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In a separate paper, electron energy levels in perfectly ordered LaSn3 were calculated non-
relativistically for the equivalent of 64 points in the reciprocal-space lattice using a modified
orthogonalized-plane-wave method. We now use perturbation theory to determine the relativistic
corrections. Starting with Dirac's theory of the relativistic spinning electron and following
Sister we write the final E(%) as E0@) plus mass-velocity, Darwin, and spin-orbit corrections
where the E (k) are the nonrelativistic energy levels previously calculated. The mass-velocity
and Darwin operators do not affect symmetry and thus involve no mixing between different irre-
ducible single-group representations. These two corrections thus cause only a shift in energy.
This shift is calculated by nondegenerate first-order perturbation theory. The spin-orbit opera-
tor does affect symmetry so that those nonrelativistic levels associated with two- and three-
dimensional single-group representations can split. This splitting is calculated by degenerate
first-order perturbation theory. The spin-orbit operator can also mix levels belonging to dif-
ferent irreducible single-group representations providing the nonrelativistic levels are not too
widely separated in energy. Perturbation theory has been used to determine this mixing in
most of the appropriate cases with particular emphasis given to those levels near the Fermi
level. Relativistic E(k) curves are shown for six directions in k space. Using the final E(k),
a Fermi level of —0.50 By has been computed. This is about 0.03 By lower than the nonrela-
tivistic Fermi level. Comparison with the limited amount of existent LaSn3 experimental data
is discussed briefly.

INTRODUCTION

In the previous paper, ' hereinafter referred to
as GMI, electron energy levels in perfectly ordered
LaSn3 were calculated nonrelativistically for the
equivalent of 64 points in the reciprocal-space lat-
tice using a modified orthogonalized-plane-wave
method (MOPW). A muffin-tin model potential,
constructed from the self-consistent nonrelativistic
atomic potentials of Herman and Skillman (see
GM I, Ref. 4) was used. As both La and Sn are rel-
atively heavy, with atomic numbers 5V and 50,
resyectively, relativistic corrections should play
an important role. In this paper we calculate these
corrections using perturbation theory. Starting
with Dirac's theory of the relativistic spinning elec-
tron and following the treatment of Slater we write
the final E(k) as E (k) plus mass-velocity, Darwin,
and spin-orbit corrections where the Ec(k) are the
nonrelativistic energy levels calculated in GM I.

There are good arguments for using relativistic
atomic potentials as the starting point of such a cal-
culation (see GMI, Ref. 19). However, we did not
have such potentials when this calculation was begun
and we further thought it would be of interest to see
how large the relativistic shifts were for the case
in which the unperturbed crystal energy levels were

calculated entirely nonrelativistically. A very few
points (I', 6, X) were calculated both with nonrela-
tivistic and with relativistic atomic potentials as
starting points and the resulting unperturbed levels
were compared in GMI. The fact that the relativ-
istic-potential-based levels lie higher than the non-
relativistic-potential-based levels corroborates the
arguments given by Calloway et al. (see GMI, Ref.
19). It should thus be clear that the present cal-
culation is of a rather preliminary nature.

In QMI and in the present paper we follow the
Bouckaert, Smoluchowski, and Wigner (BSW) nota-
tion for the symmetry points (see GMI, Ref. 3).
The BSW notation is used in both papers for the
single -group representations. For all double-group
representations (except those for A) we follow
Elliott. 3 This is consistent as Elliott works from
the BSW single-group notation. For the double-
group representations for A we follow Koster.
For A, Koster's single-group notation is identical
to that of 88%'.

APPI.ICATIQN OF PERTURBATION THEORY

Following Slater we assume that we can start
with Dirac's theory of the relativistic spinning elec-
tron for a central field and replace the central field
by a periodic potential. The resulting equation is
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(- (If'/2m) v'+ V(r)

—p /8m0 c —(8 /4m c ) V V( r)

+ (K/4m c ) o' [V V( r) x p] ) g = E g . (1)

[This is Slater's equation (A9-1) with A= 0, B= 0,
i. e., no external magnetic field; with —eQ replaced
by V(r) and eE replaced by VV(r). We write m for
the rest mass. ] In this paper, as in GMI, r denotes
a vector from the origin (taken at the center of the
La sphere) and p denotes a vector from the center
of the sphere in question. Equation (1) is not in
atomic units. In atomic units Eq. (1) becomes

(-v'+ V(r) --e'u' [z'- V(r)]'- ,'~'vV(r) v-

+-,'Z'5 [V V(r)xp/g])y=Zy, (2)

HMv(outside) = —e o. (E0 —V) (8)

with n= il/mc, the fine-structure constant. In the
p term of Eq. (1) we have used the approximation

p'/2m = (Z —V)

and have further assumed that E may be replaced
by E in this term. Equation (2) may be written

(H +H'") P=Eg, (4)
with

H'= -V'+ V(r) (6)

as in GM I, and H'" equal to the three remaining
terms on the left-hand side of Eq. (2). In applying
Eq. (4) to a crystal we note that all the periodicity
theorems hold for H'" just as for H so we may
again work with one unit cell only. Thus, using
perturbation theory, we can solve H0(0= E0 f0 and
then add the corrections due to H'" as

E=E+E'
n n n

with
Er lfe~0 Hrel

~ de

for the mass-velocity and Darwin corrections [third
and fourth terms, respectively, of Eq. (2)] and with
a more involved expression for E'" for the spin-
orbit correction [fifth term of Eq. (2)].

Confining the problem to one unit cell, we apply
H'" as in Eq. (2). Outside the muffin-tin spheres,
V V(r ) = 0 so that only the mass-velocity correction
gives a contribution in this region,

0 dV„(p) 8

dp ep
'|—0 1 d Vr&p) -.-so=&a " o L

p dp

(12)

(13)

with

L= pxp/e. (14)

These three operators [plus HMv(outside) given by
Eq. (8)] lead, respectively, to energy corrections
EM~, E» and E,o so that the final energy E is giv-
en by

E=E +EMV+ED+Eso .0

Mass-Velocity and Darwin Corrections

The mass-velocity and Darwin operators are in-
variant to the single-group operations [as may be
seen from their form in Eqs. (11) and (12)] so that
symmetry is preserved and these operators involve
only a shift in energy for any given E level. From
ordinary nondegenerate first-order perturbation
theory, then,

EMv= f ke HMv P„dr

ED = f lg* H~ tg d

Spin&rbit Correction

(16)

The syin-orbit operator does not satisfy the
criterion of invariance above; thus mixing between
different irreducible single-group representations
(for the same k point) must be considered as well
as the splitting of the degenerate E levels asso-
ciated with the two- and three-dimensional irreduc-
ible single-group representations.

Spin-Orbit Splitting within a Given Representation

For spin-orbit splitting within a given irreducible
single-group representation it can be shown quite
generally that the spin-orbit arrays have a rather
special form which, for a three-dimensional repre-
sentation, for example, looks like'

Thus, inside the vth sphere, Eq. (2) becomes

(H +HMv+Hn+H0o) g(p+ s„)=E ((p+s„), (10)

where s„ is a vector from the origin to the center
of the vth sphere as in GM I,

H„,= --,' u'[z'- v„(p)]',

where V is the constant potential in this intersphere
region. Within the muffin-tin syheres we can re-
place V(r) with the spherically symmetric V„(p),
where p is measured from the center of the vth

sphere. For spherically symmetric V,

vv(p) v= ——dV 8
(9a)

dp Bp

0 Q

Ill O'

p0 e

Ill o' kll P l)'al o' 40l P l)"0l o' 0'al P

a 0 c d e f

(18)

VV(p) = — p .1 dv
p dp

(9b)
)0 «c~

y0e p

l 0

0 l
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where the elements in the even rows are related
to those in odd rows as shown for e and d. The
requirement of Hermiticity produces pairs of equal
elements on the main diagonal and zeros for some
of the off-diagonal elements as shown. In (18), we
have

d= fgu»sp ggy P«,

—Eso
0 —Eso

=0,

from which it follows immediately that Eso for the
one-dimensional representations is zero.

From an array similar to (18), the two-dimen-
sional single-group representations must have de-
terminants of the form

—Eso
0

A —iB
C —iD

—Eso
—C —iD
A+iB

A+ iB
—C+iD
-Eso

0

C+iD

= 0, (20)

-Eso

where A, B, C, and D are real. This leads to

Eso= + G

with
G =A +B +C +D

(21)

(22)

With the exception of I'», I'&&. , R», R». , and A3,
all two-dimensional representations of the simple
cubic group have A= C= D= 0, B=S4 0 in Eq. (20).
For this case

Eso= ~S . (23)

[As Eq. (20) is a 4x4 determinant, there are actu-
ally four roots, two equal to +S and two equal to
-S.] The representations I'», I",~. , R,2, and R,2.
have no spin-orbit splitting [i.e., for these four
representations A = B= C = D= 0 in Eq. (20)]. For
the A3 representation A = 0, B= C = D = S+ 0. Thus,
for A3

where a and P are Pauli spin functions, a refer-
ring to spin up, P to spin down. (0 is the nonrela, -
tivistic wave function associated with E obtained
in GM I. The subscript 21, e. g. , indicates that P~~

was formed using the Dqq(R) matrix elements. For
(0 chosen as ours were, it can be shown that the
diagonal elements in (18), i. e., a, g, and l, a,re
imaginary; since Hermiticity requires these to be
real then a, g, and I must be zero. The secular
equation for Eso is obtained by putting —Eso on the
diagonal of (18) and setting the determinant equal
to zero.

