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Electron energy levels in perfectly ordered LaSn& have been calculated nonrelativistically
for the equivalent of 64 points in the reciprocal-space lattice using a modified orthogonalized-
plane-wave method (MOPW). A muffin-tin model potential, constructed from the self-consis-
tent nonrelativistic atomic potentials of Herman and Skillman, is used. The crystal calculation
is not self-consistent. E(k) curves are shown for six directions in k space. The nonrelativ-
istic Fermi level has been computed to be —0. 47 By. Calculations were also carried out for
a limited number of points using a potential constructed from the self-consistent relativistic
atomic potentials of Liberman. Differences between the levels resulting from this potential
and the levels resulting from the Herman-Skillman-based potential are discussed. In a sepa-
rate paper, perturbation theory is used to determine relativistic corrections to the Herman-
Skillman-based levels.

INTRODUCTION

Because of their superconducting properties,
there has been a fair amount of interest in the LaXS
alloys where X is tin, lead, indium, or thallium.
All of these alloys have a simple-cubic lattice with
the CusAu structure. ' In particular, LaSn3 has a
superconducting transition temperature of about
6 'K, whereas LaIn, has a much lower transition
temperature of about 1'K. There is also consid-
erable interest in determining which LaSn, electron
energy levels are primarily associated with La and
which with Sn. It was thus felt that band-structure
calculations for this series of alloys would be use-
ful.

In the present paper we employ the muffin-tin
model and a modified orthogonalized-plane-wave
(MOPW) method to calculate the nonrelativistic band

structure of perfectly ordered LaSn, . Although the
atomic potentials used in constructing our mode1
potential are self -consistent, the crystal calcula-
tion presented here is not self-consistent. In a
separate paper we use perturbation theory to de-
termine the relativistic energy corrections, namely,
mass-velocity, Darwin, and spin orbit.

CRYSTAL STRUCTURE AND POTENTIAL

The simple-cubic unit cell for LaSn3 is shown in
Fig. 1. A convenient primitive cell contains one
La atom and three Sn atoms. The origin is taken
at a La atom, 7' vectors describe the position of
primitive cells, and s„vectors describe the position
of basis atoms within a primitive cell. A convenient
basis consists of one La, muffin-tin sphere (s, =0)
and three Sn muffin-tin spheres at s2= —,'a(l, 1, 0),
s, = —,'a(1, 0, 1), and s4= —,'a(0, 1, 1). In this and the
following paper we will use r to denote a vector from
the origin (taken at the center of the La sphere)

and p to denote a vector from the center of the
sphere in question. For the La atom, then, p and
r coincide but for the Sn atoms r = s„+p with v = 2,
3, or 4. Since the unit cell is simple cubic, the
Brillouin zone is also simple cubic. This is shown
in Fig. 2 with the symmetry points labeled in the
Bouckaert, Smoluchowski, and Wigner (BSW) no-
'tation.

A one-electron approach is used. The crystal
potential is constructed from the self -consistent
nonrelativistic atomic potentials of Herman and
Skillman (HS) using a muffin-tin model. In this
model we surround the individual atoms with non-
overlapping spheres whose radii are chosen so that
the potentials match at the point of contact along the
line from La center to Sn center. Inside each of
these spheres we take the crystal potential to be the
potential of that particular atom as a free ion and
outside the spheres we take the potential to be a
constant, p. The HS potentials were modified
slightly near the muffin-tin radii so that the La and

La atoms

Q Sn atoms

FIG. 1. Unit cell in real space for LaSn3.
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each reciprocal-space k value used. This set is
equivalent to the matrix equation

II c„=E„Sc„
where

~x
x

~HW

H'„= J y', (r)H'y, (r)dv

S„=fy*;(r) y,(r).d~ .

(6)

FIG. 2. Unit cell in reciprocal space for I.aSn3. The
symmetry points and lines are labeled in the BSW nota.—

tion.

