface ampli-
tude of the eigenvector corresponding to Q„and
frequency ~. As we have mentioned above, there
are square-root singularities in the density of
states p(g„, &u). They occur at the bottom and top
of the bulk bands, i.e. , for ~,„(Q„)and &u,„(Q„),
the maximum and minimum frequencies of the
crystal for a given g„directed along the x axis. In
fact, we see in Fig. 4 that the energy-loss spectrum
does exhibit the square-root singularity at &u,„(g„)
which arises from the singularity in p(Q„, &u).

However, we note that there is no such singularity
at &o,„(Q„). Instead the cross section goes to zero.
This is caused by the second factor, le„(Q„, ar)l
The eigenvector vanishes at the surface as
~- &u,„(Q„); at this frequency, a wave with dis-
placement parallel to the surface reflects off with
a 180' phase shift. This can be seen by examining
the equations of motion for the lattice. The vanish-
ing of the eigenvector suppresses the singularity
that arises from the density of states. As
~- ar „(Q„), the eigenvector remains finite; at this
frequency, the wave is reflected with no change in
phase. The singularity arising from the density of
states will therefore be seen. As one can see from
this example, the shape of the contribution to the
spectrum from the bulk modes contains detailed in-
formation about the interaction of the bulk phonons
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with the surface. A study of both the bulk band and

the position of the surface-mode peak thus gives
one a complete picture of the nature of the vibration
modes of the semi-infinite crystal with wave vector
Q parallel to the surface. We also note that the
average bulk frequency seen by observing the bulk-
mode scattering from the surface is lower than the
mean bulk frequency of the crystal ~ =M, as one
can see from the asymmetry of the bulk contribution
to the cross section. This is consistent with the
fact that the mean-square amplitude of vibration of
an atom in the surface is larger than the value ap-
propriate to the bulk of the crystal.

Now we turn to the numerical studies of the en-
ergy-loss spectra for the values of k', ~' indicated
in Fig. 2. These spectra were calculated by eval-
uating the Green's function of Eq. (38') on a computer
using the method described earlier. The resulting
loss spectra for six of the ten values of k ',~' are
displayed in Fig. 5. In the calculations, the crystal
was assumed to be at room temperature, and ur, „
was chosen equal to the maximum vibration fre-
quency of nickel. In general, there are contribu-
tions to the cross section from both the surface and

bulk modes, as we have seen in Fig. 4. The posi-
tions of the loss peaks associated with the scattering
by surface modes is indicated by the vertical ar-
rows in Fig. 5. The relative strength of the scat-
tering produced by the bulk and surface modes will
be discussed below, when we examine the results
for the finite slab.

The energy-loss spectra for points 9 and 10 at
the edge of the Brillouin zone are particularly in-
teresting, since for those values of k'~' there exists
a gap between the two bulk bands, and a surface
mode appears in the gap. Modes of this kind have
been studied theoretically and discussed by deWette
and co-workers. ' Actually, at point 10 two other

such surface modes exist, but they have a small
amplitude at the surface. They make a very small
contribution to the cross section as a consequence.

We shall now discuss the results we obtained by
using the equations of motion of a 30-layer slab.
Using a computer, it is straightforward to diago-
nalize the resulting 90&&90 matrix and obtain all the
normal-mode frequencies and eigenvectors. One
can then compute the spectral density directly from
Eq. (31b). This method is a particularly convenient
one for studying the effects of changing force con-
stants near the surface because it is quite simple
to adjust them in the program. It is also helpful in
studying surface modes because one can examine
the eigenvectors explicitly with little effort. This
method does have a major drawback. The spectral
density found in this way is a series of 5-function
peaks which then must be added together to form
histograms if the information is to be presented in
simple form, Although it is impossible to obtain
extremely detailed information about the shape of
the bulk-mode contribution to the cross sections
from the histograms, one can easily identify the
same general features of the spectra that were ob-
tained by our first method and displayed in Fig. 5.
The surface-mode frequencies and their strengths
are also easily found. Upon changing the force
constants in the surface, one can then easily visu-
alize the qualitative changes in the spectra of Fig.
5 by following the changes in the histograms.

The first change we made in the simple model of
the fcc crystal with a (100) surface and nearest-
neighbor central-force interactions was to add
next-nearest-neighbor central-force interactions.
Again we used values of the force constants so that
the elastic constants approximate those of Ni. The
ratio 8 of the next-nearest-neighbor force constant
to the nearest-neighbor force constant was found to

(o) I 2 3 4
QJ 2

(b) (c)

IO

FIG. 5. Energy-loss spec-
tra for six of the ten values of
k~~ displayed in Fig. 2. These
spectra were calculated by
numerical evaluation of the
Green's function for the semi-
infinite crystal and for geom-
etry described in the text.

(d) I 2 3 4
Q)2

(e)
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be —0.0308. In the work that follows, 8 will al-
ways have this value (rather than zero as before)
unless it is specifically changed. This addition of
next-nearest-neighbor interactions changed the loss
spectra very little.

The second change we made was to change the
nearest-neighbor force constant between the first
and second layers so that the surface layer was
bound more or less tightly to the rest of the crystal.
We define C to be the ratio of the force constant
between layers 1 and 2 to the bulk nearest-neighbor
force constant, and we employed the values C =0.5,
0.75, 1.0 and 1.25.