It then follows that all one-dimensional single-
grouy representations will have spin-orbit deter-
minants of the form

Eso= a W3S (24)

All three-dimensional representations of the
simple cubic group have spin-orbit arrays of the
form given in (18) with the additional restriction
c=k=iS, f= —S, and 8= e=h=0 (with a=@=I= 0 as
discussed above). This gives a determinant

—Eso
0

—iS
0
0

—S

0
-Eso

0
iS
S
0

iS
0

—Eso
0
0

—iS

—iS
0

-Eso
—iS
0

0
S
0
iS

—Eso
0

—S
0
iS
0
0

-Eso

=0.

This results in a cubic equation

Eso 3S Eso 2S = 0

with the solution

so S —S + 2S ~

(28)

(2'I)

TABLE I. Complete list of single-group two- and
three-dimensional irreducible representations for the
simple cubic lattice. The notation is that of BSW (Ref.
3 of GMI).

Two-dimensional representations

~f2 I f2' +fo +f2' +5 T5 +5 +5 M5 M5 A3

Three-dimensional representations

I f5' I P5' I f5 ~25 +f5 +25'

(Again, as in the two-dimensional case, there is
an inherent two-fold degeneracy here so that there
are actually six roots, four equal to —S, two equal
to +2S.) Thus, for the three-dimensional single-
group representations the amount of splitting is not
"even" as it was in the two-dimensional case but
rather in a 1-down, 2-up or 2-down, 1-up ratio
depending on whether S is positive or negative,
respectively. The smaller magnitude shift has a
four-fold degeneracy while the larger magnitude
shift has a two-fold degeneracy.

One could also tell a priori which single-group
representations will split under spin orbit by an
inspection of single- to double-group compatibili-
ty. ' Those single-group representations which are
compatible with more than one double-group rep-
resentation can split under spin orbit. (See Tables
I and II. )

Identification as to which split single-group level
is associated with which of the compatible double-
group representations may be done as follows: For
the three-dimensional single-groups the smaller
shifted level is always four-fold degenerate and
must be associated with I'„or R„as the case may
be. The larger shifted level is two-fold degenerate
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Single

r,
I'2

I'~5

I'2

Double

(a) I point (valid for R also)
I'6,

r„
I „+r„
I'„.+ r„
I 6

I'7-

(b) 6 point (valid for T also)

6( or Ag.

62 or 42. b,7

&6+ &7

TABLE II. Single-group to double-group compatibility
for the simple cubic lattice. Except for A the notation is
that of Elliott (Ref. 3). Elliott works from the single-
group notation of BSW (Ref. 3 of GMI). For A the nota-
tion of Koster (Ref. 4) is followed. In general, those
single-group representations which are compatible with
two or more double-group representations will split under
spin orbit.

consider mixing between representations. This in-
volves a number of different types of determinantal
solutions, most of which can be reduced to quadrat-
ic equations. We give two examples. The general
form for the mixed representation arrays also
obeys the requirements associated with (18) but
now there will be different E~ values for the dif-
ferent representations. Thus, in forming these
mixed representation arrays we take the operator
as the total Hamiltonian H. As H', HMv, and H~
have zero values between P

' s associated with differ-
ent representations or between $0'.s associated with
different rows of the same representation, adding
H, H«, and HD to the operator associated with
(18) results only in producing E~ values on the di-
agonal.

For all mixed representation arrays which can
be reduced to a 4@4 (either from two one-dimen-
sional single-group representations or from the
reduction of larger arrays), the determinant analo-
gous to Eq. (20) is

X~ or X4
&2 or@,

X5
or X4

Xe+
Xy+

X6,+X7~
X6-

(c) & point (valid for M also)
0

A —iI3
C —iD

0
E~ -E1

—C —iD
A+iB

A+ iI3
—C+iD

2

0

C+iD
A-ia

0
E~ -E2

=0,

(28)

A& or A2

A3

{d) A point

A6

A4+ A, +A, '

with A, B, C, and D real and with E~~ and Unbeing
the E~ values from two different single-group rep-
resentations here labeled 1 and 2 for convenience.
Equation (28) leads to

~A4 and A5 are degenerate by time reversal.

and is associated with the appropriate I'6„ I"7„
etc. For the two-dimensional representations one
could determine how the resultant functions trans-
form but it is probably easier to first identify the
function which goes with Esp ——+ S and then to show
that this function has nonzero elements with h&(b, ~)
and no nonzero elements with hq(b, 7) if we are in-
vestigating the splitting of 6, , for example. In
this way one finds that the Esp =+ S solution goes
with ~6, X6„M6„or T6 as appropriate and that the
Esp = —S solution goes with ~„X„,M„, or T7.
For A, one finds E,o =+ &3S goes with A, + A, (A,
and A, are degenerate by time reversal) and Eso
= —&3S goes with A6.

Spin-Orbit Mixing between Representations

When the E (or, more precisely, the E~= E
+E»+En) energy levels of different irreducible
single-group representations for the same k point
lie close to one another in energy one must also

(E)' —(E,'+E') E+E,'E', —G'= 0,
with

G =A+8 +C +D
as before. Then

E= 2(EJ, +Ep) +p [(EI, —EI) +4 6 j
~

(29)

(30)

For the case 4G'«&, where &= EI, —E~, Eq.
(30) can be approximated by

E=E~+G /A, E=Ep —G /A. (31)

As a first example of spin-orbit mixing we consider
the M5. E level at —0. 4001 Ry and the M2. E level
at -0. 4670 Ry. As M, . is compatible with M6- and

M7 and M2. is compatible with M7 w e know there
can be a mixing here (between the two M, - levels).
M, . is a two-dimensional representation with mass-
velocity and Darwin shifts such that E~ = —0. 4573
Ry. For M, , the S of Eq. (23) is + 0. 0069 Ry so that
34~. splits into two levels at —0.4504 and —0.4643
Ry. As S is positive the lower M, . level is asso-
ciated with M, - and the upper M, . level is asso-
ciated with M6-. The Z~ value for M2. is —0. 4948
By. The 6&&6 M5. , M2. array can be written as
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(QQ p

p24

0

2tEp -E
4a p

2I

Eq- —E

247-

iW—2P

(32)

p24 0 E6- —E

E, EP FP+ ES0 E

S' 0400—0.40-

-0.42-

-0.44—

ED
C:

LU -0.46-

M6 Q.4504 M6

MSi -0.4Syy

MRI -04670
MMy- -0,4645

M g- -0.4sso
r

—0.48-

where E,- and E6- are the lower and uyyer M, . lev-
els, respectively, g7- and p7- are the two functions
associated with Ev , )6- a-nd Pq- are the two functions
associated with E6, and P = —J pa*, n Hso P,. » P de.
(Here the first subscript on P indicates the repre-
sentation. The second subscript on P, . » indicates
that p, . » was formed using the D»(R) matrix ele-
ments. )3. does not require a second subscript as
Mz. is one dimensional. ) From (32) it is clear that
there is no further shift associated with the M6-
solution and that the solution of the gz, , p, 4x 4 is
given by Isee Eqs. (28)—(30)]

2(EP +E7 )+2 [(E~ -E7-)'+8P'] (33)

E= 2(EJ, +Es+) +2 [(Ep —Ea+) +8P ]

where

P = f012,» ~-ff80 425', 21 p « = 0 oo43 Ry .

(34)

A measure of the size of this mixing effect is given
by the ratio of 8(P/n. ) to 1 (with & = E J E,-). —
Here P= 0. 0107 Ry giving 8(P/n. ) = 0. 985 so that
one expects an apyreciable effect due to the mixing.
Final E values for this example are —0. 4504 Ry for
the M6- level and —0. 4580 and —0. 5011 Ry for the
M, - levels. From Fig. 1 we see that the "mixing"
shift is 0. 0063 By or almost as large as the syin-
orbit shift for M, . alone (0. 0069 Ry).