Sn potentials join smoothly along the La to Sn line.
The value of the potential at the joining point was
used for V.

q' (r) =Bc„;P,(r), (2)

where the Q, are known functions and the coefficients
c„,are determined by the variational procedure.
In the MQPW method the expansion functions &f; are
of two types: (i) higher-lying atomiclike functions
which are zero outside the muffin-tin spheres and
(ii) orthogonalized plane waves (QPW's) which ex-
tend throughout the entire crystal and which are
orthogonalized only to the lower -lying atomiclike
functions. (Qur procedure is very similar to that
of Deegan and Twose, differing mainly in the man-
ner of constructing the atomiclike functions. For a
more detailed description of the method than given
here, see Ref. 5. ) For LaSns we orthogonalized the
plane waves to the La ls, 2s, Ss, 4s, 2p, Sp, +,
3d, and 4d atomiclike functions and to the Sn 1s,
2s, 3s, 4s, 2p, 3p, 4p, and 3d atomiclike functions.
The La 5s, 5P, and 5d and the Sn 5s, 5P, and 4d
atomiclike functions were "kept" as explicit expan-
sion functions. The La Bs atomiclike function was
ignored (this point is discussed in more detail be-
low). The variational procedure leads to the set of
equations

where E„is the nth nonrelativistic energy eigen-
value. (We arbitrarily order the E 's from lowest
to highest. ) These equations are to be solved for

MOP% METHOD

%'e write the Hamiltonian for the system as

JJ=B +H"

where Ho= —V + V(r) and H"' represents the rela-
tivistic corrections. In this paper we are concerned
only with H . We approximate the true (nonrela-
tivistic) electron wave function g,„(r) by

Since the Q, are not necessarily orthogonal, S is
not the identity matrix. However, if we define
a (lower-triangular) matrix I by S =Lj,t, we can
write Eq. (4) as

(&)

where H is the Hermitian matrix I 'H 1. 't and
c„=L c„.

The atomiclike functions are Bloch sums of
atomic orbitals, namely, g& exp[ik (v&+s„)]F„,„(r
—&; —s„), where E„,„is an atomic orbital. v These
atomic orbitals are free-atom solutions of the
Schrodinger equation with the modification that they
are zero outside the muffin-tin spheres. These
functions were calculated in a separate program
by solving the Schrodinger equation numerically
using the appropriate HS potential for each atom.
The OP%'s are of the form

P(K,) -~~, a, , c,(r),
where K, is a reciprocal-lattice vector, P{K;)
=e" '"~", the ordinary plane-wave term, and
C,(r) is a lower-lying atomiclike function. For
C, satisfying

(8)

the orthogonalization coefficients a are given by

a&, = (C, ~P(K;))/(C, ~C, ) . (9)

For each symmetry point, group theory is used to
reduce the number of expansion functions for each
representation.

E(k) has been evaluated for the equivalent of 64
uniformly spaced points in k space. Because of the
high degree of symmetry involved, it is sufficient
to take 3.0 points in the portion of k space bounded
by I'hX, FZM, I'AR, XSR, MTB, and XZM, as
indicated in Fig. 2.

For a number of symmetry points we also cal-
culated energy levels using the modified-plane-
wave (MPW) method. ' In the MPW method the ex-
pansion functions Q, of Eq. (2) are either atomiclike
functions or plane waves. Since there is no or-
thogonalization in the MPW method, convergence
from above is guaranteed. The MPW method has
been quite adequately established by Butler et al. ~

in a calculation for copper. Their calculation gave
excellent agreement with that of Burdick, ~~ who
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y
M (r ) 8 t ( Jt+K

y ) ' X' (10)

An unsymmetrized atomiclike function has the form

4~(&)=~e' ''"&~ (r —&~-s.) (11)

Symmetrization, as used here, is defined by

f '(r ) = (h/g) ~P D*„(R)f"(R ' r ),
where the R are members of the "group of f, " a
subgroup of the full 48-member cubic group. The
R of this subgroup must satisfy Rf= k or Rk= k
+K. Dqq(R) is the "one-one" element of the matrix
representing 8, h is the dimensionality of the rep-
resentation, and g is the number of members in
the group. The function f'(r) is the "symmetrized
function" generated from the "unsymmetrized func-
tion" f"(r ).

