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In a separate paper, electron energy levels in perfectly ordered LaSn; were calculated non-
relativistically for the equivalent of 64 points in the reciprocal-space lattice using a modified
orthogonalized-plane-wave method. We now use perturbation theory to determine the relativistic
corrections. Starting with Dirac’s theory of the relativistic spinning electron and following
Slater we write the final E®) as E°(k) plus mass-velocity, Darwin, and spin-orbit corrections
where the Eo(k) are the nonrelativistic energy levels previously calculated. The mass-velocity
and Darwin operators do not affect symmetry and thus involve no mixing between different irre-
ducible single-group representations. These two corrections thus cause only a shift in energy.
This shift is calculated by nondegenerate first-order perturbation theory. The spin-orbit opera-
tor does affect symmetry so that those nonrelativistic levels associated with two- and three-
dimensional single~group representations can split. This splitting is calculated by degenerate
first-order perturbation theory. The spin-orbit operator can also mix levels belonging to dif-
ferent irreducible single-group representations providing the nonrelativistic levels are not too
widely separated in energy. Perturbation theory has been used to determine this mixing in
most of the appropriate cases with particular emphasis given to those levels near the Ferm1
level. Relativistic E(k) curves are shown for six directions in k space. Using the final E®),

a Fermi level of —0.50 Ry has been computed. This is about 0.03 Ry lower thanthe nonrela-

tivistic Fermi level.
is discussed briefly.

INTRODUCTION

In the previous paper, ! hereinafter referred to
as GMI, electron energy levels in perfectly ordered
LaSn; were calculated nonrelativistically for the
equivalent of 64 points in the reciprocal-space lat-
tice using a modified orthogonalized-plane-wave
method (MOPW). A muffin-tin model potential,
constructed from the self-consistent nonrelativistic
atomic potentials of Herman and Skillman (see
GM]I, Ref. 4) was used. As both La and Sn are rel-
atively heavy, with atomic numbers 57 and 50,

" respectively, relativistic corrections should play
an important role. In this paper we calculate these
corrections using perturbation theory. Starting
with Dirac’s theory of the relativistic spinning elec-
tron and following the treatment of Slater? we write
the final E(k) as E%(K) plus mass-velocity, Darwin,
and spin-orbit corrections where the E%k ) are the
nonrelativistic energy levels calculated in GML

There are good arguments for using relativistic
atomic potentials as the starting point of such a cal-
culation (see GMI, Ref. 19). However, we did not
have such potentials when this calculation was begun
and we further thought it would be of interest to see
how large the relativistic shifts were for the case
in which the unperturbed crystal energy levels were

Comparison with the limited amount of existent LaSn; experimental data

calculated entirely nonrelativistically. A very few
points (', A, X) were calculated both with nonrela-
tivistic and with relativistic atomic potentials as
starting points and the resulting unperturbed levels
were compared in GMI1. The fact that the relativ-
istic-potential-based levels lie higher than the non-
relativistic -potential -based levels corroborates the
arguments given by Calloway ef al. (see GMI, Ref.
19). It should thus be clear that the present cal-
culation is of a rather preliminary nature.

In GMI and in the present paper we follow the
Bouckaert, Smoluchowski, and Wigner (BSW) nota-
tion for the symmetry points (see GMI, Ref. 3).
The BSW notation is used in both papers for the
single-group representations. For all double-group
representations (except those for A) we follow
Elliott. 3 This is consistent as Elliott works from
the BSW single-group notation. For the double-
group representations for A we follow Koster. *

For A, Koster’s single-group notation is identical
to that of BSW.

APPLICATION OF PERTURBATION THEORY

Following Slater? we assume that we can start
with Dirac’s theory of the relativistic spinning elec-
tron for a central field and replace the central field
by a periodic potential. The resulting equation is
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{ - m%/2m) v®+ V(T)
- p¥/8m3c% - (n%/am? )V V(T)- v

+(/am? ) G- [V V(P)xp]}e=Eyp. (1)

[This is Slater’s equation (A9-1) with A=0, B=0,

i. e., no external magnetic field; with —e¢ replaced
by V(¥) and eE replaced by VV(T). We write m for
the rest mass.] In this paper, as in GMI, T denotes
a vector from the origin (taken at the center of the
La sphere) and p denotes a vector from the center
of the sphere in question. Equation (1) is not in
atomic units. In atomic units Eq. (1) becomes

{-v2+V(F)-1@® [E°-V(DF -1 VV(T)-V

+502 6. [VW(TF)xp/R|}v=Ep, (2)

with @=#4/mc, the fine-structure constant. In the
p* term of Eq. (1) we have used the approximation

p2/2m~ (E-V) (3)

and have further assumed that £ may be replaced
by E® in this term. Equation (2) may be written

(H°+H™)y=Ep, (4)
with
H'= -v2+ V(¥) (5)

as in GMI, and H'® equal to the three remaining
terms on the left-hand side of Eq. (2). In applying
Eq. (4) to a crystal we note that all the periodicity
theorems hold for H*® just as for H? so we may
again work with one unit cell only. Thus, using
perturbation theory, we can solve H%3%=E%y? and
then add the corrections due to H™® as

E,=EJ+E® (6)
with .
Ert= (40 H™'yhdT Q)

for the mass-velocity and Darwin corrections [third
and fourth terms, respectively, of Eq. (2)] and with
a more involved expression for E™® for the spin-
orbit correction [fifth term of Eq. (2)].

Confining the problem to one unit cell, we apply
H'®' as in Eq. (2). Outside the muffin-tin spheres,
vV(r)=0 so that only the mass-velocity correction
gives a contribution in this region,

Hyy(outside)= - £ a® (E° - V)%, (®)

where V is the constant potential in this intersphere
region. Within the muffin-tin spheres we can re-
place V() with the spherically symmetric V,(p),
where p is measured from the center of the vth

sphere. For spherically symmetric V,
av @
vVV(p) V=— — 9a
(p) & (9a)
and .
av -
vV(p)== =5 . (9b)
(p) o P
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Thus, inside the vth sphere, Eq. (2) becomes
(H°+ Huy+Hp+ Hso) ¥ (5+8,)=E(p+8,), (10)

where §, is a vector from the origin to the center
of the vth sphere as in GMI,

Hyy = _%az [EO— VV(P)]Z ’ (11)
— dV,(p) 8
=iz 2\ O
Hy 1 dp p ’ (12)
1 dV,ip) - =
_1=2 2 AYY
Hyo=% @ b dp oL, (13)
with
L=pxp/n . (14)

These three operators [plus Hyy(outside) given by
Eq. (8)] lead, respectively, to energy corrections
Eyy, Ep, and Egs so that the final energy E is giv-

en by
E=E%+Eyy+Ep+Es . (15)
Mass-Velocity and Darwin Corrections

The mass-velocity and Darwin operators are in-
variant to the single-group operations [as may be
seen from their form in Egs. (11) and (12)] so that
symmetry is preserved and these operators involve
only a shift in energy for any given E°level. From
ordinary nondegenerate first-order perturbation
theory, then,

Eyy= f‘l’g* Hyvy ‘/’Sd? (16)
and
Ep= [42* HpyndT . am)

Spin-Orbit Correction

The spin-orbit operator does not satisfy the
criterion of invariance above; thus mixing between
different irreducible single-group representations
(for the same k point) must be considered as well
as the splitting of the degenerate E % levels asso-
ciated with the two- and three-dimensional irreduc-
ible single-grouy representations.

Spin-Ovbit Splitting within a Given Representation

For spin-orbit splitting within a given irreducible
single-group representation it can be shown quite
generally that the spin-orbit arrays have a rather
special form which, for a three-dimensional repre-
sentation, for example, looks like®

vhao PhB Yha B Yha PuB

Wie a 0 ¢ d e f

o I Y A A

0 * * -

21 & C d g 0 h k ., (18)
wre 4@ ¢ 0 g -k* R

Wi¥a  e* -f h* -k l 0

WFB fE e k* h 0 1



1310 D. M. GRAY AND L. V. MEISEL 5

where the elements in the even rows are related

to those in odd rows as shown for ¢ and d. The
requirement of Hermiticity produces pairs of equal
elements on the main diagonal and zeros for some
of the off-diagonal elements as shown. In (18), we
have

d= [ 93" a Heo 48y BdT ,

where @ and g are Pauli spin functions, ¢ @ refer-
ring to spin up, B to spin down. ¢°is the nonrela-
tivistic wave function associated with E° obtained
in GMI. The subscript 21, e.g., indicates that g
was formed using the D,;(R) matrix elements. For
¥° chosen as ours were, it can be shown that the
diagonal elements in (18), i.e., a, g, and I, are
imaginary; since Hermiticity requires these to be
real then g, g, and [ must be zero. The secular
equation for Eg, is obtained by putting — Eg, on the
diagonal of (18) and setting the determinant equal
to zero.

It then follows that all one-dimensional single-
group representations will have spin-orbit deter-
minants of the form

- Ego 0
0 -Ego

=0, (19)

from which it follows immediately that Eg, for the
one-dimensional representations is zero.