As a second example we consider the I'» E level
at —0. 4266 Ry and the I';5. E level at —0. 4748 Ry.
The E~ value for I',z is —0. 4892 Ry (there is no
spin-orbit splitting for I',2). For the three-dimen-
sional I'2, . representation E~ is —0. 4932 Ry with
the S of Eq. (27) equal to + 0. 0029 Ry so that I'~,.
splits into a four-fold I',.level at —0. 4962 Ry
(Es+) and a two-fold I', level at —0. 4874 Ry (E,+).
As I"» is compatible with I', there will be mixing
between the I"» level and the lower I'25. level. Mak-
ing use of the functions associated with E; and E,+
the 10&& 10 I'», I'». array Inay be written as two
separate determinants, one 8&& 8 involving the four
I"» functions and the four I',+ functions associated
with E6, and one 2&&2 involving the two I'7+ func-
tions associated with E7+. The 2x 2 determinant is
diagonal and immediately gives a final E= E,+. The
8&& 8 determinant reduces to a quadratic equation
with solution

—0, 50- M2~ -0.4948 M 7-

Mg- -0.5OII

FIG. l. Example of spin-orbit mixing between repre-
sentations. The two-dimensional M5. splits into M6- and

M7 this 1Vl& interacts with the 1VI7 as sociated with the
one-dimensional M2 . M6 and the two M7 levels are each
two-fold degenerate. EI,=E +EMv+Ez. All levels are
given to four decimal places for comparison.

The further shift associated with Eq. (34) is 0.0036
By or slightly larger than the 8= 0. 0029 Ry deter-
mining the splitting of I'». alone. In this particular
case the 'mixing" correction actually changes the
ordering of the levels as shown in Fig. 2. (It must
be remembered that the I',+ level in Fig. 2 is two-
fold degenerate and that the I'6. levels are each
four-fold degenerate. )

Proceeding as indicated in the two examples just
given, spin-orbit mixing between different repre-
sentations has been considered for most of the
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-0.48
Ep Ep+ ES0

-0.50-

re+ -0.4e56
r + -0.4874

~2 ', rent -0.4874

rs+ -o.4892

r25& -0.4s 52 J
r + -0.4962

e re -0.4SSe

I'IG. 2. Example of spin-orbit mixing between repre-
sentations. The three-dimensional I'&5 splits into I'7+

and I'8+., this I'8, interacts with the I'~ associated with
the two-dimensional I'&2(I'&2 does not split). The I'8«levels
are four-fold degenerate while I'&+ is two-fold degenerate.
Ep=E +EMv+ED (E is not shown in Fig. 2). Note that
in this case the mixing changes the level ordering. All
levels are given to four decimal places for comparison.

The explicit integrals to be evaluated to obtain the
mass-velocity and Darwin corrections arise from
substituting

rg*(r) =Q, c„,P, (r) (35)

into Eqs. (16) and (17), respectively. The spin-
orbit correction involves the substitution of Eq.
(35) into integrals of the form

H (m, n: 1, 2) = f g ( r ) gt Hso 0 (r )gs d 7'

(36)
where IIrs„and Ps can belong to different single-group
representations or to different rows of the same
representation and f~, qs can be either o. or P (spin
up or spin down). In the modified plane wave (MPW)
formulation the p, of Eq. (35) are either symme-
trized atomiclike functions or symmetrized pj.ane
waves; in the MOPW formulation the p, are either
symmetrized higher -lying atomiclike functions or
symmetrized orthogonalized plane waves (OPW' s).

cases where we felt that the Ep levels were suf-
ficiently close and where the double-group repre-
sentations associated with the levels indicated mix-
ing could occur. In some cases this mixing effect
was ignored as it was felt the correction involved
would not affect levels near the Fermi level. (The
actual computation of this mixing effect involves a
rather tedious procedure as our original computer
program was basically designed to handle one sin-
gle-group representation at a time. For this rea-
son one Az, A3 case quite near the Fermi level was
ignored; Az, A3 mixing being a particularly in-
volved computation. ) In the tabulation of our final
relativistic results (Table IV) the notation indicates
whether such mixing was included.

EVALUATION OF THE RELATIVISTIC CORRECTION
INTEGRALS

(See GMI for details. ) We first discuss the evalua-
tion of Eqs. (16), (17), and (36) for the MPW for-
mulation and then outline how one uses these MPW
expressions to obtain the appropriate MOPW eval-
uations.

MPW Integrals

A number of types of integrals are needed, name-
ly, the three combinations plane wave-plane wave,
atomic term-plane wave, and atomic term-atomic
term for each of the three operators HM» H» and
Hso. 9 For the mass-velocity and Darwin integrals
it is only necessary to symmetrize one of the two

p functions comprising these integrals when Eq.
(35) is substituted into Eqs. (16) or (17). For the
spin-orbit integrals one needs symmetrized P func-
tions on both sides of the integral in Eq. (36) since
the spin-orbit operator Hso can break the single-
group symmetry. However, when Ps„and Ps belong
to different rows of the same single-group repre-
sentation and are associated with the same E, we
show in Appendix A that HSQ can be modified en-
abling one to replace

Ho (m, n: 1, 2) = f P& (r) ptHsopp"(r )lsd~
(37)

with

H, , (m, n:1,2)= f y(*(r)g, Q Hso(t) y't(r)qsdv',

(38)
where the superscripts s and u mean symmetrized
and unsymmetrized, respectively, H~(t) is a modi-
fied H» operator and h is the dimensionality of the
representation in question. The spin-orbit inte-
grals involving two different single-group represen-
tations have been evaluated in the form of Eq. (37)
where P, and p& now belong to different representa-
tions.

For completeness, mass-velocity and Darwin
mixing between different but close-lying E energy
levels belonging to the same single-group represen-
tation should be calculated in the same manner as
the spin-orbit mixing between representations. This
has not been done here as it was felt that the ac-
curacy of our E levels did not warrant the rather
tedious calculations involved. (Typically, such
situations occur for the lower symmetry k points
where convergence is particularly poor. )

The derivation of the individual expansion inte-
grals for the various combinations is quite involved;
in Appendix B the resultant MPW expressions for
the necessary combinations for EM~, ED, and EsQ
are given without derivation.

MOPW Integrals

For the MOPW formulation the MPW expressions
of Appendix B must be assembled properly. Sche-
matically, we write



1314 D. M. GRAY AND L. V. MEISEL

g„(r ) =Q; c„,A, (r )+Q& c„&P&(r), (39)

where the A, (r ) are the higher-lying atomiclike
functions (we do not orthogonalize to these func-
tions) and the P&(r ) are OPW's. All functions are
symmetrized. We have

y, = P( K,) -Q, a~, C, ( r ),
where P(K&) is the ordinary plane-wave term and
the C,(r ) are the lower-lying atomiclike functions.
We assume here that

&c, lc, ) =5„, (41)
so that

(40)

t, b

where the appropriate plane-wave-plane -wave,
atomic -term-plane-wave, and atomic -term —atom-
ic-term integrals are taken from Appendix B. (The
a» are real. )

Following Chow and Liu one expects the rela-
tivistic corrections to be large near the nucleus so
that most of the contribution to the above expres-
sions comes from the atomic-term-atomic-term
integrals; this would mean keeping all the &A, IOIA~&
integrals above but only the last terms of Eqs. (43)
and (44) and only D of Eq. (45). Although this ap-
proximation is borne out by an inspection of the
various contributions, we have actually kept all the

a»=(C, IP(K~) & . (42)

The relativistic corrections E„v, E~, and Eso will
then each involve integrals of the following types:
(AIOIA), (Al olg&, and &Qlolp&, where 0 stands
for any of the operators H„v, HD, or Hso. (For
HD one also needs &glolA). See Ref. 9.)

&A, IOIA&&: These are just the atomic-term-
atomic-term integrals given in Appendix B.

& A, I 0 I p~ &: We have

&A,. I
o

I g~& = &A~ I
o IP(K&) & &~ a-» &A; I

o
I c„&,

(43)
where the first term is just the appropriate atomic-
term-plane-wave integral of Appendix B and the
second term sums the appropriate atomic-term-
atomic-term integrals of Appendix B.

&P&lol A, ): We have

&yyl OIA~&= &P(K~) I
olA*. ) -~, a&, &C~IOIA~& .

(44)
This expression is needed only in those cases for
which the operator is not Hermitian term by term.

&Q;lol &f&&&: This becomes

o
I g~& = &P(«) I

olP(K~) ) -P -H+ & (45)
with

P=Q a„(c,lolP(K, )),
t

B=P as, &P(K~)lol c,&,
b

D= ~ a~tass &c~ I ol c~)

Radial intervals. As a check on our differentia-
tion ~ of the potential V(p) and of the radial func-
tion u„,(p) we note that our Darwin radial integrals
[associated with Eq. (B29), Appendix B] and our
spin-orbit radial integrals [Eg. (B51), Appendix B]
agree with those of HS (see GMI, Ref. 4) to about
four significant figures for the lower-lying atomic-
atomic integrals (with n= n' in our equations).

TABLE III. Comparison of relativistic corrections
with atomic values for selected lower-lying crystal levels.
In the three tables below column 2 gives the Herman-Skill-
man (HS) value (Chap. 2 of Ref. 4 of GMI), column 3 is
our value, and column 4 gives the representation(s) from
which our value was obtained. All energies are in rydbergs.