Symmetrized expressions'4 for the atomiclike
functions and the unorthogonalized plane waves
along with the resulting (MPW) S,&

and H„matrix-
elements are given in an Appendix. For the MOP%
formulation, rather than directly evaluating those
matrix elements which involve OP%'s, we have in-
stead evaluated these elements from the appropriate
MPW elements. The necessary relationships were
given in an earlier paper. "Once the (MOPW)
S,z and H „elements have -been evaluated, Eq. (4)
is put into the form of Eq. (7), as discussed above.
H' of Eq. (7) is then diagonalized using a Jacobi
routine, giving both eigenvalues and eigenfunc-
tions. 6

Computational Difficulties

(i) La 6s. When this atomiclike function was
included as an expansion function, negative values
occurred on the 8-matrix diagonal for some rep-
resentations. There are computational reasons
why this can happen which need not concern us
here. It is conceivable that this is due to over-
completeness of the expansion set. At any rate,
we have simply ignored this atomiclike function;
the five other La s-type functions plus plane waves
should easily make up for the missing La Gs func-
tion. Some representations were calculated both

used the augmented-plane-wave (APW) method.
Both of these copper calculations used the Chodorow 2

potential. For the 11 irreducible representations
for which we calculated energy levels using both
the MPW and MOP% methods, the biggest discrep-
ancy (for a given number of plane waves) was
0.0004 Ry. "

Calculation of Matrix Elements and Diamonalization

In calculating the S&J and H'„matrix elements, it
is sufficient to symmetrize just one of tbe P „g&
functions. An unsymmetrized plane wave (before
orthogonalization) has the form

with and without this function (for a limited num-
ber of plane waves) with essentially identical re-
sults.

(ii) La 4f. There is still considerable confusion
about possible f-type levels. When the HS poten-
tials are used in our program to generate atomic-
like functions, we get a 4f level in La which seems
quite low (about —1.14 Ry). When this function is
included in the crystal calculation as one of the
expansion functions (for a representation allowing
La f symmetry), we get a resultant crystal level
at about —1.14 Ry. Since convergence of our levels
is somewhat better" with this La f function in-
cluded, we have included it (where allowed by sym-
metry) as an expansion function. We feel that
this -1.14-Ry crystal level is, however, a spurious
level, and indicative of a possible inappropriate-
ness of the HS potentials for LaSn3; therefore, al-
though the La 4f function is included as an expan-
sion function in obtaining the energy levels given
in Table II, the "La 4f" levels themselves are not
given in Table II nor were they counted in computing
the Fermi level. The ignoring of these La 4f
levels is supported by the calculation of a few sym-
metry points with a second potential (see below).

SENSITIVITY OF ENERGY LEVELS TO THE POTENTIAL
CHOSEN

To obtain an idea of the sensitivity of energy
levels to the potential, we calculated some I', ~,
and X representations using a second muffin-tin
potential constructed from the self-consistent rela-
tivistic atomic potentials of Liberman. For those
levels whose eigenfunctions do not contain La d, the
Liberman levels are about 0.1 Ry higher than the
corresponding HS levels. For the levels whose
eigenfunctions do contain La d, the Liberman levels
are about 0. 2 Ry higher than the HS levels. The
fact that these relativistic-potential-based levels
are higher than the nonrelativistic-potential-based
levels corroborates the arguments given by Calla-
way et al. ' Figure 3 shows both Liberman and
HS levels for some selected representations in the
I'hX direction. (The Liberman levels as plotted
in Fig. 3 are all 0. 1 Ry below the actual calculated
level. )

When the Liberman potentials are used in our
program to generate atomiclike functions, we get
a 4f level in La at about -0.30 Ry (the correspond-
ing HS value is —1.14 Ry). When this function is
included in the crystal. calculation for the appro-
priate I', &, or X representations, we get La 4f
levels between about -0.33 and —0.40 Ry (the
corresponding HS value is about —1.14 Ry). The
fact that the La f level shifts by about 0.3 Ry in

going from the HS to the Liberman potentials,
whereas d-like levels shift by about 0. 2 Ry and
non. -d-levels by only about 0. 1 Ry, corroborates
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tively. Thus, for the eigenfunctions containing
La d, convergence cannot be obtained until one has
k at least as large as 5.4. For the high-sym-
metry points (I', fl, X, M) it was generally possible
to go beyond a k of 5.4 without exceeding time
and storage limits. Thus most levels for these
points are probably converged to about 0.004 Ry.
For the lower-symmetry points it was frequently
not possible to get to a k,„of either 4.0 or 5.4 and
convergence for many levels for these points is
only good to about 0.02 Ry. In Table II these poorly
converged levels are given to two decimal places
only. The lower levels of Table II (roughly —0.8
to about —1.2 Ry) are generally s-type levels and
are quite well converged for all symmetry points
considered.