From an array similar to (18), the two-dimen-
sional single-group representations® must have de-
terminants of the form

- Eg 0 A+iB C+iD
0 -Esx -C+iD A-iB
=0 2
A-iB -C-iD —Eg 0 » (20
C-iD A+iB 0 —-Eso

where A, B, C, and D are real. This leads to

Ego=%G, (21)
with
G*=A%+B®+C*+D2. (22)

With the exception of I'yy, I'ypr, Rz, Rjypr, and Ag,
all two-dimensional representations of the simple
cubic group have A=C=D=0, B=S#0 in Eq. (20).
For this case

Ego=%S. (23)

[As Eq. (20) is a 4x 4 determinant, there are actu-
ally four roots, two equal to +S and two equal to
-S.] The representations I'yy, T'jsr, Ryz, and Ry
have no spin-orbit splitting [i. e., for these four
representations A= B=C=D=0 in Eq. (20)]. For
the A; representation A=0, B=C=D=S+0. Thus,
for A4

Ego=+3S. (24)

All three-dimensional representations® of the
simple cubic group have spin-orbit arrays of the
form given in (18) with the additional restriction
c=k=iS, f=-S, and d=e=h=0 (with a=g=1=0 as
discussed above). This gives a determinant

- Ego 0 iS 0 0 -S
0 -Ego 0 -iS S 0
-1iS 0 -Eg 0 0 iS || 0
0 iS 0 -Ey iS 0 ’
0 S 0 -iS =—FEgy 0
-S 0 -iS 0 0 - E5o
(25)
This results in a cubic equation
E3 -352FEs, -25%=0 (26)
with the solution
Ego=~-S, =S, +2S. 27)

(Again, as in the two-dimensional case, there is
an inherent two-fold degeneracy here so that there
are actually six roots, four equal to - S, two equal
to +2S.) Thus, for the three-dimensional single-
group representations the amount of splitting is not
“even” as it was in the two-dimensional case but

‘rather in a 1-down, 2-up or 2-down, 1-up ratio

depending on whether S is positive or negative,
respectively. The smaller magnitude shift has a
four-fold degeneracy while the larger magnitude
shift has a two-fold degeneracy.

One could also tell a priori which single-group
representations will split under spin orbit by an
inspection of single- to double-group compatibili-
ty.® Those single-group representations which are
compatible with more than one’ double-group rep-
resentation can split under spin orbit. (See Tables
I and II.)

Identification as to which split single-group level
is associated with which of the compatible double-
group representations may be done as follows: For
the three-dimensional single-groups the smaller
shifted level is always four-fold degenerate and
must be associated with I'g, or R, as the case may
be. The larger shifted level is two-fold degenerate

TABLE I. Complete list of single-group two- and
three-dimensional irreducible representations for the
simple cubic lattice. The notation is that of BSW (Ref.
3 of GMI).

Two-dimensional representations
Ti2 Ti2r Ryy Rypr A5 Tg5 X5 Xy My My, Ag
Three-dimensional representations

Tys+ Tese Tys Tys Ryse Ryse Rys Ry
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TABLE II. Single-group to double-group compatibility
for the simple cubic lattice. Except for A the notation is
that of Elliott (Ref. 3). Elliott works from the single-
group notation of BSW (Ref. 3 of GMI). For A the nota-
tion of Koster (Ref. 4) is followed. In general, those
single-group representations which are compatible with
two or more double-group representations will split under
spin orbit.

Single Double
(a) T point (valid for R also)
F1 FGt
T, o
Tio Do
F15: FS* + I‘8+
F25 . Topwt F3+
Ty T
rz . F'I"
(b) A point (valid for T also)
Al or Al' As
Ay or Ay Aq
Ay Qg+ Aq
(c) X point (valid for M also)
X or X4 Xew
X2 or XS X+
XS Xou + X7,
th or X4' X(;-
(d) A point
Ay or Ay Ag
Ag Ag+ A+ Ag®

*A4 and Ag are degenerate by time reversal.

and is associated with the appropriate I'g,, T'y,,
etc. For the two-dimensional representations one
could determine how the resultant functions trans-
form but it is probably easier to first identify the
function which goes with Eg,=+ S and then to show
that this function has nonzero elements with Ay(Ag)
and no nonzero elements with A,(A,) if we are in-
vestigating the splitting of A;, for example. In
this way one finds that the Eg,=+S solution goes
with Ag, Xg,, Mg,, or Tg as appropriate and that the
Ego=—S solution goes with &;, X,,, My, or Ty
For A one finds Ego=+V3S goes with A+ Ag (A,
and Aj are degenerate by time reversal) and Egq

= -V 38 goes with Ag.

Spin-Orbit Mixing between Representations

When the E°® (or, more precisely, the Ep= E°
+Eyy+Ep) energy levels of different irreducible
single-group representations for the same k point
lie close to one another in energy one must also

consider mixing between representations. This in-
volves a number of different types of determinantal
solutions, most of which can be reduced to quadrat-
ic equations. We give two examples. The general
form for the mixed representation arrays also
obeys the requirements associated with (18) but
now there will be different E, values for the dif-
ferent representations. Thus, in forming these
mixed representation arrays we take the operator
as the total Hamiltonian H. As H®, Hyy, and H),
have zero values between §°’s associated with differ -
entrepresentations or between 3°’s associated with
different rows of the same representation, adding
H® Hyy, and H) to the operator associated with
(18) results only in producing Ep values on the di-
agonal.

For all mixed representation arrays which can
be reduced to a 4x4 (either from two one-dimen-
sional single-group representations or from the
reduction of larger arrays), the determinant analo-
gous to Eq. (20) is

EL-E 0 A+iB  C+iD
0 EL-E -C+iD A-iB -0
A-iB -C-iD E%-E 0 e
C-iD A+iB 0 Ei-E
(28)

with A, B, C, and D real and with E} and E% being

the Ep values from two different single-group rep-
resentations here labeled 1 and 2 for convenience.

Equation (28) leads to

(ER-(EL+EL)E+ELE% -G%=0, (29)
with

G®=A*+B%+C%+D?,
as before. Then

E=3(Ep+E%)+3[(E; -ERP+4G%V2 . (30)

For the case 4 G« A% where A=EL - E%, Eq.
(30) can be approximated by

E=E}+G%/a, E=E%-G%¥A. (31)

As a first example of spin-orbit mixing we consider
the M;. E° level at — 0. 4001 Ry and the M,. E°® level
at —0.4670 Ry.® As M;. is compatible with M- and
Mjy-, and M,. is compatible with M,. we know there
can be a mixing here (between the two M;- levels).
Ms. is a two-dimensional representation with mass-
velocity and Darwin shifts such that E,=~0. 4573
Ry. For M;. the S of Eq. (23) is +0. 0069 Ry so that
Ms. splits into two levels at —0.4504 and - 0.4643
Ry. As S is positive the lower M;. level is asso-
ciated with M;- and the upper Mj;. level is asso-
ciated with Mg-. The Ep value for M,. is — 0. 4948
Ry. The 6x6 Ms., M,. array can be written as
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o o IB o

W¥a EY-E 0 0
8 B 0 EY¥-E -#2P
oL 0 iV2P E;~-E

#2* 2P 0 0

Pe 0 0 0

P2x 0 0 0

where E;- and Eg- are the lower and upper M. lev-
els, respectively, ¢i- and ¢3- are the two functions
associated with E,-, ¢3-and ¢3-are the two functions
associated with Eq-, and P= - [ a Hgo 93,11 BAT.
(Here the first subscript on §° indicates the repre-
sentation. The second subscript on ng., 11 indicates
that 9. y; was formed using the D;;(R) matrix ele-
ments. 5. does not require a second subscript as
M, is one dimensional.) From (32) it is clear that
there is no further shift associated with the M-
solution and that the solution of the ¥,., ¢;- 4X4is
given by [see Eqs. (28)—(30)]

E© Ep Ept+tEgo E
Mg —0.400!
-0.40 4
-0.424
~ —0.44
€
= | Mg- =0.4504 Mg-
<
2 M7- -0.4580
W _0.464 Mg -0.4573 t
Mg -0.4670 My -0.4643
-0.48 4 ~
My —0.4948 M, -
-0.50+ \—
M,- -0.5011
FIG.1. Example of spin-orbit mixing between repre-
sentations. The two-dimensional M5, splits into M- and

Mq-; this M;. interacts with the M- associated with the
one-dimensional My.. Mg and the two M;- levels are each
two-fold degenerate. Ep=E"+Eyy+Ep. All levels are
given to four decimal places for comparison.
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o ¢r 9%
-i2P 0 0
0 0 0
0 0
° (32)
E--E 0 0
0 Ee-E 0
0 0  E¢-E
I
E=4E% +E) x5 [(EY - E.?+8P%Y2 . (33)

A measure of the size of this mixing effect is given
by the ratio of 8(P/A)? to 1 (with A=E% - E;.).
Here P=0. 0107 Ry giving 8(P/A)?=0. 985 so that
one expects an appreciable effect due to the mixing.
Final E values for this example are - 0. 4504 Ry for
the Ms- level and - 0. 4580 and — 0. 5011 Ry for the
My~ levels. From Fig. 1 we see that the “mixing”
shift is 0. 0063 Ry or almost as large as the spin-
orbit shift for M. alone (0. 0069 Ry).