Atomic
function HS'

Present
paper

Rep.
Us ed

(a) Mass-velocity correction (EMv)

La 5s
La 3p
La 4d
Sn 4s
Sn 4p
Sn 3d

—0.830
—4. 10
—0.236
—2. 2990
-0.4256
-0.5514

—0.8307
—4. 288
—0.2406
—2. 3086
—0.4266
-0.5512

X(
I"i5
R25.
R2
I'i5
R2y

(b) Darwin correction (Ez)

La 5s
La 3P
La 4d
Sn 4s
Sn 4p
Sn 3d

0.461
—0.042
—0.0045

1.3409
—0.0046
—0.0154

0.4678
—0.0423
—0.0046

1.3478
—0.0045
-0.0154

Xg

R25 i

R)5.
R~s
R25.

(c) Spin-orbit correction"

0.383
0.0557
0.0457
0.9689

La 4p 0.3869 I'is
La 5p 0.0549 r„
La 4d 0.0466 R(2 and R)5.
Sn 3p 0.9687 I'j 5 and I'25

~The relativistic corrections given by HS are for even
atomic numbers (Z) only. To obtain the HS values listed
here for La (Z=57) we have interpolated linearly between
the values given by HS for Ba (Z=56) and Ce (Z =58). The
values for Sn (Z=50) are taken directly from HS.

The spin-orbit values listed here are for Q where Q is
always positive. For the p cases the energy shifts are
+Q and —2Q. For the d case the energy shifts are +2Q
and —3Q.

To obtain the spin-orbit corrections for La 4d and for
Sn 3p from our crystal calculation it is necessary to
combine two representations in each case because of de-
gener acies.

terms for all the mass-velocity, Darwin, and sin-
gle pep-resentation spin-orbit splittings listed (with
the exception of the A~ spin-orbit case). For A3
spin-orbit and for all the spin-orbit mixing between
representations we have used only the atomic-term-
atomic -term integrals.

CALCULATIONAL CHECKS
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Relativistic corrections for the lower ly-ing atom
iclike functions. One check of the relativistic cor-
rections consists of an inspection of those crystal
energy levels which correspond to the lower-lying
atomiclike functions. On the assumption that these
levels do not change appreciably on going from
atom to crystal our corrections for these levels
should reduce to those given by HS (see GM I, Ref.
4). For the mass-velocity and Darwin corrections
we simply look at the crystal levels for any repre-
sentation whose symmetry permits the function in
question. For spin orbit, however, one must
consider all the degenerate levels in essentially the
same manner as in the case of the mixing of levels
lying near one another in energy. For p levels,
e. g. , there are three functions for La but nine for
Sn (from the three Sn basis sites). For the I' point
all three Lap functions are contained in 1 z, and will
show up as one three-fold degenerate level; thus,
the spin-orbit La 3p correction, e. g. , can be ob-
tained directly from our single representation cal-
culation using I'~, . For Snp (at 1) we need both I'~,
and I"z,. This gives rise to an 18~18 array from
which a spin-orbit value can be obtained and com-
pared with that of HS. Table III lists these com-
parisons.

K
LJJ

(i)
(2s)~

-0.4- 8

7+
8+

(I2, 25 )

8

—0.6-
(is)- 8

—0.8-

(i2)
—I.O-

—1.2-
(i)- 6+

(000}

b,
I

6

(2) 7

(200}
4a

k

+ (s)7+

6+(i)s-(~, 5 )— r &I-i
7 (3)
6+ (i)

F 6 (o', s')

7+
6+ w(2, s)
7+

7 (3)

6+(i)
6- (e')

(40O}

E(k) AND EF INCLUDING THE RELATIVISTIC CORRECTIONS

E(k). Once the relativistic corrections have
been evaluated we compute the final energy levels
using Eg. (15). Typically, many more symme-
trized plane maves were used to determine E than
mere used to compute E», ED, and Eso. The un-
derlying assumption here is that although the ad-
dition of many more plane waves causes consider-
ably better convergence in E, these additional plane
waves do not have much effect on the relativistic
corrections. To a reasonably good approximation
then, one may add E«, ED, and Eso, determined
with, say, 10 symmetrized plane waves to an E
level determined with, say, 50 symmetrized plane
waves. Although no careful error study has been
made the relativistic corrections for the levels near
E~ are probably precise to within about 0. 002 Ry.
With final energy levels determined using Eg. (15),
relativistic E(k) curves are plotted for the same
six k-space directions as for Eo(k) in GMI. These
are shown in Figs. 3-8.

Table IV lists relativistic E(k) for the ten sym-
metry points considered for energies between about
—0. 3 and —1.3 Ry (about 15 bands). As in GM I the
band numbering starts with the first energy level
(for the k point in question) above the nonvalence
atomic levels as band 1, next higher level as band
2, etc. All levels listed in Table IV are at least
doubly degenerate; to simplify the table doubly de-
generate levels such as I'6„b,„etc., are listed
just once as one band, four-fold degenerate levels

FIG. 3. Relativistic E vs k for the I"~direction. It
should be noted that only the middle and end points of
Fig. 3—8 have actually been calculated.

(I'„, Ra, ) are listed twice as two bands. In Table
IV the levels given to only two decimal points in-
dicate one (or both) of the following: (i) The under-
lying E level is poorly converged or (ii) spin-orbit
mixing between close lying E levels was ignored.

As examples of the effects of the various correc-
tions we show term-by-term breakdowns for I', 6,
and X levels in Tables V-VII, respectively. In
these three tables EI, =E +E»+ED, i. e., the en-
ergy level before the spin-orbit correction is ap-
plied. The last two columns in these tables give
the final energy E excluding and including mixing
between representations respectively. In Tables
V—VII all values are given to three decimal places
for comparison.

I'exmi leve/ E~. Counting up over the levels ' iri

essentially the same manner as in GMI, an E~ of
—0. 50(0) Ry is obtained. (The digit in parenthesis
is probably not significant. ) This is about 0. 03 Ry
below the nonrelativistic E~.

Description of the Fermi surface. Counting bands
as in Table IV the seventh band is essentially complete-
ly filled, just touching E~ at 1. The eighth band can
best be described by shifting the zone so that the
center of the cube is an B point with I"s at the
corners. This eighth band is filled except for a
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(l) 6+
{2S)——
-0.4

7+
(l2, 25'}~—

-0 6-
(ls)

- 8

(2)

F

- 7+(~)
8+(l)

6-(s)7-(s', 2')
7+ (2)-7- {S',2')

7 +
+ +(s, s)

1

—0.8-
hJ

FIG. 4. Relativistic E vs k for the
I'ZM direction.

—i.0-
—(s')

7+ (S)

(000) (220) (440)

(l) 6+
(as)87 =

-0.4-
7+~ 8

(la, as' )

k

(a) 6

l)6
6

EF

6+(l)

7+
- 8 i(25', l2)

8+

-0.6-
(l5) - 8

~ -0.8-
hJ

(I5)

7 (2')

FIG. 5. Relativistic E vs k for the
I'AR direction.

(la)
—I.O-

7y(a5')

—I.2-
6+

(ooo) (222) (gyp)
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I=—(P g f (r)
l

o' ~ L
l
P„fg(r ))

= (f ( r ) l Q o' L(1p, : y v) P„jg ( r ) ),
y=1

(Ala)

(Alb)

Eq. (Alb) for this case becomes

(P»f(r)n lo TIP2&g(r)n)=& f(r}ILj'aug(r}) .
(A6)

where

P,„f ( r ) = (h/g) Qz D,*„(R)f (R ' r), (A2)

and L(1p, :yv) is a modified form of L. h and g are
as in Eq. (12) of GMI. Substituting Eq. (A2) into

Eq. (Ala) we have

I= (h'/g') f U, [o L(r')] V, dv',
with

„D„,(R) f*(R 'r')

V, =g, D„*,(S)g (S-' r') .
Let R r'=r and S=RT, then

I= (h /g ) f f*(r)Q„D»(R) [o L(Rr)] Wr dr,
with

WT Zr D„*~(R——T}g(T r) .

Now substitute

D„;(RT)=Z, D+„(R)D„*,(T),
with y running over the dimensionality. Replace
R with Q ', use

D~q(Q ~) —D+v(Q) ) D+„(Q ) Dvv(Q)

and sum on Q. This gives

I=(f(r) lZ„o L(ip: yv)P»g(r)), (As)

with

L(lp, : yv)=-(h/g)+oD&„(Q)D„„(Q)L(Q 'r), (A4)

which proves Eq. (Alb). The effect of Eq. (Alb) is
to replace 0 ~ L integrals which have symmetrized
functions on both sides by integrals containing an
unsymmetrized function on the left-hand side and a
sum over modified X operators and symmetrized
functions on the right-hand side.