(000) (2O0) {400)
4a ~

k

FIG. 3. Comparison of the HS-based and Liberman-
based energy levels for some I'~ representations. The
HS atomic potentials are nonrelativistic whereas the
Liberman atomic potentials are relativistic. To facili-
tate the comparison, all the Liberman-based levels shown
here have been shifted downward 0. 1 Ry from the actual
calculated values. Some of the HS-based levels in Fig. 3
lie slightly above the corresponding Fig. 4 levels, as
fewer plane waves were used for these comparison values.
It should be noted that only the middle and end points of
Figs. 3-9 have actually been calculated and that the ver-
tical scale of Fig. 3 differs from that of Figs. 4-9.

Eo(k) CURVES AND DETERMINATION OF THE FERMI
LEVEL

With the energy levels determined to the pre-
cision indicated above, curves of energy vs k
were plotted in six principal directions in k space
for energies in the range from —0.2 to —1.2 Ry.
These are shown in Figs. 4 —9.

Coordinates for all k used along with the number
of equivalent points for each are given in Table I.
Table II lists nonrelativistic E (k) for the ten sym-
metry points considered for energies between

-0.2-

our having considered the HS 4f crystal levels as
spurious levels. This statement does not imply
that the actual location of any possible f levels in
LaSn, has been settled but only that the Laf
levels are far more sensitive to changes in poten-
tials than the other levels are.
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CONVERGENCE

In the following discussion k~ represents (a/2n)
j k+ Kl and k,„denotes the largest value of k, used
for any particular irreducible representation. For
any given representation all symmetrized K's were
taken in increasing order of k,. up to some value
k,„. Computer time and storage space require-
ments restrict the number of plane waves used.
For LaSn3 the atomiclike functions which contribute
strongly to the crystal energy levels of interest
(energy levels lying roughly between —0. 2 and
—1.2 Ry) are La 5d and Sn 5s and 5p. In plotting
the energy of a given level vs k,„, we have noted
that those levels whose eigenfunctions are composed
mainly of p functions (or of s and p) show a large
drop in energy at a k of about 2. 0 and level off
at k about 4.0. For levels whose eigenfunctions
include large contributions from La d functions, the
corresponding k values are 3.6 and 5.4, respec-
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FIG. 4. Nonrelativistic E vs k for the 1 hX direction.
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example, I'». allows only La d and Sn d atomiclike
functions. As there is no Sn d valence function,
the main atomic contribution to the F25. level at
-0.475 must come from La 5d. In more compli-
cated cases one must analyze the resultant crystal
wave function to determine these atomic contribu-
tions.

Table III lists the major atomic contributions to
levels near the Fermi level for the ten symmetry
points studied. When more than one atomiclike
function contributes, the ratios given are the
squares of the appropriate coefficients c«of
Eq. (2). It must be remembered that the plane
waves also make substantial contributions to the
eigenfunctions associated with each energy level.

CONCLUSION

—
I . 0-

I

4'-

(400)
I

(mao)
4o

(4eo)

FIG. 9. Nonrelativistic E vs k for the XZM direction.

such as I'» and I'». always have identical levels
in each of two and three bands, respectively. It
should be remembered that all levels listed in Table
II are at least doubly degenerate due to spin.

Fermi level. Since the equivalent of 64 uniform-
ly spaced points in k space was used, there are
electrons from 64 unit cells to be placed into the
available states. We consider the lower-lying
atomic electrons to have "flat" E (k) curves and
count only the two 6s and one 5d electron of La
and the two 5s and two 5p electrons of Sn. As there
are three Sn sites per unit cell, there are then
3 La plus 3&&4 Sn or 15 electrons per unit cell or
64&15=960 electrons in all. Dividing by 2 (for
spin) gives 480 levels to be filled with electrons.
We then count up from the bottom of our "levels
of interest" to the 480th level. In counting levels,
one counts a I', level as 1 (one-dimensional rep-
resentation, 1 equivalent point), a 4, level as 12
(two-dimensional representation, 6 equivalent
points), and so on. Continuing, we find the non-
relativistic Fermi level to be at —0.46(8) Ry where
the digit in parenthesis is probably not significant.

Identification of atomiclike functions contributing
to the various crystal energy levels. For some
irreducible representations one can tell immediate-
ly which atomiclike functions must be the main
contributors to levels in the region of interest. For

TABLE I. Values of k and the number of equivalent
points for each k.