As a second example we consider the I';, E° level
at —0. 4266 Ry and the I',s. E° level at — 0. 4748 Ry.
The Ep value for I'y, is —0. 4892 Ry (there is no
spin-orbit splitting for I'j;). For the three-dimen-
sional I'y;. representation Ep is - 0. 4932 Ry with
the S of Eq. (27) equal to +0. 0029 Ry so that I'ys.
splits into a four-fold I'g+ level at — 0. 4962 Ry
(Eg+) and a two-fold I';+ level at —0. 4874 Ry (Eq+).
As Ty, is compatible with I'g+ there will be mixing
between the I'y; level and the lower T'p;. level. Mak-
ing use of the functions associated with Eg+ and E+
the 10xX10 I'y,, I'zs. array may be written as two
separate determinants, one 88 involving the four
T';, functions and the four I'g+ functions associated
with Eg+, and one 2xX2 involving the two I';+ func-
tions associated with E;+. The 2X2 determinant is
diagonal and immediately gives a final E= E;+, The
8x 8 determinant reduces to a quadratic equation
with solution

E=3(EF+Eg) 23 [(ER -Eg)P+8P%2,
where
P=— [ 9% 110 Ho 951,21 BdT=0. 0043 Ry .

(34)

The further shift associated with Eq. (34) is 0.0036
Ry or slightly larger than the S=0. 0029 Ry deter-
mining the splitting of I'p5, alone. In this particular
case the ‘mixing” correction actually changes the
ordering of the levels as shown in Fig. 2. (It must
be remembered that the I';+ level in Fig. 2 is two-
fold degenerate and that the I'g+ levels are each
four-fold degenerate.)

Proceeding as indicated in the two examples just
given, spin-orbit mixing between different repre-
sentations has been considered for most of the
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Ep Ep+Ego E
-0.48 -
i rgt-o0.4856
> r,+-0.4874
« T2 -0.4892 R Y
- w200 L 7+ —0.4874
= —0.49- 7
o Tg*-0.4892
5 —
=
w . r25--o.4m__
I _+ -0.4962 +
8 g -0.4998
-0.50- &
FIG. 2. Example of spin-orbit mixing between repre-
sentations. The three-dimensional T'y5. splits into Ty

and Tg; this T'g interacts with the I'y associated with

the two-dimensional T'jy(T'j; does not split). The T'g levels
are four-fold degenerate while T';+ is two-fold degenerate.
Ep=E"+Eyy+Ep (E" is not shown in Fig. 2). Note that

in this case the mixing changes the level ordering. All
levels are given to four decimal places for comparison.

cases where we felt that the E, levels were suf-
ficiently close and where the double-group repre-
sentations associated with the levels indicated mix-
ing could occur. In some cases this mixing effect
was ignored as it was felt the correction involved
would not affect levels near the Fermi level. (The
actual computation of this mixing effect involves a
rather tedious procedure as our original computer
program was basically designed to handle one sin-
gle-group representation at a time. For this rea-
son one A,;, Az case quite near the Fermi level was
ignored; A;, Aj; mixing being a particularly in-
volved computation.) In the tabulation of our final
relativistic results (Table IV) the notation indicates
whether such mixing was included.

EVALUATION OF THE RELATIVISTIC CORRECTION
INTEGRALS

The explicit integrals to be evaluated to obtain the
mass-velocity and Darwin corrections arise from
substituting

W (F)=24 cu ¢4(¥) (35)

into Eqgs. (16) and (17), respectively. The spin-
orbit correction involves the substitution of Eq.
(35) into integrals of the form

Hso(m, n:l,2)= f ‘/’?n*(-f):'ﬂHso ‘PE(F)ﬁa aT ’

(386)
where 32, and $° can belong to different single-group
representations or to different rows of the same
representation and 7;, 7, can be either a or g (spin
up or spin down). In the modified plane wave (MPW)
formulation the ¢; of Eq. (35) are either symme-
trized atomiclike functions or symmetrized plane
waves; in the MOPW formulation the ¢, are either
symmetrized higher-lying atomiclike functions or
symmetrized orthogonalized plane waves (OPW’s).

ELECTRON ENERGY LEVELS IN LaSng. II...
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(See GMI for details.) We first discuss the evalua-
tion of Egs. (16), (17), and (36) for the MPW for -
mulation and then outline how one uses these MPW
expressions to obtain the appropriate MOPW eval-
uations.

MPW Integrals

A number of types of integrals are needed, name-
ly, the three combinations plane wave—plane wave,
atomic term-plane wave, and atomic term-atomic
term for each of the three operators Hyy, H,, and
Hgo.® For the mass-velocity and Darwin integrals
it is only necessary to symmetrize one of the two
¢ functions comprising these integrals when Eq.
(85) is substituted into Eqs. (16) or (17). For the
spin-orbit integrals one needs symmetrized ¢ func-
tions on both sides of the integral in Eq. (36) since
the spin-orbit operator Hgy can break the single-
group symmetry. However, when 32 and y? belong
to different rows of the same single-group repre-
sentation and are associated with the same E° we
show in Appendix A that Hgo can be modified en-
abling one to replace

H(m,n:1,2)= [ ¢p3m*(F) Ny Hso p3(F)Mpd T,

(37)
with

h-1

Him, n:1,2)= [ ¢4*(F)iy Z Hsolt) ¢3¢(F) iz a7 ,

(38)
where the superscripts s and # mean symmetrized
and unsymmetrized, respectively, Hg(f) is a modi-
fied Hgo operator and % is the dimensionality of the
representation in question. 10 The spin-orbit inte-
grals involving two different single-group represen-
tations have been evaluated in the form of Eq. (37)
where ¢; and ¢; now belong to different representa-
tions.

For completeness, mass-velocity and Darwin
mixing between different but close-lying E°® energy
levels belonging to the same single-group represen-
tation should be calculated in the same manner as
the spin-orbit mixing between representations. This
has not been done here as it was felt that the ac-
curacy of our E° levels did not warrant the rather
tedious calculations involved. (TypicallyL such
situations occur for the lower symmetry k points
where convergence is particularly poor.)

The derivation of the individual expansion inte-
grals for the various combinations is quite involved;
in Appendix B the resultant MPW expressions for
the necessary combinations for Eyy, Ep, and Ego 1!
are given without derivation.

MOPW Integrals

For the MOPW formulation the MPW expressions
of Appendix B must be assembled properly. Sche-
matically, we write



1314

lpg(F):Zi'CniAi(?)+Zanj¢1(F) ’ (39)

where the A{(F) are the higher-lying atomiclike
functions (we do not orthogonalize to these func-
tions) and the ¢,(T) are OPW’s. All functions are
symmetrized. We have

¢1=P(E!)_Zbaﬂ: Co(T), (40)

where P( ﬁj) is the ordinary plane-wave term and
the C,(T) are the lower-lying atomiclike functions.
We assume here that

(Cb|ct>=5bt ’ (41)
so that
ajbz(cblp(ﬁj)> . (42)

The relativistic corrections Eyy, Ep, and Eg, will

then each involve integrals of the following types:

(AlOlA), (AlOl¢), and (¢10l¢), where O stands

for any of the operators Hyy, Hp, or Hg,. (For

H, one also needs (¢|lOlA). See Ref. 9.)
(A;10lA;): These are just the atomic-term—

atomic-term integrals given in Appendix B.
(A;l0l¢,;): We have

(4;1019,)=(A| 0| P(R)) -2y ay, (4, 0] Gy,
(43)
where the first term is just the appropriate atomic-
term—plane-wave integral of Appendix B and the
second term sums the appropriate atomic -term—

atomic-term integrals of Appendix B.
(¢,/014;): We have

<¢’j| O|Ai>: <P(I-€j)|OlAi> —Zbajb<cb| O|A,) .
(44)
This expression is needed only in those cases for
which the operator is not Hermitian term by term.
(¢;l0l¢;): This becomes

(8:]0l9,)=(P(R)|0| AR)) ~F ~B+D, (43)
with N
F:; a”(CtIO,P(KID ’

B=2 a, (P(K})|0]Cy)
b
D=§ aitajb<ctlo|cb> ’

where the appropriate plane-wave—plane-wave,
atomic-term-plane-wave, and atomic-term-atom-
ic-term integrals are taken from Appendix B. (The
ay, are real.)

Following Chow and Liu? one expects the rela-
tivistic corrections to be large near the nucleus so
that most of the contribution to the above expres-
sions comes from the atomic-term-atomic-term
integrals; this would mean keeping all the (A;l0IA;)
integrals above but only the last terms of Eqs. (43)
and (44) and only D of Eq. (45). Although this ap-
proximation is borne out by an inspection of the
various contributions, we have actually kept all the
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terms for all the mass-velocity, Darwin, and sin-
gle-vepresentation spin-orbit splittings listed (with
the exception of the Aj spin-orbit case). For Ag
spin-orbit and for all the spin-orbit mixing beiween
representations we have used only the atomic-term-
atomic -term integrals.

CALCULATIONAL CHECKS

Radial integrals. Asacheckon our differentia-
tion!® of the potential V(p) and of the radial func-
tion u,,(p) we note that our Darwin radial integrals
[associated with Eq. (B29), Appendix B] and our
spin-orbit radial integrals [Eq. (B51), Appendix B]
agree with those of HS (see GMI, Ref. 4) to about
four significant figures for the lower-lying atomic-
atomic integrals (with »=#’ in our equations).

TABLE III. Comparison of relativistic corrections
with atomic values for selected lower-lying crystal levels.
In the three tables below column 2 gives the Herman-Skill-
man (HS) value (Chap. 2 of Ref. 4 of GM1), column 3 is
our value, and column 4 gives the representation(s) from
which our value was obtained. All energies arein rydbergs.