Since the P,„and L operate on the space coor-
dinates only, we may write f (r) and g(r) above as
f(r)n, g(r)P, etc. , without affecting the proof of
Eq. (Alb). (The n and P are Pauli spin functions
as in the main text. ) Values for S of Eqs. (23) and
(27) of the main text may be obtained from

IS = f lPyy nIIsp(2gn dT

Thus, we are primarily interested in the "nn"
combination of Eq. (Alb) with p, =1 and v =2, i.e. ,

(Pfgf(r)n
l
o ~ L

l P2~ g(r) n )
= (f (r)n l~ o L(ll: y2)P» g(r) n ) .

y =1

For all two-dimensional simple cubic represen-
tations except A~ it can be shown2~ that L(11:12) =0,
L(11:22) = kL, . Since

CVO'A = k' (A6}

In this appendix we give the resultant MPW inte-
gral expressions (without derivation) for the rela-
tivistic corrections. The MOPY expressions are
obtained by assembling these MPW integrals as in-
dicated in the main text. In the expressions below

j, is the I th-order spherical Bessel function; u„,(p)
and X„(p/p) are as defined in the Appendix to GM I.
In deriving these integral expressions we have
multiplied by (g/h)(1/4m) so that all the relativistic
corrections will be normalized properly. h and g
are as in Eq. (12) of GM I. The relation between
r and p is as in GM I.

Mass-Velocity Integrals

From Eqs. (8), (11), and (16) of the main text
we have

EMv = —4n f tg*(r) [E„—V(r}] tP (r}dv, (Bl}

with

(r)0=2, c„,y;(r) (B2)

and n =@/mc, as in the main text. (As the mass-
velocity correction involves only one E level we
will suppress the subscript n )E„v is .conveniently
broken into three terms:

2
EMV = 4n (EMVl +EMV2+EMV3) s (BS}

[Equation (A6) is valid for all two-dimensional
representations except As, I'gg~ I u ~ Ria~ and Ria" 1

Using Eq. (A5) in the left-hand side of Eq. (A6)
would lead directly to

&P f(r)nlo LIP g(r)n) =&P»f(r)IL.P»g(r)) .
(A7)

Thus, for the D„-D» aa case for these two-di-
mensional representations an unsymmetrized or
symmetrized function may be used on the left-hand
side of the integral in Eq. (37) of the main text.

For the As representation L(lp: yv) is consider-
ably more involved so that we form the ~3 spin-
orbit integrals using Eq. (A7).

For all three-dimensional simple-cubic represen-
tations it can be shown that L(11: 12) =0, L(11:22)
=k(2L,), and L(11:32) =-k(2L, ). Thus Eq. (Alb)
becomes

(P„f(r)n o L
l
P2, g (r)n ) = 2 (f (r)

l
L,P2q g(r) )

—2(f(r)lL+„g(r)) .
(A8)

[Equation (A8) is valid for all three-dimensional
representations ].

APPENDIX B: MPW RELATIVISTIC CORRECTION
INTEGRALS
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TABLE IV. LaSn3 energy levels for the ten symmetry points of GMI including the relativistic corrections. The sym-
metry point labels and the single-group representation labels are in the BSW notation (Ref. 3 of GMI). Except for A the
double-group representation labels are those of Zlliott (Ref. 3). For A we follow the notation of Koster (Ref. 4). The
third and alternate columns of Table IV give the double-group representation (no parentheses) followed by the single-
group representation(s) (in parentheses) which labels the associated E level. )For three symmetry points (p, S, S) there
is only one extra double-group representation and all final levels belong to the same representation; no double-group
label is given for these points. Spin-or'sit mixing between different single-group representations is indicated by the
presence of two or more single-group labels within the parentheses. ] The fourth and alternate columns give the final
energy levels E for the respective bands. The method of counting bands is described in the text. Here E =E +E~+ED
+E&o, where E is the nonrelativistic level given in GMI and the other terms are the relativistic corrections (see text).
All energies are in rydbergs and must be multiplied by —1.0 to obtain the actual value. Energy values given to only
two decimal places indicate that either the underlying E value is poorly converged or that spin-orbit mixing between
close-lying levels was ignored.

r

X
Z
M
A

A
S
T
z

000
200
400
220
440
222
444
422
442
420

Label 4ak/m Rep.

6'(1)
6(1)

6 (4')
(1)

7'(3)
6(1)

8'(25')
(3)

7(2')
(3)

Band 1

1.272
1.246
1.185
l. 213
l.115
l. 191
1.068
l.133
1.09
1.159

Bep.

8'(12)
6(1)

6'(1)
(1, 4)
6-(5')
6(3)

8+(25 ')
(1)

6(5)
(1)

Band 2

0.951
1.022
1.122
1.024
1.070
1.017
1.068
1.080
1.069
1.092

Rep.

8' (12)
7(2)

7 (3')
(1,4)
v-(5')

4, 5(3) '
v'(25')

(2)
v(5)

(3)

Band 3

0.951
0.934
0.915
0.980
1.067
1,016
1.067
1.007
1.06
0.975

Rep.

8-(15)
v(2, 5)
v'(2, 5)
O. , 3, 1)
6'(1)
6(1)

7 (2')
(3)
6(1)
(1)

0.675
0.687
0.713
0.68
0.802
0.775
0.84
0.74
0.755
0.72

Label 4ak/m Rep. Band 5 Rep. Band 6 Rep. Band 7 Rep. Band 8

r

X
Z

M
A

R
S
T
g

000
200
400
220
440
222
444
422
442
420

8-(15)
6(1,5)
6'(5}

(1, 3, 1)
6'(5)

4, 5(3) '
6-(15)

(1)
7(2')
(2)

0.675
0.678
0.697
0. 67
0.633
0.66
0.703
0.70
0.744
0.67

6 (15)
6(1,5)
v'(2, 5)
(1,3, 1)
v'(3, 5)
6(3)
s-(15)

(4)
6(5)

(3)

0.668
0.61
0.684
0. 66
0.632
0.66
0.701
0.69
0.669
0. 63

8+(12, 25')
v(2, 5)

6-(4', 5')
(2)

v'(3, 5)
6(1)

8-(15)
(3)

v(5)
(4)

0.500
0.61
0.51
0.58
0.584
0.55
0.701
0.61
0.668
0.59

8'(12, 25')
6(1, 5)
6'(1)

(4)
v-(5', 2')
4, 5(3) '

8+(25/, 12)
(2)

7(2)
0)

0.500
0.51
0.506
0.52
0.501
0.49
0.445
0.50
0.45
0.55

Label 4ak/z Rep. Band 9 Rep. Band 10 Rep. Band 11 Rep. Band 12

r

X

A

R
S
T
g

000
200
400
220
440
222
444
422
442
420

v'(25')
v(2', 5)

7'(3)
(4)

7'(2)
6(3)

8+(25 ', 12)
(1)
6(1)

(2, 1 3)

0.487
0.49
0.490
0.49
0.470
0.49
0.445
0.44
0.41
0.48

S'(12, 25')
v(2', 5)
7-(5')

(1,3, 1)
v-(5', 2')
4, 5(3) '

8+ (25/, 12)
(1)

v(5)
(2, 1 3)

0.486
0, 48
0.47
0.44
0.46
0.44
0.40
0.42
0.40
0.45

8 0.2, 25')
6(1, 5)

6-(4, 5')
(1, 3, 1)
6-(5')
6(3)

8+(25P, 12)
(4)
6(5)

(2, 1,3)

0.486
0.44
0.452
0.40
0.45
0.43
0.40
0.41
0.39
0.42

8-(25)
6(1, 5)
6'(5, 1)
(1,3, 1)

6 (1)
60.)

v'(25')
(2)
7(2')
(1)

0.37
0.31
0.442
0.39
0.43
0.39
0.39
0.30
0.37
0.31

Label

000
200
400
220
440
222
444
422
442
420

Rep.

s-(25)
v(5)

6'(5, 1)
(3)

7 (3)
6(2)

6'(1)
(3)

7(2')
(4)

Band 13

0.37
0.30
0.37
0.28
0.40
0.29
0.315
0.29
0.29
0.30

Rep.

v-(25)
6(1,5)
v'(5)

(4)

6(3)

(3)

Band 14

0.35
0.28
0.36
0.24

0.26

0.24

0.26

Rep.

6'(1)

(2)

4, 5(3)'

(3)

Band 15

0.337

0. 23

0. 25

0. 25

~A4 and A5 are degenerate by time reversal.
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with

= (E')' J q'*(r)q'(r)dT ,

EMvz = —2E f P (r)V(r)g (r)dT )

and

EMvb = f0'"(r) [V( r)]' 0'( r) «

(B4)

(B5)

(B&)

(We break EMv up in this fashion so that these
relativistic correction integrals can be evaluated
in the same part of the program in which the B1&
and S&& integrals are computed. E is, of course,
not available until the nonrelativistic part of the pro-
gram has finished. ) Substituting g (r) from Eq.
(B2) we obtain the expressions given below.