BSW
label

r

X

M
A

8
8
T

Order of
group of k

48
8

16

16
6

48
4
8

Number of
like vectors

1
6
3

12
3
8
1

12

12

Wave vector
4'/m

(0, 0, 0)
(2, 0, 0)
(4, 0, O)

(2, 2, 0)
(4, 4, O)

(2, 2, 2)
(4 4 4)
{4,2, 2)
(4, 4, 2)
(4, 2, 0)

Qn comparing energy levels for different poten-
tials for a few selected symmetry points we find
the La 4f levels to have shifted upward by about
0.8 Ry on going from the nonrelativistic HS poten-
tials to the relativistic Liberman potentials. The
d-like levels and the non-d-like levels shift upward
by about 0. 2 and 0.1 Ry, respectively, under the
same potential change. This does not locate any
possible f-like levels in LaSns but merely indicates
that these levels are far more sensitive than other
levels to changes in the potential.

For the high-symmetry points (I', R, X, M), our
nonrelativistic energy levels are generally con-
verged to within about 0.004 Ry. Some of the low-
symmetry points, however, are quite poorly con-
verged —probably to within about 0.02 Ry in the
worst cases. The nonrelativistic Fermi level has
been computed to be -0.47 Ry.

As both La and Sn have fairly high atomic num-
bers (5V and 50, respectively), relativistic effects
should be quite important in the electronic band
structure of LaSn, . In the second, and conclud-
ing, paper" in this series we use perturbation the-
ory to compute relativistic corrections to the
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TABLE II. LaSn3 nonrelativistic energy levels. The labels are the BSW symbols. The third and alternate columns
give the BSW irreducible representation. The fourth and alternate columns give the energy eigenvalues for the respec-
tive bands. All energies are in rydbergs and must be multiplied by —1.0 to obtain the actual value. Energy values given
to two decimal places only represent poorly converged levels (see text).

Label 4gk/7t Rep Band 1 Rep Band 3 Rep Band 4

r

X

M
A

B
S
T

(o, o, o)
(2, 0, 0)
(4, o, o)

(2, 2, O)

(4, 4, o)

(2, 2, 2)
(4, 4, 4}
(4, 2, 2)
(4, 4, 2)
(4, 2, o)

1
1
4/

1
3
1

25/

3
2/

3

1, 196
l. 164
1.099
1.133
1, 042
1, 108
Q. 978
1.057
l. 016
1.077

12
1
1

5/

3
25/

1
5
1

0. 854
0. 933
1.037
0. 926
0. 968
0. 921
O. 978
0. 990
0. 971
1.006

12
2
3/

1
5/

3
25/

2
5
3

0. 854
0. 826
O. 782
O. 897
0. 968
0. 921
0. 978
0. 917
0. 971
0. 886

15
5
5
1
1
1
2'
3
1
1

0. 642
o. 656
0. 678
0. 65
0. 768
0. 745
O. 81
0. 70
0.721
0. 70

Label

r

X

M
A

8
S
T
z

4gk/7t.

(o, o, o)

(2, o, o)

(4, o, o)
(2, 2, o)

(4, 4, o}
(2, 2, 2)
(4, 4, 4)
(4, 2, 2)
(4, 4, 2)
(4, 2, o)

Rep Band 5

15 Q. 642
5 0. 656
5 0. 678
3 0. 65
5 0. 610
3 0. 63

'15 0. 665
1 0. 668

O. 7O7

2 0. 65

15

2
1
5
3

15
4
5

Band 6

0. 642
0. 58
0. 667
0. 62
0. 610
0. 63
0. 665
0. 667
0. 639
0. 57

Rep Band 7

25' 0. 475
2 0. 56
3 0.470
2 0. 56
3 0. 536
1 0.51

15 0. 665
3 0.58
5 0. 639
3 0. 57

Rep Band 8

25' 0. 475
5 0.47
1 0, 459
4 0. 50
2' Q. 467
3 0. 44

12 0.423
2 Q. 45
2 0.43
1 0. 51

Label 4gk/~ Rep Band 9 Band 10 Rep Band 11 Rep Band 12

r

X

A

R
S
T
Z

(o, o, o}
(2, 0, 0)
(4, o, o)
{2,2, o)
(4, 4, o)
(2, 2, 2)
(4, 4, 4)
(4, 2, 2)
(4, 4, 2)
{4,2, o)