Atomic Present Rep.
function HS* paper used
(a) Mass-velocity correction (Eyy)
La 5s —0.830 -0.8307 X,
La 3p -4.10 —4.288 Tis
La 4d -0.236 —0.2406 Ryse
Sn 4s - 2.2990 —2.,3086 Ryse
Sn 4p —0.4256 —0.4266 Tys
Sn 3d -0.5514 -0.5512 Rys
(b) Darwin correction (Ep)
La 5s 0.461 0.4678 X,
La 3p —0.042 —0.0423 Tys
La 4d —-0.0045 —0,0046 Rys.
Sn 4s 1.3409 1,3478 Rys
Sn 4p —0.0046 ~0.0045 Rys
Sn 3d —0.0154 —0.0154 Ry
(c) Spin-orbit correction®

La 4p 0.383 0.3869 Tyis
La 5p 0.0557 0.0549 Tys
La 4d 0.0457 0.0466  Rypand R, °
Sn 3p 0.9689 0.9687  Tj;and Tp;°

2The relativistic corrections given by HS are for even
atomic numbers (Z) only. To obtain the HS values listed
here for La (Z=57) we have interpolated linearly between
the values given by HS for Ba (Z=56) and Ce (Z =58). The
values for Sn (Z=50) are taken directly from HS.

PThe spin-orbit values listed here are for @ where Q is
always positive. For the p cases the energy shifts are
+Q and —2Q. For the d case the energy shifts are +2Q
and - 3Q.

°To obtain the spin-orbit corrections for La 4d and for
Sn 3p from our crystal calculation it is necessary to
combine two representations in each case because of de-
generacies.



5 ELECTRON ENERGY LEVELS IN LaSn,.II...

Relativistic corvections for the lowev-lying atom-
iclike functions. One check of the relativistic cor-
rections consists of an inspection of those crystal
energy levels which correspond to the lower-lying
atomiclike functions. On the assumption that these
levels do not change appreciably on going from
atom to crystal! our corrections for these levels
should reduce to those given by HS (see GMI, Ref.
4). For the mass-velocity and Darwin corrections
we simply look at the crystal levels for any repre-
sentation whose symmetry permits the function in
question. 15 For spin orbit, however, one must
consider all the degenerate levels in essentially the
same manner as in the case of the mixing of levels
lying near one another in energy. For p levels,
e.g., there are three functions for La but nine for
Sn (from the three Sn basis sites). For the I' point
all three Lap functions are contained in I'y5; and will
show up as one three-fold degenerate level; thus,
the spin-orbit La 3p correction, e.g., can be ob-
tained directly from our single representation cal-
culation using I'y;. For Snp (at I') we need both T'y;
and I'p;. This gives rise to an 18X 18 array from
which a spin-orbit value can be obtained and com-
pared with that of HS. Table III lists these com-
parisons, 1

E(_lz) AND E, INCLUDING THE RELATIVISTIC CORRECTIONS

E(E). Once the relativistic corrections have
been evaluated we compute the final energy levels
using Eq. (15). Typically, many more symme-
trized plane waves were used to determine E° than
were used to compute Eyy, Ep, and Ego. The un-
derlying assumption here is that although the ad-
dition of many more plane waves causes consider-
ably better convergence in E°, these additional plane
waves do not have much effect on the relativistic
corrections. To a reasonably good approximation
then, one may add Eyy, Ep, and Eg, determined
with, say, 10 symmetrized plane waves to an E°
level determined with, say, 50 symmetrized plane
waves. Although no careful error study has been
made the relativistic corrections for the levels near
Ep are probably precise to within about 0. 002 Ry.
With final energy levels determined using Eq. (15),
relativistic E(K) curves are plotted for the same
six E-space directions as for E°(E) in GM1. These
are shown in Figs. 3-8.

Table IV lists relativistic E(K) for the ten sym-
metry points considered for energies between about
—0.3 and ~1. 3 Ry (about 15 bands). As in GMI the
band numbering starts with the first energy level
(for the k point in question) above the nonvalence
atomic levels as band 1, next higher level as band
2, etc. All levels listed in Table IV are at least
doubly degenerate; to simplify the table doubly de-
generate levels such as I'g,, Ag, etc., are listed
just once as one band, four-fold degenerate levels
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FIG. 3. Relativistic E vs k& for the I'AX direction. It

should be noted that only the middle and end points of
Fig. 3-8 have actually been calculated.

(Tg., Rg,) are listed twice as two bands. In Table
IV the levels given to only two decimal points in-
dicate one (or both) of the following: (i) The under-
lying E° level is poorly converged or (ii) spin-orbit
mixing between close lying E° levels was ignored.

As examples of the effects of the various correc-
tions we show term-by-term breakdowns for I', A,
and X levels in Tables V-VII, respectively. In
these three tables Ep=E%+ Eyy+Ep, i.e., the en-
ergy level before the spin-orbit correction is ap-
plied. The last two columns in these tables give
the final energy E excluding and including mixing
between representations respectively. In Tables
V-VII all values are given to three decimal places
for comparison.

Fermi level Ep. Counting up over the levels'” in
essentially the same manner as in GMI, an Ej of
- 0.50(0) Ry is obtained. (The digit in parenthesis
is probably not significant.) This is about 0. 03 Ry
below the nonrelativistic Ep.

Description of the Fevmi suvface. Countingbands
as in Table IV the seventh band is essentially complete-
ly filled, just touching E, at I'. The eighth band can
best be described by shifting the zone so that the
center of the cube is an R point with I'’s at the
corners. This eighth band is filled except for a



1316 D. M. GRAY AND L. V. MEISEL 5

8~ (1,3,1) B
>
X _-0.8- L 6+ (1) FIG. 4. Relativistic E vs  for the
o TsM direction.
gt
(2) (1,4)
—1.0- -
y
< g- (87)
] 7+(3)
—1.2- (1) »
+
m e I
1
(000) (220) 33 (440)
i
r # R
(2)6 L,
(l)g‘_* | et
(25)7=7] e 4+ '
-0.4 4 (3~ 6 - 8t >(25',12)
gt
gius) FIG. 5. Relativistic E vs k for the
T AR direction.
77(2")
] gi(zs')




5 ELECTRON ENERGY

large hole around R. In the RAT direction (long-
diagonal) this hole extends about three-fourths of
the way toward I'; in the RSX (short-diagonal) di-
rection it extends about half-way to X; and in the
RTM direction the hole extends all the way to M,
just touching E; at M. The ninth band is completely
empty.

COMPARISON WITH EXPERIMENT

Using the McMillan strong-coupling model'® and
measured values of the superconducting critical
temperature (T,), the Debye temperature, and the
electronic specific heat coefficient (see GMI Ref.
2), Toxen and Gambino®® have calculated N(0), the
bare density of states at Ep. They obtain an N(0)
of 0.644 states/eVatom, whereas we find N(0) equal
to 1. 4 states/eVatom for our relativistic density
of states (based on 0. 02-Ry AE increments). Thus,

_our value is about twice as large as that of Toxen
and Gambino. Curiously, our nonrelativistic N(0)
value is 0. 87 states/eV atom, considerably closer
to their value. We emphasize that our density-of-
states value is based on an extremely limited num-
ber of points and is, therefore, not very accurate.

Havinga et al.?° have performed an extensive
series of measurements of T,, the magnetic sus-
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ceptibility (x), and the thermoelectric power of a
number of alloys with the CuzAu structure. Their
results show the oscillatory dependence of these
three properties on the average number of valence
electrons per atom. They conclude that such be-
havior can be explained on the basis of a nearly-
free-electron model. While the free-electron the-
ory does lead to an Ej at about the same height
above the bottom of the valence bands as we find it
to be, our Fermi surface is not what one would ex-
pect from a free-electron picture.?! It may be that
properties like T, and x are not very sensitive to
departures from the free-electron picture.
Havinga’s arguments depend on the Fermi surface
hitting zone boundaries; for LaSn; with 15 valence
electrons this could occur at about the same energy
even with considerable departure of the Fermi sur-
face from the free-electron sphere.

SUMMARY AND CONCLUSIONS
In GMI the MOPW method has been used to cal-
culate E°(k) for the equivalent of 64 points in the
Brillouin zone. In the present paper E(k) for the
same 64 points has been computed using
E=E°+EMV+E,,+Eso ,
including spin-orbit mixing between representations
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(et ——//’(—.;L' I gt
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for most of the appropriate cases. Nonrelativis-
tically E has been determined to be — 0. 46(8) Ry
while the relativistic Fermi level has been computed
to be —0.50(0) Ry or a drop of about 0. 03 Ry (the
digits in parentheses are probably not significant).
As far as the magnitudes of the energy shifts are
concerned the major relativistic correction is the
mass-velocity term (see Tables V-VII). The Dar-
win correction is significant only for those levels
having appreciable contributions from s-type atom-
iclike functions. The mass-velocity and Darwin
corrections are particularly large for those E® lev-
els around —0.85to —1. 20 Ry. These levels typically
have large contributions from the Sn5s atomiclike
function.

The resultant electronic energy bands are such
that the seventh band is essentially filled; the eighth
band is about one-half filled with a large hole
around R; the ninth band is completely empty.