~Mv~

0 2)
EMV1 (E ) ~ C1CPS11,

f, j
where the S,~ expressions are given in the Appen-
dix to GM 1. [Equation (B7) is valid as it stands
for MOPW also. ]

EMvz. This is derived exactly as the V(r) part
of the original H matrix. Let

EMvb ——2E ~ chic)EMvb(K1, K1)
$, j

+ 2R CbCy EMvb(Aby KJ) +5 CbCbEMvb(Ab) Af)
b, j b, f

(BS)

The $ sum is over plane waves, the q sum is over
atomiclike functions and plane waves, and the f sum
is over atomiclike functions. [The factor 2 in the

Sn

F(K)=p e '
v (B10)

as in GM I. Vis the constant potential in the re-
gion between the muffin-tin spheres, s„ is a site
vector as defined in GM I, and the sum on v in
Eq. (B10) runs over the three Sn basis sites.
D»(R) is the "one-one" element in the matrix rep-
resenting the operation R. The sum on R runs over
the group of k.

Atomic term-plane wave. We have

EMv, (A„R,) = I f Mb, (p)j,(Kp)p V,(p) dp, (B11)

where

3=2„D„(R)X„(B)e'R" ",
with K=k+K, , K' = R 'K —k, and B = R 'K/K.

Atomic term-atomic term. We have
1

EMV2(Ab) Ab) =
~~

'

n1(p) V„(p)u„., (p)dp

(B12)

X X b
—~„—d'0, B13

second sum comes from combining the (A„K~)
and (K,, Ab) terms. ]

Plane wave-plane ~~ave. We have

EMv2(K;, K~) = VS,, +Z„D»(R) [I(La)+ F(K)I(Sn)],
(»)with

K = R (k+Kq) —(k+ K, ),
I(v) = f (pv„(p) pv)j-, (Zp)pdp,

TABLE U. Breakdown of relativistic corrections for the I' point. E is the n~nrelativistic energy level. EMv and ED
are the mass-velocity and Darwin corrections, respectively. Ep =E +EMv+ED, i.e. , the energy level before the spin-
orbit correction {Ezo) is added. The next to last column gives E =EJ +Ezo with no mixing between different single-group
representations. The last column gives the final energy level including spin-orbit mixing between close-lying levels
where appropriate. The number in parentheses following the E value is the single-group representation; the numbers in
parentheses in the last two columns are the double-group representations. The representation labels used here follow
Elliott (Ref. 3). For comparison all values are given to three decimal places even though the third decimal place is not
significant in some cases. All energies are in rydbergs and must be multiplied by —1.0 to give the actual value.

0.304 (1)

0.329 (25)

0.427 (12)

0.475 (25')

0.642 (15)

O. 854 (12)

1.196 (1)

EMv

0.074

0.035

0.123

0.018

0.030

0.220

0.177

—0.041

0.000

—0.061

0.000

0.000

-0.122

—0.101

0.337

0.364

0.489

0.493

0.672

0.951

1.272

E (no mixing)

0.337 (6')

{0.350 (7-)
0.372 (8-)

0.489 (8')

0.487 (7')
0.496 (8+)

{0.668 (6 )
0.675 (8-)

0.951 (8')

1.272 (6+)

E (with mixing)

0.337 (6')

0.350 (7)
0.372 {8-)

O. 486 (8')

0.487 (7').
0.500 (8')

0.668 (6-)
0.675 (8-)

0.951 (8')

1.272 {6')

For the I' point, symmetry and/or large differences in Ep levels eliminate the consideration of mixing for all cases
except the close-lying I'~2, I'» levels; thus, with these exceptions, the entries in the last two columns are identical.
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TABLE VI. Breakdown of relativistic corrections for the Q point. The format is identical to that of Table V. For
comparison all values are given to three decimal places even though the third place is not significant in some cases. All
energies are in rydbergs and must be multiplied by —1.0 to give the actual value.

EO

0.244 (1)

O. 266 (5)

o.3s1 (1)

0.463 {2')

o.468 (5)

O. 562 (2)

o.5ve (1)

o.656 (5)

o.s2e (2)

o. 933 0.)

1.164 0.)

0.061

0.033

O. 119

0.018

0.027

0.079

0.058

0.026

0.243

0.194

0.186

E
—0.017

0.000

—0.058

0.000

0.000

—0.034

—0.021

0.000

-0.135

—0.106

—0.104

0. 288

0.299

0.441

0.482

0.496

0.607

0.613

0.682

0.934

1.022

1.246

E(no mixing)

o.288 (e)

o. 296 (v)
0.302 (6)

o.441 (e)

o.482 (v)

o.4sv (v}
o. 5o5 (e)

o. eov (v)

0.613 (6)

o. evs (e)
o.es6 (7)

o.934 (7)

1.022 (6)

1.246 (6)

E(with mixing)»

0.282 (6)

o. 296 (v)
o. 3os (6)

, o.441 (e)

o.4so (v)

0.488 (7)
o.5o5 (e)

0.606 (7)

0.613 (6)

0.678 (6)
o. esv (v)

O. 934 (7)

1.O22 (6)

1.24e (6)

For the 4 point, mixing between levels is appreciable only for the highest-lying A~, 65 levels. Symmetry prohibits
mixing between the three lowest levels of this table.

with

X;,(p/p) =5~~ D»(R) exp[zk (R 's, —s„)j
x x„(R 'p/p)-, (&&4)

where we have combined an unsymmetrized function
(index b) on site s„and a symmetrized function
(index t) generated from an unsymmetrized function

on site s„.. The prime on the A sum indicates that
only those A for which some z satisfies A 's„
= s~+y are allowed.

Let

EMV8 w C&Cf EMV3(Kf, K&)

TABLE VII. Breakdown of relativistic corrections for the X point. The format is identical to that of Table V. For
comparison all values are given to three decimal places even though the third place is not significant in some cases. All
energies are in rydbergs and must be multiplied by —1.0 to give the actual value.

0.334 (5)

o.3ee (1)

0.416 (4')

0.447 (5')

O. 459 (1)

0.470 (3)

0.667 {2)

0.678 (5)

o.vs2 (3')

1.037 (1)

1.O99 (4')

EMV

0.034

0.150

0.058

0.038

0.078

0.019

0.019

0.025

0.303

0.192

0.184

0.000

-0.075

—0.017

0.000

—0.031

0.000

0.000

0.000

—0.170

—0.106

—0.099

0.369

0.442

0.457

0.486

0.506

0.490

0.686

0.704

0.915

1.122

1.185

E (no mixing)

o.364 (v')
0.373 (6')

O. 442 (6')

o.45v (6-)

o.4v1 (v-)

o.5o1 (6-)

o.5oe (6')

0.490 (7')

o.ese (v')

o. 69v (6')
o.v11 (v')

o.915 (v-)

1.122 (6')

1.185 (6 )

E(with mixing)

-o. 3e4 (v')
o. 3v3 (e')

O. 442 (6')

0.452 (6 )

o.4v1 (v-)

o. 5oe (6-)

o. 5oe (6')

o.49o (v )

0.684 (7 )

o. e9v (6')
o.v13 (7')

o. 915 (v-)

1.122 (6 )

1.185 (6-)

~Due to symmetry restrictions and/or large energy differences we considered mixing for three "sets" of levels only.
The mixing effect for the X~, X& set is negligible.
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Darwin Integrals

From Eqs. (12) and (17) of the main text we
have

a' [',„dV ey„'(r)
4 J " (

dp ap

where, in each v sphere,

r= p+s„

(B16)

(B17)

+ 2~~ cgcg EMv'3(A» KJ) +0 c~c,EMv'3(A» A, )
b, j b, t

(B15)
where the $, il, K sums run as in E»2 T. he
EMv3(K, , R,.), etc. , expressions will be identical to
the E„v2(K, , K&), etc. , expressions given in Eqs.
(BQ), (Bll), and (B13)with V„(p) replaced by
[V„(p)] and V replaced by (V) .

and r is measured from the origin (taken at the
center of the La atom as in GM I). (We again sup-
press the subscript n. )

Let

FD= —4& cicjED Kip Kj + cbcjED Abp Kj
J b, j

+Z c;c„ED(Kq, A, )+5~ c,c,Eo(A~) A, )
b b, t

(B18)
where the $, il, f sums run as in the mass-veloci-
ty expressions. As the Darwin expressions are
not Hermitian term by term in the expansion func-
tions both Eo(A„K,.) and Eo(K, , A, ) are needed.

P/ane M)ave-Plane suave. Substituting a symme-
trized plane wave into the left-hand side of the
integral in Eq. (B16) and an unsymmetrized plane
wave on the right-hand side we have

dV g ei(k+Rj)' p

Eo(K;, K, ) = (I/4v)Z~ D»(R)Z„e ' ' ' exp[- iR '(k+K, ) ~ p]
" di,

dp ep
(B19)

with

K=R '(k+K,.) —(k+K, ) . (B20)
After considerable manipulation, Eq. (B19) be-
comes

dV„' j~.i(ZP)P dP,

S=Z~Di, (R)X,„(B)e' '
v

(B25)

I(v)= j,(&p) '
p dp

dV„
dp

and F(K) as defined in Eq. (B10).
Atomic term-plane suave. Substituting an un-

symmetrized atomiclike function (on site s„) into
the left-hand side of the integral in Eq. (B16) and

a symmetrized plane wave into the right-hand side
we have

E,(A„K,.) = (I/4v) Z,D„(R)e'"' ~

iR" (fc.+ Kj) P

n'Em p

with

K =R (k+K, ) —k .