25/

5
5/

2
3

12
1
1
3

0.475
O. 47
o. 45
0. 43
0. 448
0.44
0. 423
0. 42
0. 38
0. 45

12
2/

5/

1
5/

3
25'

5
1

0. 427
0. 46
0.45
0.41
0, 40
0.40
0. 35
0.38
0.35
0. 43

12
1
4/

3
5/

3
25'

1
5
2

0.427
0. 38
O. 416
0. 37
0.40
0.40
0. 35
0.37
0. 35
0.39

25
5
1
1
1
1

25/

3
2/

4

0. 33
0.27
0. 366
0. 35
0. 40
0. 35
0, 35
0, 27
0, 33
0.27

Label 4gk/m. Rep Band 13 Rep Band 14 Rep Band 15

(o, o, o)
(2, 0, 0)
(4, o, o)

(2, 2, o)

{4,4, o)

(2, 2, 2)
(4 4 4)
{4,2, 2)
(4, 4, 2)
(4, 2, 0)

25
5
5
3
3
2
1
2
2/

1

O. 33
0. 27
Q. 33
0, 25
0.35
0.26
0. 236
0.27
0.24
0. 26

25
1
5
4

0. 33
0. 25
0. 33
0.20

0. 22

0. 19

0.23

O. 304

0. 20

0.22

0.20

Eo(k) values given here. Comparison with experi-
mental results and further concluding remarks
will be given at the end of that paper.

APPENDIX

Symmetrization

For a given irreducible representation the sym-
metrization procedure used here [see Eq. (12) of

main text] is

f f(r) = 9le)»f~(R)f "(R 'r) . (Al)

[f~"(R ' r) = n, (r) is the function obtained by op-
erating on f,"(r) with R. ] As the D's used here are
real, we drop the asterisk on D» of Eq. (Al). By
using the unitary property of the D's we may trans-
form Eq. (Al) by letting T=R ', summing over
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TABLE III. Atomic contributions to crystal energy
levels near the Fermi level. The third column gives the
major contributing atomiclike function(s). The fourth
column gives the ratio of the squares of the appropriate
coefficients (see text) when more than one function con-
tributes. The ratios are given in the same order as the
labels in column three. It must be remembered that the
plane waves also make substantial contributions to the
eigenfunctions associated with each energy level.

BSW
label

Z3
Z4

Energy

—0. 57
-0.57

Predominant
function(s)

Sn p/Sn s
La d/Sn p

TABLE III. (Cogtjgge g

Ratio

2/2
4/3

BSW
label

I'25]
I f5

X4i
Xss
Xi
X3
X2
X5

Zi
Z3
Zi
Z4

Z4

Z2

Mi
M5s

M,
M2.
M3

Mg

Ai
A3

A3

Ai
A3

R25s

Ri2
Ri5

Si
84
s,
$2

83

T2s

T5
Ti
T2

T5

Z2
Zi
Z3
Zi

Energy

—0.427
—0. 475
—0.642

—0.38
—0.46
—0.47
—0.56
—0.58

—0.416
—0.45
—0.459
—0.470
—0. 667
—0.678

—0.35
—0.37
—0.41
—0.43
—0.50
—0.56

—0.40
—0.40
—0. 448
—0.467
—0. 536
—0. 610

—0.35
—0.40
—0.44
-0.51
—0.63

—0.35
—0.423
—0.665

—0.37
—0.38
—0.42
—0.45
—0. 58

0.33
0.35
0.38
0.43
0. 639

0.39
0.43
0. 45
0.51

Predominant
function(s)