As noted in the Introduction, there are good argu-
ments for using relativistic atomic potentials as
the starting point of such a perturbation calculation
(see GMI, Ref. 19). Although we did not have such
potentials when this calculation was begun we did
compute energy levels at three points (I, 4, X)
both ways; the resultant unperturbed levels (see
Fig. 3 of GMI) corroborate the remarks made in
Ref. 19 of GMI.
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APPENDIX A: MODIFICATION OF THE SPIN-ORBIT
OPERATOR

When only one single-group representation is in-
volved, we show that
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5
I=(P, f(¥)|6-L|P,1g(T)) (Ala)
() 5 5 Tuir Pag)y, (A1)
where i
Panf(r) (h/g)LR Dy (R)f(R-l r), (A2)

and L(lu :yv) is a modified form of L. nand g are
as in Eq. (12) of GMI. Substituting Eq. (A2) into
Eq. (Ala) we have

I=(1¥/g® [ Ugl
with

Ug=2:r Dus(R) f*(RT")
and

Vs=20s Di(S) g (S F) .

Let R™¥ =T and S=RT, then

1= (1*/g® [ F¥(¥) Zr Du(R) [+ L(RD)] WrdT,
with

Wp=21pDE(RT)g(T™'F) .

. L(F")] veat,

Now substitute
DX(RT) =2, D% (R)DA(T) ,

with ¥ running over the dimensionality. Replace
R with !, use

D@ =D%(Q), DX(@Q")=D,@Q),
and sum on . This gives

[=(@|Z,5 Tu: )Py 12() (A3)
with

T(ip: v0)= (0/2) L DL QDL QLEQ Y, ()

which proves Eq. (Alb). The effect of Eq. (Alb) is
to replace G- T integrals which have symmetrized
functions on both sides by integrals containing an
unsymmetrized function on the left-hand side and a
sum over modified T, operators and symmetrized
functions on the right-hand side.

Since the P,, and T. operate on the space coor-
dinates only, we may write f(¥) and g(¥) above as
f(¥)a, g(+)B, etc., without affecting the proof of
Eq. (Alb). (The @ and B are Pauli spin functions
as in the main text.) Values for S of Egs. (23) and
(27) of the main text may be obtained from

iS= [WFaHsydadT .
Thus, we are primarily interested in the “aa”
combination of Eq. (Alb) with p=1and v=2, i.e

I1=(Py,f(F)a|5- L|PygE)a)
~(f(lalZ 5 T1: v2Psa) .

For all two-dimensional simple cubic represen-
tations except Aj it can be shownaz that ©.(11:12) =
T(11:22)=%L,. Since

aba=k, (A5)

e
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Eq. (Alb) for this case becomes

<P11f(i:)ot \6' flPa1g(f)a>=<f(F)\Lszlg(F)> .

(A8)
[Equation (A6) is valid for all two-dimensional
representations except Ay, 'y Iy, Ryp, and Ryp. ]
Using Eq. (A5) in the left-hand side of Eq. (A6)
would lead directly to
<P11f(;)0l|6‘ -ﬁIPglg(;)a) =<P11f(;)leP21g(;)> .

(A7)
Thus, for the D,; - D,; aa case for these two-di-
mensional representations an unsymmetrized or
symmetrized function may be used on the left-hand
side of the integral in Eq. (37) of the main text.

For the Ay representation L(1u : yv) is consider-
ably more involved so that we form the A4 spin-
orbit integrals using Eq. (A7).

For all three-dimensional simple-cubic represen-
tations it can be shown that T.(11: 12)=0, T.(11: 22)
=k(3L,), and L(11: 32)=—-%(3L,). Thus Eq. (Alb)
becomes

(PufFa|5- L Pye@)a)=3(f(F)| L, Pyue)

—%(f(;)|LyP31g(;)> .
(A8)
[Equation (A8) is valid for all three-dimensional
representations.]
APPENDIX B: MPW RELATIVISTIC CORRECTION
- INTEGRALS
In this appendix we give the resultant MPW inte-
gral expressions (without derivation) for the rela-
tivistic corrections. The MOPW expressions are
obtained by assembling these MPW integrals as in-
dicated in the main text. In the expressions below
4, is the Ith-order spherical Bessel function; u,,(p)
and X;;(5/p) are as defined in the Appendix to GM I.
In deriving these integral expressions we have
multiplied by (g/%)(1/47) so that all the relativistic
corrections will be normalized properly. 7% and g
are as in Eq. (12) of GM I. The relation between
¥ and p is as in GM 1.

Mass-Velocity Integrals

From Eqs. (8), (11), and (16) of the main text
we have

Eyy=-10% [ 3 (F)[ES- V]2 Fd7 , (B1)
with
W) =20 i 64(F) (B2)

and &=7%/mc, as in the main text. (As the mass-
velocity correction involves only one E° level we
will suppress the subscript ».) Eyy is conveniently
broken into three terms:

Eyy = - 10%(Eyy, + Exva + Eyys) ) (B3)
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TABLE IV. LaSng energy levels for the ten symmetry points of GMI including the relativistic corrections. The sym-
metry point labels and the single-group representation labels are in the BSW notation (Ref. 3 of GMI). Except for A the
double-group representation labels are those of Elliott (Ref. 3). For A we follow the notation of Koster (Ref, 4). The
third and alternate columns of Table IV give the double~group representation (no parentheses) followed by the single-
group representation(s) (in parentheses) which labels the associated E® level. [For three symmetry points (%, S, Z) there
is only one extra double-group representation and all final levels belong to the same representation; no double-group
label is given for these points. Spin-orvit mixing between different single-group representations is indicated by the
presence of two or more single-group labels within the parentheses.] The fourth and alternate columns give the final
energy levels E for the respective bands. The method of counting bands is described in the text. Here E=E’+Eyy+Ep
+Ego, wWhere E" is the nonrelativistic level given in GMI and the other terms are the relativistic corrections (see text).
All energies are in rydbergs and must be multiplied by —1.0 to obtain the actual value. Energy values given to only
two decimal places indicate that either the underlying E° value is poorly converged or that spin-orbit mixing between
close-lying levels was ignored.

Label  4ak/7 Rep. Band 1 Rep. Band 2 Rep. Band 3 Rep. Band4
r 000 6*(1) 1.272 8*(12) 0.951 8*(12) 0.951 8" (15) 0.675
A 200 6(1) 1.246 6(1) 1.022 7(2) 0.934 7(2,5) 0.687
X 400 67(4") 1.185 6* (1) 1.122 7=(3") 0.915 72, 5) 0.713
z 220 1) 1.213 1,4 1.024 (1,4 0.980 1,3,1) 0.68
M 440 7*(3) 1.115 6(5") 1.070 76 1.067 6*(1) 0.802
A 222 6(1) 1.191 6(3) 1.017 4,5(3)% 1.016 6(1) 0.775
R 444 8 (25) 1.068 8(25 ) 1.068 7*(25") 1.067 729 0.84
s 422 (3) 1.133 1) 1.080 () 1.007 (3) 0.74
T 442 7(2%) 1.09 6(5) 1.069 7(5) 1.06 6(1) 0.755
Z 420 (3) 1.159 (5} 1.092 3) 0.975 (1) 0.72

Label  4ak/7 Rep. Band 5 Rep. Band 6 Rep. Band 7 Rep. Band 8
T 000 8-(15) 0.675 6-(15) 0.668 8*(12,25’)  0.500 8*(12,25')  0.500
A 200 6(1,5) 0.678 6(1,5) 0.61 7(2,5) 0.61 6(1,5) 0.51
X 400 6" (5) 0.697 (2, 5) 0.684 6-(4,5°") 0.51 6*(1) 0.506
z 220 @,s,1) 0.67 (1,3,1) 0.66 (2 0.58 () 0.52
M 440 6*(5) 0.633 7 (3, 5) 0.632 7 (3, 5) 0.584 7%(5’,2')  0.501
A 222 4,5(3)2 0.66 6(3) 0.66 6(1) 0.55 4,5(3)? 0.49
R 444 6°(15) 0.703 8"(15) 0.701 8-(15) 0.701 8*(257,12)  0.445
S 422 (1) 0.70 (4) 0.69 (3) 0.61 (@) 0.50
T 442 727 0.744 6(5) 0.669 7(5) 0.668 7(2) 0.45
z 420 (2 0.67 3 0.63 (4) 0.59 (1) 0.55

Label  d4ak/7 Rep. Band 9 Rep. Band 10 Rep. Band 11 Rep. Band12
T 000 7*(25%) 0.487 8*(12,25’)  0.486 8*(12,25’)  0.486 8-(25) 0.37
A 200 7(27,5) 0.49 7(2°,5) 0.48 6(1,5) 0.44 6(1,5) 0.31
X 400 7*@3) 0.490 7(5’) 0.47 67(47,5') 0.452 6*(5,1) 0.442
b 220 (@) 0.49 (1,3,1) 0.44 ,s,1) 0.40 1,3,1) 0.39
M 440 7*(2) 0.470 7(5’,2") 0.46 6°(5") 0.45 6*(1) 0.43
A 222 6(3) 0.49 4,5(3)2 0.44 6(3) 0.43 6(1) 0.39
R 444 8*(257,12)  0.445 8*(257,12)  0.40 8"(257,12)  0.40 7 (257) 0.39
S 422 1) 0.44 1) 0.42 @) 0.41 %) 0.30
T 442 6(1) 0.41 7(5) 0.40 6(5) 0.39 7(2) 0.37
VA 420 @,1,3) 0.48 2,1,3) 0.45 2,1,3) 0.42 (1) 0.31