(B22)

(B23)

After considerable manipulation we have

Eo(Ap, Kq) =[K/(2l+1)][lIi —(l+1)I2] S ) (B24)

with

dV„
A i(&p)p dp

dp

ED(K;, K;) =ZRD, i(R)K (k+K, )(1/K)

x [I(La) + F(K)I(Sn)], (B21)

with

and K=k+K, , B=R 'K/K
Plane suave-atomic term. Substituting a sym-

metrized plane wave into the left of the integral in
Eq. (B16) and an unsymmetrized atomiclike func-
tion (on site s„) into the right-hand side we have

Eo(K~, A~) = (I/4v)Z„D, i(R)e '

-lx . d V BF( (P)
dp Bp

(B26)

where K and K' are as defined in the section above.
After some manipulation this becomes

ED(K, , A, )=s 'i/(&P) P +' —$,$(P) dP,
dp dp

with S as in Eq. (B25). (It can easily be shown
that 8 ' ' "=e' ' ~ for any reciprocal-lattice vec-
tor, K'. )

Atomic term atomic term S-ince (dV/dp. )(8/Bp)
does not affect angles these integrals are still orthog-
onal in l; orthogonality in n is no longer a good
approximation. Starting with an unsymmetrized
atomiclike function (index b) on site s„and a sym-
metrized atomiclike function (index t) generated
from an unsymmetrized function on site s„. we sub-
stitute into Eq. (B16) and eventually obtain
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Zg)(A», A, ) = (I/4 v)I »3 X,»
—x'„—dQ,
p p

(B26)
all Iso expressions can be shown to be i (real
number) we may write

with Iso(o(3 o.') = iS, (B35)

Ibt ffl P (B29)

Iso= f (/) *H~(/) dr, (B30)

where the wave function (/)s is now expanded to in-
clude a spin function. This gives

Q
P.'*(r)~&- —[o 1(p)P'. (r) ns] d~,

(B31)

Index n is associated with Ab(r), index n with A, (r)
and X'„ is as in Eq. (B14).

Spin-Orbit Integrals

The "regular form" for spin-orbit integrals is
obtained by subsituting H~ as given by Eq. (13) of
the main text into

where S is real and is the S of Eqs. (20)-(23) of
the main text.

Plane M)ave-plane M)ave. Substituting an unsym-
metrized plane wave for (/)s* in Eq. (B32) and a sym-
metrized plane wave for (/ss, , we have

Is~o(K;, K, ) =—Q„Ds,(R) e' v

-&tk+R ) ~ P V &~ iR(K+K ) ~ Pi

p dp

(B36)

in each of the four atomic spheres. In Eq. (B36)
K=R(k+K,-) —(k+K, ). (We suppress the o(n notation
in Iso. ) Eq. (B36) eventually becomes

Iso(K;, K;) =iZsD, s(R)[I(1a)+F(K)I(Sn)] Z(R),
(B37)

where the subscript s on )/)s implies that )/)s is a
symmetrized function; q, and p2 can be either of
the Pauli spin functions, a or P, as in the main
text and r = p+ s„as before.

with

I(v) = j,(Ifp) " p'dp,dV„
(B36)

Two-Dimensional Representations

iso(» o')= Ao' (/'„*(r) ——[L,)/)s, ,(r)] dv .
(B32)

In Eq. (B32) the subscript u implies that (/)s* is an
unsymmetrized function whereas the subscript 21
implies that (/s, is symmetrized using Ds, . In Eq.
(B32) we have

8 8I,= —i x—-y—
8$ Bx

(B33)

where (x, y, s) are the components of p. Equation
(B32) is valid for all two-dimensional representa-
tions except A3. We mrite

Q
Iso(n u)= —Zi c&c&iso (o'&: K& Kg)

i, j

+ 2R C3C»I so(n Q: Kg) A»)
j,b

+5 c,f:,I"„(aa:A„A,)), (B34)
b, t

where $, q, and f have the same meaning as in
Eq. (BB). [It can be shown that I~~~(o(a: A„K,.)
= I~(ao(: K~, A, ).] Since all the c, are real and as

For all two-dimensional single-group representa-
tion only the j)/),*,o(Hso)/)s, o(d7 form of Iso is needed
[see Eqs. (20)-(23) of the main text]. For this o.(x
combination we have shown in Appendix A [see Eq.
(A6)] that Eq. (B31) can be written as

Z(R) = [(k+K )„. (k+K, )„—(k+K,.)„, (k+K, )„)/K,
(B39)

where (M+K, )„ is the y component of (K+K, ) and
(k+K&)~ is the x component of R '(@+K&), etc. K
is as in Eq. (B9) and F(K) is as in Eq. (B10).

P/ane wave —atomic teem. Substituting an un-
symmetrized plane wave for (/)„* in Eq. (B32) and
a symmetrized atomiclike function A', (r) for )/)s,

we have

I",,(K, , A„)=—— e-""' "'——
4m h p dp

&& [LQ»(r)] d7, (B40)

with A„'. as defined in GM I (but with no sum over
cells here). Starting with an unsymmetrized func-
tion on site s~, A;(r) may be written schematically
as

A;(r)= ' Z a(21, b, v, p)X3» —,
V»P

(B41)

mhere the 21 label reminds us the symmetrization
is with D», v = 1 for an unsymmetrized function on
La, while p runs over the three Sn basis atoms for
an unsymmetrized function on any Sn atom. (Us-
ually there will be only one or two terms in the
sum above. ) L, operating on any X,» of Eq. (B41)
mill produce some I». . %e represent this as

L,X»(p/p) = ig(L..P, p')X„, (p/p) (B42)

and eventually obtain
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I so (Kq, Ag) = t'I Z„e ' &' "Pz(b) v),
where

j,(&p) d N.&(p) &p,
dV

(B43)

(B44)

TABLE IX. Values of g{L„q, q') andg(L~, q, q')
for Eqs. (842) and (862), respectively. '%e indices q
and q' have the same meaning as in Table VIII. The
third column gives g{L„q, q') andg(L~, q, q') for the
L, and L~ operations, respectively.

P (b, v) =P a (21, b, v, P)g(L„P,P')X„.(B), (B45)

with K=K+K, and 8=K/Z. For an unsymmetrized
function on La, I is an integral over the La sphere,
v in Eq. (B43) is 1, and s„=0; for an unsymme-
trized function on a Sn sphere, I is a Sn integral
and p runs over the three Sn sites. The pertinent
cubic harmonics are listed in Table VIII. The
g(L„p, p') are given in Table IX (a).

Atomic teem-atomic term. Substituting an un-
symmetrized atomiclike function for (s* in Eq.
(B32) and a symmetrized atomiclike function for
Ps, we have

5

8
9

q'

(a) L, operation, Eq. {842)
~ ~ ~

(b) L„operation, Eq. {862)

0
4

—1
1

—1

Iss"~(A» A, ) =—~
( A,"*(r)——IL,A', (r)] dr,j. dV

(B46)

-1
0
1

with A~ and A; defined as in GMI (but with no sum
over cells). Schematically, we write

A"*(r)= +' X—
P P

(B47)
9

L operating on X8 produces both X5 and Xe.

1
2
1
2

as in the preceding section. L, operating on the
X,, produces various X,, as defined in Eq. (B42).
Tabulating this (see Table X) as

where

W~ p W~p ——dp,
1 dV

(B51)

i4mGb, =' X)b —f gX, — dQp . p
P P

we obtain

Iso(A~, A, ) =iISs(b, f, v),

(B49)

(B50)

TABLE VIII. The nine s, p, d types of cubic harmonics,
X, and their integrals. Here the single index, q, replaces
the bvo indices of X&& of the text. The last column gives
the integral I~q= (1/4r) j[X (p/p)j dQ. I ~ equals zero for
q&q'. x, y, and g are the components of p.

Sz(b, I, v) =Z, a(21, f, v, q)G,, (B52)

Ne have taken the unsymmetrized function Ab"* to
be on site s„. The integral I is over the La or a Sn
sphere depending on whether s„refers to La or Sn.