La d/Sn s
Lad
Sn p

La d/Sn s
La, d
Sn p/La d
La d/Sn s/Sn p
Sn p/La d/Sn s

Sn p/Sn s
Sn p
La d/Sn p
Lad
La d/Sn p
Sn p/La d

La d/Sn p/Sn s
La d/Sn p
La d/Sn p
Sn p/Sn s
La d/Sn p
La d/Sn p

Lad
Sn p/Sn s
La d
Sn p
Sn p/Sn s/La. d
La d/Sn p

La d/La s
La d/Sn s
Sn p/La d/Sn s
Sn p/La d/Sn s
Sn p/La d

La d
Lad
Snp

La d/Sn s
La d/Sn p
La d/Sn p
La d/Sn p/Sn s
Sn p/La d

Lad
La d/Sn p/Sn s
Lad
La d
Sn p/La d

Sn p/La d
La d/Sn p
La d/Sn p/Sn s
Sn p/La d/Sn s

Ratio

2/1

5/2

s/5
2/1/1
1O/2/2

4/1

2/1
3/2

3/2/1
5/2
3/1
2/1
2/1
2/1

3/1

5./2/1
3/2

5/1
6/1
S/4/2
5/2/1
2/1

6/1
2/1
3/1
3/2/2
3/2

7/3/2

3/1

9/4
4/1
5/4/1
2/1/1

T instead of T ', and, finally, replacing T by R
obtaining

f,'(r) = (h/g) Z D»(R)f, "(R r)

In the following we use whichever of Eq. (Al) or
(A2) is most convenient in each case.

An unsymmetrized plane wave has the form

(A2)

~ tl(r) sf (k 4K[ ) I'

Symmetrized using Eq. (A2), this becomes

P, '(r ) = (h/g) Z D„(R)e'"
R

An unsymmetrized atomiclike function has the
for m

X",(r) =Q e"'&'"'F„,„(r-7, —s„),

(A3)

(A4)

where j runs over all the unit cells and I"„, is an
atomiclike orbital which can be written as

F„g„(p) = i' [u„,( p)/p] X„(p/p), (A5)

where X„is a cubic harmonic which can be ex-
panded as a linear combination of spherical har-
monics. The i' factor was added to make the S
matrix real. Using Eq. (Al), the symmetrized
atomiclike function becomes

&;(r) = (h/g)Z D„(R)Z e'"'"&""'F„,„(R 'r 7, —s„).-
R

Matrix Elements

The Ko~ and S,&
matrix elements [see Eqs. (5)

and (6) of main text] will be of three types: pl.ane
wave-plane wave, plane wave-atomic, and a~omic-
atomic. As the Hamiltonian operator is invariant
to the group it is only necessary to symmetrize
one of the two functions in the H&& and S,&

integrals.
As the derivation of the final form of these inte-
grals is quite lengthy, we simply list the final ex-
pressions below. In these expressions j, is the
lth spherical Bessel function; the subscript p runs
over the one La and three Sn basis atoms. All
integrals have been multiplied by (g/h)l/4v for
convenience.

Plane Wave-Plane &ave

Sq)
—(W/4v) Q Dii(R)5[k+ K;, R (k+ Kg)]

where W is volume of the unit cell,

&(x, y)= 0, xey
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=1, x=y

H';q = [(k+K»)~+ V)S»»

+g D„(R)[f ' (PV„,(p) —pV) j,(Kp) pdp

+~ e'"'"f" (PV~(p) pV-)jo(Kp) pdp],
Sn

where K =R ~(k+ K&) and p, is the radius of the ap-
propriate muffin-tin sphere. The sum on the Sn
term above may be written

&(K) f (PV (p) PV-)jo(KP)pdp,

with

E(K)=g e'"''~
Sn

( 1)t»f+ tl2 ~ ( 1 )»»g+»»3 ~ ( 1)»»2+ f13

where K= (2m/a)(n&, n~, n~) and the n; are integers.

from an unsymmetrized function on site s„., we
have

S»»
——(1/4»T) jt»

' u„,(P)u„.,(p)dp

xf X (P/P)X (P/P)dpi, (AS)

H»q = (1/4»») g" u„»( p)H„u„.,(p) dp

x f X„(p/P) X»J (p/P) de, (A7)

where
—d' l(l+ 1)H„= »,, + 3 + V(p)
dp p

and

X»(pip)=»»(R)e'"'" "'"'X»(R 'plp) .

The prime on the R sum indicates that only those
R for which some v' satisfies R s„=s„.+ v' are al-
lowed. If the u„,(p) satisfy

Atomic Teem-Plane 8'ave

S,&= s f"u„,(p)j, (Kp)PdP'

H', , =K'S»+ S f,
"

u„»(p)j»(KP) p V„(p)dp,

H. u. r(p) = &.» u.»(p),
then

H]~ = E„gS)~
0

(AS)