Label 4ak/n Rep. Band 13 Rep. Band 14 Rep. Band 15
T 000 8-(25) 0.37 7 (25) 0.35 6*(1) 0.337
N 200 7(5) 0.30 6(1,5) 0.28
X 400 6°(5,1) 0.37 7*(5) 0.36
b 220 3) 0.28 () 0.24 (2) 0.23
M 440 7(3) 0.40
A 222 6(2) 0.29 6(3) 0.26 4,5(3)? 0.25
R 444 6*(1) 0.315
S 422 (3) 0.29 (3) 0.24
T 442 72" 0.29
z 420 @) 0.30 (3) 0.26 @) 10.25

2A4 and Aj are degenerate by time reversal.
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with second sum comes from combining the (4,, ff,)
Eyyr = (B2 [*F@)at | (B4) and (K;, 4,) terms.]
. f R VG (85) Plane wave-plane wave. We have
Eyvye=— 2E° [™*(F) VWO (F)d7 B5 o o .
2 ’ Eyve®;, K;)= 7S, + 25 Dy (R) [I(La) + FE)I(Sn)]
and . (BQ)
O (> 12,00\ 3 with
Eyys = [ (@) [V(F)RyO(F)dT . (B6) . . .
o i K=R'k+K)) - €+K,),
(We break Eyy up in this fashion so that these
relativistic correction integrals can be evaluated Iv)= f., (pV,(p) =pV) jo(Kp)p dp ,
in the same part of the program in which the H?, and
and S,, integrals are computed. E°is, of course, L& L
not available until the nonrelativistic part of the pro- F(R)=2s &'® % (B10)

v

as in GM I. 7V is the constant potential in the re-
gion between the muffin-tin spheres, §, is a site

gram has finished.) Substituting y°(¥) from Eq.
(B2) we obtain the expressions given below.

Ewvie vector as defined in GM I, and the sum on v in
Eyyy=(E"2 2 €iC;3Si; (B7) Eq. (B10) runs over the three Sn basis sites.

i Dy,(R) is the “one-one” element in the matrix rep-
where the S,; expressions are given in the Appen- resenting the operation R. The sum on R runs over
dix to GM I. [Equation (B7) is valid as it stands the group of k.
for MOPW also.] Atomic term—plane wave. We have

Eyvs. This is derived exactly as the V(') part Eyvs(A,, ﬁ,)= s fuuﬂz(p)j;(KD)pVV(p)dp , (B11)

of the original H° matrix. Let
where

8=20g Dy (R) X, (B) '®"" & | (B12)

with K=k+K,, K'=R'K -k, and B=RK/K.
Atomic term—atomic teym. We have

4 .
Eyys= - 2E°[>., ciciEwys(K;, X))

i,d

+ 2}5 €55 Eyy2(44, K;) +i) CyCiEryo(Ay, A,)] .

b, i b,t
1
(58) Bl 405 fia(0)V,(0)41 00
The £ sum is over plane waves, the 7 sum is over v . .
atomiclike functions and plane waves, and the £ sum X/lef_’ X‘,‘te e, (B13)
is over atomiclike functions. [The factor 2 in the P P

TABLE V. Breakdown of relativistic corrections for the T point. EY is the ncnrelativistic energy level. Eyy and Ep
are the mass-velocity and Darwin corrections, respectively. EP=E°+EMV+ED, i.e., the energy level before the spin-
orbit correction (Egy) is added. The next to last column gives E =Ep+ E go with no mixing between different single-group
representations. The last column gives the final energy level including spin-orbit mixing between close-lying levels
where appropriate. The number in parentheses following the E° value is the single-group representation; the numbers in
parentheses in the last two columns are the double-group representations. The representation labels used here follow
Elliott (Ref. 3). For comparison all values are given to three decimal places even though the third decimal place is not
significant in some cases. All energies are inrydbergs and must be multiplied by —1.0 to give the actual value.

E? Eyy Ejp Ep E (no mixing) E (with mixing)*

0.304 (1) 0.074 —0.041 0.337 0.337 (6*) 0.337 (6%

0.350 (77) 0.350 (77)
0.329 (25) 0.035 0.000 0.364 {0'372 &) 0.372 (8
0.427 (12) 0.123 —0.061 0.489 0.489 (8%) 0.486 (8%

0.487 (7*)} { 0.487 (7%)

’

0.475 (25) 0.018 0.000 0.493 {0.496 &) 0.500 (8%

0.668 (67) 0.668 (67)
0.642 (15) 0.030 0.000 0.672 {0.675 ) 0.675 (89
0.854 (12) 0.220 —-0.122 0.951 0.951 (8%) 0.951 (8"
1,196 (1) 0.177 —-0.101 1.272 1.272 (6%) 1,272 (6%)

*For the T point, symmetry and/or large differences in Ep levels eliminate the consideration of mixing for all cases
except the close-lying I'y5, T'y5. levels; thus, with these exceptions, the entries in the last two columns are identical.
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TABLE VI. Breakdown of relativistic corrections for the A point. The format is identical to that of Table V. For
comparison all values are given to three decimal places even though the third place is not significant in some cases. All
energies are in rydbergs and must be multiplied by — 1.0 to give the actual value.

E? Eyy Ep Ep E(no mixing) E (with mixing)*
0.244 (1) 0.061 ~0.017 0.288 0.288 (6) 0.282 (6)
o 296 (7) } ﬁo.zes ()
0.266 (5) 0.033 0.000 0.299 0 302 (6) 0. 308 (6)
0.381 (1) 0.119 —-0.058 0.441 0.441 (6) . 0.441 (6)
0.463 (27) 0.018 0.000 0.482 0.482 (7)Z 0.480 (7)
o 487 (7) S 0.488 (7)
0.468 (5) 0.027 0.000 0.496 0 505 (6) 0.505 (6)
0.562 (2) 0.079 —0.034 0.607 0.607 (7) 0.606 (7)
0.576 (1) 0.058 —-0.021 0.613 0.613 (6)% 0.613 (6)
0.678 (6) 0.678 (6)
. . . .68
0.656 (5) 0.026 0.000 0.682 {0 686 (7) 0. 687 (7)
0.826 (2) 0.243 —-0.135 0.934 0.934 (7) 0.934 (7)
0.933 (1) 0.194 —0.106 1.022 1.022 (6) 1.022 (6)
1.164 (1) 0.186 —0.104 1.246 1.246 (6) 1.246 (6)

2For the A point, mixing between levels is appreciable only for the highest-lying A;, Ajlevels. Symmetry prohibits
mixing between the three lowest levels of this table.

>

with on site 5,,. The prime on the R sum indicates that
. e only those R for which 7 satisfies R™13
X?t(ﬁ/p)=2§ Dyy(R) explik - (B3, -5,)] y se R for which some 7 satisfies R™'s,

o =8, +7 are allowed.
x X, (R'9/p), (B14) Eyvs Let
where we have combined an unsymmetrized function
(index b) on site S, and a symmetrized ‘function . Eyvs zi’, ¢ Ewvs®&,, Kj)
(index f) generated from an unsymmetrized function i

TABLE VII. Breakdown of relativistic corrections for the X point. The format is identical to that of Table V. For
comparison all values are given to three decimal places even though the third place is not significant in some cases. All
energies are in rydbergs and must be multiplied by —1.0 to give the actual value.

E° Eny E, Ep E (no mixing) E(with mixing)*

0.364 (7*) -0.364 (7*)

0.334 (5) 0.034 0.000 0.369 {0'373 W)} {0_373 )
0.366 (1) 0.150 —0.075 0.442 0.442 (6*) 0.442 (6
0.416 (4%) 0.058 —0.017 0.457 0.457 (67) 0.452 (67)
0.471 (7')} {0.471 (77)

’

0.447 (5%) 0.038 0.000 0.486 {0.501 ) 0.506 (6°)
0.459 (1) 0.078 -0.031 0.506 0.506 (6%) 0.506 (6*)
0.470 (3) 0.019 0. 000 0.490 0.490 (7*) 0.490 (7*)
0.667 (2) 0.019 0.000 0.686 0.686 (7*) 0.684 (7%
0.697 (6*)} {0.697 (6"

0.678 (5) 0.025 0.000 0.704 {0.711 s 0.713 (7
0.782 (3%) 0.303 —0.170 0.915 0.915 (77) 0.915 (77)
. 1.037 (1) - 0.192 —0.106 1.122 1,122 (6%) 1.122 (6%
1.099 (4%) 0.184 —0.099 1.185 1.185 (67) 1.185 (67)

2Due to symmetry restrictions and/or large energy differences we considered mixing for three “sets” of levels only.
The mixing effect for the X;, X; set is negligible.
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+2i csC; Eyys(4,, K; K +i) CsCi Eyys(Ay, A,)

b,i

I

(B15)

where the 5, 7, ¢ sums run as in Eyy,. The
EMva(K, , K, ;), etc., expressions will be identical to
the EMvz(K, , K,), etc., expressions given in Eqgs.
(B9), (B11), and (1313) with V,(p) replaced by
[V,(0)]? and V replaced by (V)2

Darwin Integrals

From Egs. (12) and (17) of the main text we
have

0
D“——f 1/) dV ad) @ )dT, (B16)

where, in each v sphere,
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and T is measured from the origin (taken at the
center of the La atom as in GM I). (We again sup-
press the subscript . )

Let

Ep=-%a [iccED(K,,KHi s Ep(4y, K;)

247

+Z>b c;6EpK;, Ay) +it ¢y CLE plAy, At)]
Ty ’

(B18)
where the £, 71, { sums run as in the mass-veloci-
ty expressions. As the Darwin expressions are
not Hermitian term by term in the expansion func-
tions both E,(4,, K;) and E,(K;, A,) are needed.