A3 Representation

For the A3 representation, while we still need to
evaluate only the no. combination (see the discus-
sion associated with Eq. (24) of the main text), the
modification on going from a "symmetrized-sym-
metrized" integral to an "unsymmetrized-sym-
metrized" integral leads to a much more involved

Xq

x/p
y/p
z/p

(2g2 x2 y2)/p2
(x2 —y')/p'

yZ/p2
xz/p2
xy/p'

1

1

1
3

12

g1

i5

i5

$5

f5

Label

C2, 3

C3 2

&6,9

&9,6

C7, 8

&8, ~

Value

TABLE X. The factor G ~ as defined by Eq. (849).
The q, q. subscripts have the same meaning as in Table
VIII. All combinations not listed are equal to zero.
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expression than that in Eq. (832) above. For this
reason we evaluated I$O for A3 using the form of
Eq. (831) directly but using only the atomiclike-
atomiclike terms (this is probably a quite good
approximation; see discussion of this point in the
main text). The procedure is essentially the same
as in obtaining Iii~o(o. o. :A„A, ) of the preceding sec-
tion but now both functions are symmetrized. We
write

iS = 4 Q 2 c»c»iio»(QA: A», A»),
b, t

(853)

with

I,, is defined in Eq. (833) and

(855)

As in the two-dimensional case we write

+2K c,c,)~)K, , X)+0 c,c1,.",(A„&,)),j, b b, t

(857)
where we have suppressed the a~ notation in
Iio'(K, , K&), etc. , and with t', q, and f having the
same meaning as in Eq. (88). As in the two-di-
mensional case we may write

where Sis real and is the S of Eq. (24) of the main
text. The sum in Eq. (853) is over atomiclike
functions only.

Three-Dimensional Representations

For all three-dimensional single-group repre-
sentations only the f Pf, +IIEET)zn dr form of IK) of
Eq. (831) is needed [see Eqs. (25)-(27) of the main
text]. For this case we have shown in Appendix A

[see Eq. (A8)] that Eq. (831) can be rewritten as

&l,'(~, ~) f0!"=(~—) )&)'—P)) &i, )»4)

q(P) =I(La, Z )+F(K,)i(sn, Z, ), (860)

I»i~o(K&, A») = ii+„e '"& '~ a [Pi(b, v) —P„(b, v)],

(863)
with Pi(b, v) as in the two-dimensional case [Eq.
(845)] and

P„(b, v) =Q a(31, b, v, q)Q g(l.„q, q') X„.(8 ) .
(864)

The radial integral I is defined in Eq. (844). The
comments following Eq. (845), including the defini-
tions of K and B, apply here also.

Atomic teem-atomic teem. For these integrals
it is most convenient to determine I« in the form
given in Eq. (831) directly with symmetrized func-
tions on both sides of the integral. The procedure
is like that for the two-dimensional case except that
the function on the left-hand side is now represented
schematically as

A»*( r ) = "' —Q a(11, b, p, , p) X,» — (865)
&eP

in place of Eq. (847). For the right-hand function
Eq. (848) may be used as is.

Since

o. o' L ( p) o. = I... (866)

with the I integrals having the same form as in
Eq. (838), KJ, =P (k+K, ) —(k+g), and F(K~) is
as defined in Eq. (810). Z(R) is given by Eq.
(839) and

Y(T) = [(k+K;)g. (k+ K;)„—(k+K))„.(k+ K,.),]/Kr,
(861)

with the primed and nonprimed components having
the same meaning as in Eq. (839) (the primes here
being associated with operation T).i»

Plane suave-atomic term. Proceeding as in the
two-dimensional case and writing 4

I &g, (P/P) = i+~ dI.„q, q )&l, (P/P) (862)

analogously to Eq. (842), we obtain

I~~(n, n)=iS, (858)
we may use the same tabulation (Table X) as in the
two-dimensional case and write

where S is real and is the S involved in Eqs. (25)-
(27) of the main text.

Plane wave-plane M)axe. Proceeding as in the
two-dimensional case we obtain

I"(K,, K,.) =-,'i [C„a„(It)q(a)Z(It)
—Pr D»(T) Q(T) Y(T)], (859)

where

Ii(~)(A„A,) =iIQ a(ll, b, g, p) Si(p, t, p. ), (867)

with the radial integral I as in Eq. (851) and Si as
in Eq. (852). I is an integral over either the La or
a Sn sphere depending on whether the original un-
symmetrized functions are on the La atom or on
a Sn atom. (There can be no mixing between La
and Sn atomiclike functions in our model. )

~D. M. Gray and L. V. Meisel, preceding paper, Phys.
Hev. 8 5, 1299 (1972).

J. C. Slater, Quagtum Theory of Molecules and Solids

(McGraw-Hill, New York, 1965), Vol. 2, Appendix 9.
3R. J. Elliott, Phys. Rev. 96, 280 (1954). Elliott's

comments regarding A for the simple cubic lattice are
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in error as pointed out by R. H. Parmenter, Phys. Rev.
100, 573 (1955).

46. F. Koster, in Solid State Physics, Vol. 5, edited by
F. Seitz and D. Turnbull (Academic, New York, 1957),
pp. 173-256. For the X and M points Koster's single-
group representation labeling differs somewhat from that
of BSW (GMI Ref. 3).

T. L. Loucks, The Augmented Plane Wave Method
(Benjamin, New York, 1967).

6For a complete list of two- and three-dimensional
single-group representations for the simple cubic lattice
see Table I.

'These compatibility relations are given in Table II
(a)-{d). For the A point the representations A4 and A5

are degenerate by time reversal and must be considered
as one representation in determining splitting.

In these two examples all energy levels are given to
four decimal places for comparison.

9For the Darwin correction one needs both atomic-term-
plane-wave and plane-wave-atomic-term types of integrals
since this operator is not term-by-term Hermitian in the
expansion functions.

We are grateful to Professor E. Brown for suggesting
this modification. For our MOPW method the modified
spin-orbit operator is particularly useful in evaluating
plane-wave-plane-wave terms.

~~For spin-orbit we give the expressions for S. S is
related to Eso through Eqs. (23), {24), and (27).

L. Liu, Phys. Rev. 126, 1317 (1962); P. C. Chow
and L. Liu, ibid. 140, A1817 (1965).

The derivative routines were developed by Ray Scanlon.
These routines involve fitting a spline function to the
tabulated points and then differentiating this function.

~ This assumption is the justification for orthogonaliz-
ing to these lower-lying atomiclike func tions in either the
OPW or MOPW method.

~'For these test comparisons we do not, of course,
orthogonalize to these atomiclike functions.

~'It should be emphasized that the excellent agreement

obtained here merely indicates that the atomic-term-
atomic-term integrals are being handled properly. Less
direct tests, however, indicate that the atomic-term-plane-
wave and the plane-wave-plane-wave integrals are also
correctly treated. At any rate, the major contributions
to the relativistic corrections come from the atomic-term-
atomic-term integra1. s (see Ref. 12).

~'As described in GMI, there are 960 electrons to ac-
count for; we count a I'y level as 2 (two-dimensional repre-
sentationn,

one equivalent point), a Q level as 12 (two-dimen-
sional representation, six equivalent points), and so on.

W. L. McMillan, Phys. Rev. 167, 331 {1968).
~A. M. Toxen and R. J.Gambino, in Proceedings of the

Twelfth International Conference on Low Temperature
Physics, Kyoto, Japan, 1970, p. 351 (unpublished).

E. E. Havinga, H. Damsma, and M. H. van Maaren,
J. Phys. Chem. Solids, 31, 2653 (1970).

Although we have not worked out the geometry, the
free-electron sphere for 15 valence electrons would cut
pieces of zones 7, 8, 9, etc. Folding the, say, 8th zone
back into the simple cube should give a much more com-
plicated Fermi surface than we get.

For the two-dimensional representations I'&» I"&2.,
R&2, and R&2. both L {11:12)and L (11:22) equal zero.
This is consistent with these representations not splitting
under spin orbit.

~3Since the same group is involved in both the R and T
sums, Eq. {B59)could be organized somewhat differently;
since, however, D&2(P) may be zero when D&3(P) is non-
zero and vice versa, the present form of Eq. (B59) is
most convenient for our procedure.

For the I„operator there is one case where two differ-
ent X&~. are produced from one X&~ [see Table IX{b)]; thus,
a sum on q' appears in Eq. (B62).

One could also do the plane-wave-plane-wave and the
plane-wave-atomic terms directly [i.e. , using Eq. (B31)];
for our program, however, it is more convenient to use
Eq. (B54) for these integrals.
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Magnetoelastic energy considerations are used to explain the occurrence of anomalous dips
in the velocity of sound in gadolinium below T~. A molecular-field treatment gives reasonable
quantitative agreement with the elastic-constant experiments of Long, Wazzan, and Stern and
the magnetization curve as determined from neutron diffraction.

I. INTROOUCTION

During the past several years many of the phys-
ical and magnetic properties of the hexagonal rare-
earth metal gadolinium have been studied. Mag-
netization measurements by Nigh, Legvold, and

Spedding showed that Gd was a ferromagnet with
a Curie temperature (To) of 293'K. Measure-

ments of the angle between the magnetization and
the crystallographic c axis of Gd were made by
neutron diffraction techniques. ' These showed
that the magnetization vector rotated from the c
axis into an easy cone and that there did not exist
a spiral structure as is common in many other rare
earths. By measuring the torque required to pre-