In Fig. 6 we display loss spectra for two of the
values of k '~' to demonstrate the changes occurring
in the cross sections when the strength of the inter-
action between the first and second layers is varied.
One can see a general shift of the bulk scattering
strength to the lower-frequency ends of the respec-
tive bands as this surface force constant is de-
creased. The surface-mode contributions are also
shifted to lower frequencies and increased in
strength relative to the bulk-mode scattering. This
is particularly evident for point 9, where the ratio

of surface scattering to bulk scattering significantly
increases when the surface layer becomes less
tightly bound. However, the effect of changing the
surface force constant is more easily measurable
by looking at scattering with k,', ~' = (2m/ao, 0) (point
l). As mentioned above, the surface mode for this
value of k~',

~' consists only of the surface layer vi-
brating normal to the surface, and all other layers
remain stationary. Hence, when the force constant
between the first and second layers is changed, the
frequency of the surface mode shifts accordingly.
In fact, using our frequency scale, co =C as can
be seen in Fig. 6. (Actually &u is not quite equal
to C because of the next-nearest-neighbor interac-
tions that have been added to our model, but the
shift is very small and the surface-mode frequency
provides an accurate estimate of C. )

As the third change in our model of the semi-
infinite slab, we let the nearest-neighbor force
constants seith&z the surface layer become different
from those of the bulk crystal. This change af-
fected only force constants between atoms lying
parallel to the surface and was quite different in its
effect from the previous change of force constants

3~b~
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(a)
FIG. 6. Energy-loss spectra for (a) point 1 and (b) point 9 of Fig. 2. The spectra are calculated for three values of

the ratio C of the atomic force constants between the first and second layers of the crystal to the bulk value of this quan-

tity. The spectra were calculated from the study of scattering from a 30-layer slab of material.
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FIG. 7. Energy-loss spectra for {a) point 1 and (b) point 9 of Fig. 2, for three different values of the ratio E of the
nearest-neighbor force constants within the surface layer to the value appropriate to the bulk.

between the first and second layers. We define the
quantity E to be the ratio of the nearest-neighbor
force constant within the surface layer to the near-
est-neighbor force constant for the bulk crystal,
and we let E range from 0.5 to 1.25.

In Fig. 7 we display the energy-loss spectra ap-
propriate to points 1 and 9 in the Brillouin zone.
These were obtained by letting E take on the values
0. 5, 1.0, and 1.25. The primary trend as the force
constants within the surface layer are decreased is
that the higher-frequency bulk contributions to the
cross sections become much smaller. For both
values of k', ~' used here, the lowest-frequency sur-
face mode contributing to the loss spectra is z po-
larized. These modes remain unchanged because
changing E changes only the forces in the x andy
directions. However, the other (x- and y-polarized)
surface modes are strongly affected. In fact, one
can see that for point 1 a new surface mode is
created as E is lowered. The shape of the bulk band
contribution is also significantly changed. As E is

changed from its original value of unity, the surface
amplitudes of the eigenvectors for frequencies near
the bottom of the bulk band for point 1 tend toward
zero. Hence the singularities arising from the den-
sity of states (as discussed above) are suppressed
as one approaches both the minimum and maximum
frequencies of the bulk crystal. Again we see that
one may obtain information about the eigenvectors
from the shape of the bulk loss spectra. Finally,
we note that both the shape of the bulk contribution
and the position of the second surface mode give us
information concerning the quantity E.

We should mention here that we also tried adding
larger next-nearest-neighbor interactions in order
to see what qualitative changes would occur. As B,
the ratio of the next-nearest-neighbor to the near-
est-neighbor force constants, was made more nega-
tive, the crystal became unstable. Therefore we
used the values 8 = -0.10, where the crystal was
found to be stable, and B=+0.25. There were no
large qualitative changes in the energy-loss spectra.

TABLE I. Ratio of the integrated intensity of the surface-mode peak to the total differential cross section per u»t sol-
id angle, for various force-constant configurations.

Point
in zone

B = —0. 0308
C=E=1

0. 63
0, 71

C =0. 50

0. 73
0. 92

C =1.25

0. 59
0.46

E=0.50

0.96
0.72

E=1.25

0, 64
0.56

B=0.25

0. 61
0, 85

B=—0. 10

0. 64
0. 65
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Basically, as 8 increased (positively), there was a
shift of the spectra upward in frequency. For some
values of k '~' there was also an increase in the
amount of scattering from the surface modes relative
to the bulk scattering.

We would now like to comment on the strength of
the scattering from the surface modes. It is diffi-
cult to obtain a realistic estimate of the percentage
of the total scattering that is due to scattering from
the surface modes, since the value of Q, employed
in the present work is very approximate. In Table
I we indicate this percentage for points 1 and 9 in
the zone and for the various force-constant configu-
rations described earlier. One can see that in most
cases the surface modes and the integrated strength
of the bulk-mode contribution contribute almost
equally to the total cross section. Of course, at
point 5, the origin of the Brillouin zone, there are
no surface modes and hence all the scattering is
from bulk modes. Except for values of k', ~' close
to the origin, the surface scattering is comparable
in strength to the total bulk scattering for most
cases examined; as the force constants near the
surface are softened, note that the intensity of the

surface-mode scattering increases relative to the
bulk in a pronounced manner.

We conclude this section by stressing that the
study of inelastic electron scattering from crystal
surfaces has the potential of mapping out in great
detail the frequency spectrum associated with the
vibration of surface atoms. As we have seen, the
shape of the loss spectrum is very sensitive to
changes in the atomic force constants near the sur-
face. As we see in Figs. 6 and 7, the shape of the
spectrum depends qualitatively on the precise man-
ner in which the surface force constants and bulk
force constants differ. While we have examined
the case in which certain force constants are stiff-
ened or softened, the work of Wallis and co-work-
ers' suggests that one may expect the atomic-force
constants to be weaker in the surface, compared to
the values appropriate to the bulk.
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