Plane wave—plcme wave. Substltuting a symme-
trized plane wave into the left-hand side of the
integral in Eq. (B16) and an unsymmetrized plane

r=p+3, (B17) wave on the right-hand side we have
- . e o N dV,, 9 ik+8;) 3 .
Ep(K, K,)=(1/4m) 2y Dy (R) S, %" ¥ f exp[- iR (K +K;) - Pl %5—-— dar , (B19)
T
with f ) ( (
. -~ I p +(Kp)pdp , B25)
R=R'®&+K,)- E+K)) . (B20) t(P)gp" JralKp

After considerable manipulation, Eq. (B19) be-
comes

Ep(&,;,K,)=2xD,,(R)K - ®+K;)(1/K)
x [I(La)+ F®)I(Sn)] , (B21)
with

10)= [ st 2

and F(K) as defined in Eq. (B10).

Atomic term—plane wave. Substituting an un-
symmetrized atomiclike function (on site $,) into
the left-hand side of the integral in Eq. (B16) and
a symmetrized plane wave into the right-hand side
we have

E (A, ﬁj) = (1/4W)Z‘/R[)11(R)eiﬁ'. 3

Y -
-~ dV aelR (k+Kj)e p .
X F* -_—r = T
[ i) g5 9p ’

(B22)
with

K'=R!'&+K, -k . (B23)
After considerable manipulation we have

EpA, K))=[K/(1+1D)][iI, - 1+1)L] s, (B24)
with

fu,.z —* j1.1(Kp)pdp ,

s =Z)RDH(R)X,b(§)e"K" 5

and K=k+K;, B=R'K/K.

Plane wave—atomic term. Substituting a sym-
metrized plane wave into the left of the integral in
Eq. (B16) and an unsymmetrized atomiclike func-
tion (on site $,) into the right-hand side we have

Ep(K;, Ap) = (1/41r)ERDn(R)e-i'ﬁ' .3,

Xfe-m'lk pdV 9 nlm(p)
v dp ap
(B26)

where K and K’ are as defined in the section above.
After some manipulation this becomes

Ep(K;, Ay) = 8[ ‘;Z” i (Kp) [pd—""l - u,,,(p)] dp ,
(B27)

dp
with 8§ as in Eq. (B25). (It can easily be shown
that e"i' %= i 3, for any reciprocal-lattice vec-
tor, K'.)

Atomic term—atomic tevm. Since (dV/dp)(8/5p)
doesnot affect angles these integrals are still orthog-
onal in /; orthogonality in » is no longer a good
approximation. Starting with an unsymmetrized
atomiclike function (index b) on site §, and a sym-
metrized atomiclike function (index t) generated
from an unsymmetrized function on site §,. we sub-
stitute into Eq. (B16) and eventually obtain
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Ep(A,, A,) = (1/4m)I,, f X,,,%Xf,%dﬂ, (B28)
with
Alhyry Uy
I fun,(p) o (dp p) o . (B29)

Index 7 is associated with 4,(%), index »’ with A,(¥)
and X3, is as in Eq. (B14).

Spin-Orbit Integrals

The “regular form” for spin-orbit integrals is
obtained by subsituting Hg, as given by Eq. (13) of
the main text into

Iso= [ U™ Hed® d7

where the wave function ¥° is now expanded to in-
clude a spin function. This gives
- [5- LEWI(F) T aT ,

Iy = ] f¢°*( )771
(B31)

where the subscript s on ¥° implies that ¢° is a
symmetrized function; 7; and 7, can be either of
the Pauli spin functions, « or 8, as in the main
text and ¥=p +35, as before.

(B30)

Two-Dimensional Representations

For all two-dimensional single-group representa-
tion only the [¢¥ aHgod, @ dr form of Iy is needed
[see Egs. (20)—(23) of the main text]. For this aa
combination we have shown in Appendix A [see Eq.
(A6)] that Eq. (B31) can be written as

(e 0)-17 [ 0oL Y 1,604
(B32)

In Eq. (B32) the subscript « implies that y2* is an
unsymmetrized function whereas the subscript 21

implies that 93, is symmetrized using D,;. In Eq.
(B32) we have
(.8 _ . 2
L,=- 1(x 5y Y ax) , (B33)

where (x, v, z) are the components of p. Equation
(B32) is valid for all two-dimensional representa-
tions except A;. We write

ao? e o
1%5(a, @) =7 :ij ¢iciI5o (aa: K, K))

+2i} ciel¥(aa: K, Ay,

Jsb
+i> cycilEo(aa: A, A,)> , (B34)
byt

where £, 7, and ¢ have the same meamng as i in
Eq. (B8). [It can be shown that 1% (aa: 4,, K;)
=I1%(aa:K, A,).] Since all the ¢, are real and as
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5
all I > expressions can be shown to be i (real
number) we may write

1% (a, a)=iS, (B35)

where S is real and is the S of Eqs. (20)-(23) of
the main text.

Plane wave—plane wave. Substituting an unsym-
metrized plane wave for z,b°* in Eq. (B32) and a sym-
metrized plane wave for 3,, we have

1%, K, = Z) = Doy (R) &R %
31 4dv, . -
X -i(k + Ky - v o(L iR(k +K;)+ P >
[ i) > dp (L,e i’ Par
(B36)
in each of the four atomic spheres. In Eq. (B36)

K=R{E&+K,) - €+K,). (We suppress the aa notation
in I%,.) Eq. (B36) eventually becomes

1%,(K;, K;) =i 205 Dy (R)[1(L2) + F®)I(Sn)] Z (R)

(B37)
with

I(v) f]l(Kp

Z(R)=[[® +K,

(B38)

)e ®+K)), - € +K,), €+K,),)/K,

(B39)

where (K +K,), is the y component of (8 +K,) and
& +K,), is the x component of R & +K)), etc. K
is as in Eq. (B9) and F(K) is as in Eq. (B10)

Plane wave— atomic term. Substituting an un-
symmetrized plane wave for $%* in Eq. (B32) and
a symmetrized atomiclike function A3(¥) for y3,
we have

1 E.Rp.2l dV
P&, )=k & [ crairoel AV

p dp
X [L,A$(T)]dr, (B40)

with A7 as defined in GM I (but with no sum over
cells here). Starting with an unsymmetrized func-
tion on site §,., AS(r) may be written schematically
as

Ag(§)=ﬁp(—”l > al21, b, v, p)X,,,% , (B41)

v,p
where the 21 label reminds us the symmetrization
is with D,;, v=1 for an unsymmetrized function on
La, while v runs over the three Sn basis atoms for
an unsymmetrized function on any Sn atom. (Us-
ually there will be only one or two terms in the
sum above.) L, operating on any X,, of Eq. (B41)
will produce some X,,.. We represent this as

L%, (5/p)=ig(L,, p, p') Xy, (B/p) (B42)

and eventually obtain
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Igao(ﬁj’ A,) =il Z}v ek 8y P,b,v), (B43) TABLE IX. Values of g(L,, ¢, ¢') and g(L,, q, ¢’)
for Eqs. (B42) and (B62), respectively. The indices ¢
where and ¢’ have the same meaning as in Table VIII. The
av third column gives g(L,, ¢, ¢’) and g(L,, g, ¢’) for the
I=/11(Kp)a;' U (p)dp (B44) L, and L, operations, respectively.

q q’ g
(a) L, operation, Eq. (B42)

P;(b,v)=2_,a(21, b, v, p)g(L,, p, p") X, (B), (B45)
with K=E+K]~ and ﬁ=f€/ K. For an unsymmetrized

1 0
function on La, I is an integral over the La sphere, 9 3
s . - 1
v in Eq. (B43) is 1, and §,=0; for an unsymme- 3 9 _1
trized function on a Sn sphere, I is a Sn integral 4 0
and v runs over the three Sn sites. The pertinent 5 0
cubic harmonics are listed in Table VIII. The 6 9 4
g(L,, p, p') are given in Table IX (a). 7 8 -1
Atomic term—atomic tevm. Substituting an un- 8 7 1
symmetrized atomiclike function for w‘;* in Eq. 9 6 -1
(10332) and a symmetrized atomiclike function for (b) L, operation, Eq. (B62)
Ppy we have
1 0
1 2 4 -1
4y, A= % A"*(’ [L ASE)] dr , 3 o
(B46) 4 2 1
5 8 6
with A} and A; defined as in GM1 (but with no sum 6 8 -
over cells). Schematically, we write 7 9 1
IS 1
Py a o =2
am) =) y P (®an)  ° {6 3
p p 9 7 -1
- = :
Ai(F)= ﬁ,p!(p) E a(21, ¢ ‘u,, q)qug , (B48) L, operating on Xg produces both X5 and X,.
. . o . where
as in the preceding section. L, operating on the
X;, produces various X,. as defined in Eq. (B42). /"m (D) tye; p)— dp , (B51)
Tabulating this (see Table X) as p dp
4nG fX E(L X 5>d9 (B49) S0, 1) =Ly a3, )G (B52)
B0 J S p \eia ’ We have taken the unsymmetrized function A% to
we obtain be on site 5,. The integral I is over the La or a Sn

sphere depending on whether §, refers to La or Sn.
1% (A,, A,) =41S, (b, ¢, v), (B50) g
A5 Representation
For the A, representation, while we still need to
evaluate only the aa combination (see the discus-
TABLE VIIL. The nine s, p, d types of cubic harmonics,  sion associated with Eq. (24) of the main text), the
X,, and their integrals. Here the single index, g, replaces  modification on going from a “symmetrized-sym-
the two indices of X;; of the text. The last column gives metrized” integral to an “unsymmetrized-sym-

i = 2 . . .
the “,ltegral Iog=(1/4m) [IX, B/p) d92. Iy Equals zero for metrized” integral leads to a much more involved
q#q’. x,y, and z are the components of p.