(A9)

where K = k+ K& and

S =QD»(R)X„(B)e'" '~
R

with K'=R K —k and B=R K/K

Atomic Term -Atomic Term

For an unsymmetrized function (index i) on site
s„and a symmetrized function (index j) generated

and S;& of Eq. (AS) is zero for nWn'. In our ap-
plication some of our atomiclike functions do not
satisfy Eq. (AS) exactly throughout the entire
range of p because of fitting a cubic function onto
them near p, so that they go to zero with zero
slope. For these functions Eq. (A7) must be used
and not Eq. (A9). Calculation of actual values
indicated that taking H&& and S&z equal to zero for
nWn' was still a good approximation.
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Electron Energy Levels in LaSn3. II. Relativistic Connections Using Perturbation Theory

D. M. Gray and L. V. Meisel
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(Received 21 June 1971)

In a separate paper, electron energy levels in perfectly ordered LaSn3 were calculated non-
relativistically for the equivalent of 64 points in the reciprocal-space lattice using a modified
orthogonalized-plane-wave method. We now use perturbation theory to determine the relativistic
corrections. Starting with Dirac's theory of the relativistic spinning electron and following
Sister we write the final E(%) as E0@) plus mass-velocity, Darwin, and spin-orbit corrections
where the E (k) are the nonrelativistic energy levels previously calculated. The mass-velocity
and Darwin operators do not affect symmetry and thus involve no mixing between different irre-
ducible single-group representations. These two corrections thus cause only a shift in energy.
This shift is calculated by nondegenerate first-order perturbation theory. The spin-orbit opera-
tor does affect symmetry so that those nonrelativistic levels associated with two- and three-
dimensional single-group representations can split. This splitting is calculated by degenerate
first-order perturbation theory. The spin-orbit operator can also mix levels belonging to dif-
ferent irreducible single-group representations providing the nonrelativistic levels are not too
widely separated in energy. Perturbation theory has been used to determine this mixing in
most of the appropriate cases with particular emphasis given to those levels near the Fermi
level. Relativistic E(k) curves are shown for six directions in k space. Using the final E(k),
a Fermi level of —0.50 By has been computed. This is about 0.03 By lower than the nonrela-
tivistic Fermi level. Comparison with the limited amount of existent LaSn3 experimental data
is discussed briefly.

INTRODUCTION

In the previous paper, ' hereinafter referred to
as GMI, electron energy levels in perfectly ordered
LaSn3 were calculated nonrelativistically for the
equivalent of 64 points in the reciprocal-space lat-
tice using a modified orthogonalized-plane-wave
method (MOPW). A muffin-tin model potential,
constructed from the self-consistent nonrelativistic
atomic potentials of Herman and Skillman (see
GM I, Ref. 4) was used. As both La and Sn are rel-
atively heavy, with atomic numbers 5V and 50,
resyectively, relativistic corrections should play
an important role. In this paper we calculate these
corrections using perturbation theory. Starting
with Dirac's theory of the relativistic spinning elec-
tron and following the treatment of Slater we write
the final E(k) as E (k) plus mass-velocity, Darwin,
and spin-orbit corrections where the Ec(k) are the
nonrelativistic energy levels calculated in GM I.

There are good arguments for using relativistic
atomic potentials as the starting point of such a cal-
culation (see GMI, Ref. 19). However, we did not
have such potentials when this calculation was begun
and we further thought it would be of interest to see
how large the relativistic shifts were for the case
in which the unperturbed crystal energy levels were

calculated entirely nonrelativistically. A very few
points (I', 6, X) were calculated both with nonrela-
tivistic and with relativistic atomic potentials as
starting points and the resulting unperturbed levels
were compared in GMI. The fact that the relativ-
istic-potential-based levels lie higher than the non-
relativistic-potential-based levels corroborates the
arguments given by Calloway et al. (see GMI, Ref.
19). It should thus be clear that the present cal-
culation is of a rather preliminary nature.

In QMI and in the present paper we follow the
Bouckaert, Smoluchowski, and Wigner (BSW) nota-
tion for the symmetry points (see GMI, Ref. 3).
The BSW notation is used in both papers for the
single -group representations. For all double-group
representations (except those for A) we follow
Elliott. 3 This is consistent as Elliott works from
the BSW single-group notation. For the double-
group representations for A we follow Koster.
For A, Koster's single-group notation is identical
to that of 88%'.

APPI.ICATIQN OF PERTURBATION THEORY

Following Slater we assume that we can start
with Dirac's theory of the relativistic spinning elec-
tron for a central field and replace the central field
by a periodic potential. The resulting equation is