z q X, Lo TABLE X. The factor G as defined by Eq. (B49).
0 1 1 1 The g, g+ subscripts have the same meaning as in Table
L ) /p 3 VIII. All combinations not listed are equal to zero.
i i 3’; p % Label Value
z/p 3

2,2 .2 /02 12 Cays -4
2 5 (222 -x%—9%)/p r Gy 5 +%
2 6 & ~5%/p? 15 Gs -
2 7 yz/p 115 Gs' s + if
2 8 xz/pz 1 G7'8 + 11:
2 9 xy/p ?:, Gy -1
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expression than that in Eq. (B32) above. For this
reason we evaluated Iy, for A using the form of
Eq. (B31) directly but using only the atomiclike-
atomiclike terms (this is probably a quite good
approximation; see discussion of this point in the
main text). The procedure is essentially the same
as in obtaining 7% (aa: A,, A,) of the preceding sec-
tion but now both functions are symmetrized. We
write

iS=5aP20 cye I i3(aat Ay, A,), (B53)
b, ¢

where Sis real and is the S of Eq. (24) of the main

text. The sum in Eq. (B53) is over atomiclike

functions only.

Three-Dimensional Representations

For all three-dimensional single-group repre-
sentations only the [ ¥} aHg i, adr form of Iy, of
Eq. (B31) is needed [see Egs. (25)—(27) of the main
text]. For this case we have shown in Appendix A
[see Eq. (A8)] that Eq. (B31) can be rewritten as

2
18 -5 wre: Lier@na, @50
with
LY°(F) =3[ LYY ) - Ly (®)] . (B55)
L, is defined in Eq. (B33) and
——z(———x ) (B586)

As in the two-dimensional case we write

1% (a, a)-—4— <Z€) c;ic;, 1% (K, K;)
197

+2‘Z’L> ¢; cbIso(K“A,,)+i) cye I3 (A, A, )) ,
iyb

(B57)
where we have suppressed the a« notation in
I13(K,, K,), etc., and with £, 7, and £ having the
same meaning as in Eq. (B8). As in the two-di-

mensional case we may write
I¥%(a, a)=1S, (B58)

where S is real and is the S involved in Eqs. (25)-
(27) of the main text.
Plane wave—plane wave. Proceeding as in the
two-dimensional case we obtain
Iso(Ku K, )—22[ D12 (R)Q(R)Z(R)
= 2Dy (T)Q(T)Y(T)], (B59)

where

Q(P)=I(La, Kp) + F(Kp)I(Sn, Kp) , (B60)
with the I integrals having the same form as in
Eq. (B38), Kp=P'(k+K,) - (k+K,), and F(K;) is
as defined in Eq. (B10). Z(R) is given by Eq.
(B39) and

(1) =[[k+K,), &+K,)

->

k + z)z]/KT ’
(B61)
with the primed and nonprimed components having
the same meaning as in Eq. (B39) (the primes here
being associated with operation T).23
Plane wave—atomic tevm. Proceeding as in the
two-dimensional case and writing®*

(E+Kj

Ly X;,(B/p) =21 g(Ly, 4, 4") X1 B/ p) (B62)
o«
analogously to Eq. (B42), we obtain
Igg(ﬁj N Ab) = ZIZ,,, e'”{f'g" %[Pz(b: V) - PY(b’ V)] ’
(863)

with P, (b, v) as in the two-dimensional case [Eq.
(B45)] and

PY(b; V):Z 0(315 b, v, CI)Z g(Ly7 9, q,)qu'(ﬁ) .
q q'

(B64)

The radial integral I is defined in Eq. (B44). The
comments following Eq. (B45), including the defini-
tions of K and §, apply here also.

Atomic tevm—atomic term. For these integrals
it is most convenient to determine Iy, in the form
given in Eq. (B31) directly with symmetrized func-
tions on both sides of the integral.?’ The procedure
is like that for the two-dimensional case except that
the function on the left-hand side is now represented
schematically as

- U . 0
A§*(r)=—'”-(—&) 2. a(11, b, u, p) X,y £
P P
in place of Eq. (B47). For the right-hand function
Eq. (B48) may be used as is.

Since

(B65)

a¢-L(p)a=L,, (B66)

we may use the same tabulation (Table X) as in the
two-dimensional case and write

84y, A)=i1 25 a(11, b, 1, p) Sz(p, t, 1) , (B6T)

Hyp

with the radial integral I as in Eq. (B51) and S, as
in Eq. (B52). [Iis an integral over either the La or
a Sn sphere depending on whether the original un-
symmetrized functions are on the La atom or on
a Sn atom. (There can be no mixing between La
and Sn atomiclike functions in our model.)

1D, M. Gray and L. V. Meisel, preceding paper, Phys.
Rev. B 5, 1299 (1972).
3. C. Slater, Quantum Theory of Molecules and Solids

(McGraw-Hill, New York, 1965), Vol. 2, Appendix 9.
’R. J. Elliott, Phys. Rev. 96, 280 (1954). Elliott’s
comments regarding A for the simple cubic lattice are
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in error as pointed out by R. H. Parmenter, Phys. Rev.
100, 573 (1955).

iG. F. Koster, in Solid State Physics, Vol. 5, edited by
F. Seitz and D. Turnbull (Academic, New York, 1957),
pp. 173—256. For the X and M points Koster’s single-
group representation labeling differs somewhat from that
of BSW (GMI Ref. 3).

5T. L. Loucks, The Augmented Plane Wave Method
(Benjamin, New York, 1967).

fFor a complete list of two- and three-dimensional
single-group representations for the simple cubic lattice
see Table I.

"These compatibility relations are given in Table II
(a)=(d). For the A point the representations A, and Ag
are degenerate by time reversal and must be considered
as one representation in determining splitting.

8In these two examples all energy levels are given to
four decimal places for comparison.

9For the Darwin correction one needs both atomic-term—
plane-wave and plane-wave—atomic-term types of integrals
since this operator is not term-by-term Hermitian in the
expansion functions.

e are grateful to Professor E. Brown for suggesting
this modification. For our MOPW method the modified
spin-orbit operator is particularly useful in evaluating
plane-wave—plane-wave terms.

HFor spin-orbit we give the expressions for S. S is
related to E go through Eqgs. (23), (24), and (27).

121,, Liu, Phys. Rev. 126, 1317 (1962); P. C. Chow
and L. Liu, ¢bid. 140, A1817 (1965).

13The derivative routines were developed by Ray Scanlon.
These routines involve fitting a spline function to the
tabulated points and then differentiating this function.

14This assumption is the justification for orthogonaliz~
ing to these lower-lying atomiclike functions in either the
OPW or MOPW method.

'por these test comparisons we do not, of course,
orthogonalize to these atomiclike functions.

181t should be emphasized that the excellent agreement

PHYSICAL REVIEW B

LEVELS IN LaSng. II...

VOLUME 5, NUMBER 4

1327

obtained here merely indicates that the atomic-term—
atomic-term integrals are being handled properly. Less
direct tests, however, indicate that the atomic-term—plane-
wave and the plane-wave—plane-wave integrals are also
correctly treated. At any rate, the major contributions

to the relativistic corrections come from the atomic-term—
atomic-term integrals (see Ref. 12).

17As described in GMI, there are 960 electrons to ac-
count for; wecountaI'g level as 2 (two-dimensional repre-
sentation, one equivalent point), a Aglevel as 12 (two-dimen-
sional representation, six equivalent points), and so on.

18w, L. McMillan, Phys. Rev. 167, 331 (1968).

19A, M. Toxen and R. J. Gambino, in Proceedings of the
Twelfth International Conference on Low Temperature
Physics, Kyoto, Japan, 1970, p. 351 (unpublished).

2E, E. Havinga, H. Damsma, and M. H. van Maaren,
J. Phys. Chem. Solids, 31, 2653 (1970).

2 Although we have not worked out the geometry, the
free-electron sphere for 15 valence electrons would cut
pieces of zones 7, 8, 9, etc. Folding the, say, 8th zone
back into the simple cube should give a much more com-
plicated Fermi surface than we get.
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Magnetoelastic energy considerations are used to explain the occurrence of anomalous dips
in the velocity of sound in gadolinium below T,. A molecular-field treatment gives reasonable
quantitative agreement with the elastic-constant experiments of Long, Wazzan, and Stern and
the magnetization curve as determined from neutron diffraction.

I. INTRODUCTION
During the past several years many of the phys-
ical and magnetic properties of the hexagonal rare-
earth metal gadolinium have been studied. Mag-
netization measurements by Nigh, Legvold, and
Spedding® showed that Gd was a ferromagnet with
a Curie temperature (7¢) of 293°K. Measure-

ments of the angle between the magnetization and
the crystallographic ¢ axis of Gd were made by
neutron diffraction techniques.??® These showed
that the magnetization vector rotated from the ¢
axis into an easy cone and that there did not exist

a spiral structure as is common in many other rare
earths. By measuring the torque required to pre-



