
1276 N. M. MISKOVSKY AND P. H. CUTLER

5F. S. Ham, Phys. Rev. 128, 82 (1962).
6N. W. Ashcroft, Phys. Rev. 140, A935 (1965).
M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440

(1966).
J. ¹ Hodgson, J. Phys. Chem. Solids 24, 1213 (1963).

9J. N. Hodgson, Phys. Letters 7, 200 (1963).
H. Mayer and M. H. el Naby, Z. Physik 174, 289

(1963).
~~H. Mayer and B. Hietel, in Proceedings of the Inter-

national Colloquium, Paris, September, 1965 (North-
Holland, Amsterdam, 1966), p. 55.

N. V. Smith, Phys. Rev. Letters 21, 96 (1968).
~38ee, for example, J. C. Sutherland, E. T. Arakawa,

and R. N. Hamm, J. Qpt. Soc. Am. 57, 645 (1967);
R. W. Wood, Phil. Mag. 38, 364 (1919).

A. V. Sokolov, Optical Properties of Metals (Ameri-
can Elsevier, New York, 1967), Chap. 4.

~'J. J. Hopfield, Phys. Rev. 139, A419 (1965).
~6A. W. Overhauser, Phys. Rev. 156, 844 (1967).
~A. Q. E. Animalu, Phys. Rev. 163, 562 (1967).

~ Chian-Yuan Young, Phys. Rev. 183, 627 (1969).
~ A. Karakashian and A. Bardasis, Phys. Letters 32A,

17 (1970).
A. Q. E. Animalu and W. A. Harrison, Bull. Am.

. Phys. Soc. 12, 415 (1967).
2~R. Pick and G. Sarma, Phys. Rev. 135, A1363 (1964).
J, A, Appelbaum, Phys, Rev. 144, 435 (1966)~

B. A. Politzer, N. M. Miskovsky, and P. H. Cutler,
Phys. Letters 27A, 554 (1968).

24L. W. Beeferman and H. Ehrenreich, Phys. Rev. B
2, 364 (1e7o).

25S. Nettel, Phys. Rev. 150, 421 (1966).
S. J. Nettel, J. Phys. Chem. Solids 29, 2221 (1968).

2'M. H. Cohen, in Ref. 11, p. 66.
R. A. Ferrell, in Ref. 11, p. 78.

29M. H. Cohen and J. C. Phillips, Phys. Rev. Letters
12, 622 (1964).

H. Buttner and E. Gerlach, J. Phys. Chem. Solids
3o, 95e (1969).

N. V. Smith, Phys. Rev. 183, 634 (1969).
T. Holstein, Phys. Rev. 88, 1427 (1952).

33R. B. Dingle, Physics 19, 729 (1953).
34R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 35, 965

(1958) [Sov. Phys. JETP 8, 673 (1959)].
A. Tubis, Phys. Rev. 102, 1049 (1956).

3 G. V. Chester, Advan. Phys. 10, 357 (1961).
G. V. Chester and A. Houghton, Proc. Phys. Soc.

(London) 67, 828 (1954).
3 T. Schneider and E. Stoll, Physik Kondensierten

Materie 5, 531 (1966).
N. V. Smith, Phys. Rev. 163, 552 (1967).
K. L. Kliewer and R. Fuchs, Phys. Rev. 172, 607

(1968).
4'G. D. Mahan, Phys. Letters 24, A708 (1967).

PHYSIC AL R EVI EW B VOLUM E 5, NU MB ER 4 15 F EBRUARY 1972

Comparison of Brillouin-Zone Integration Methods:
Combined Linear and Quadratic Interpolation

J. F. Cooke and R. F. Wood
Solid State Division, Oak Ridge Nationa/ Laboratory, Oak Ridge, Tennessee 37830

(Received 16 June 1971)

A combined linear and quadratic interpolation method for Brillouin-zone integration is de-
scribed. Comparisons of the combined method with previously introduced linear and quadratic
approaches indicate that the combined scheme will require the least computer time in most
cases. Calculations of the densities of states of phonons in copper and electrons in nickel are
given as examples. Problems associated with critical points and the intersection of dispersion
curves are also investigated numerically to a limited extent.

I. INTRODUCTION

In order to calculate many electronic properties
of interest in solid-state physics, one is faced with
integrations over the Brillouin zone (BZ) of func-
tions of band energies and wave functions, e. g. ,
electronic densities of states, magnetic suscepti-
bilities, and dielectric-response functions. Such
integrals also arise in many problems involving
phonons, magnons, and other elementary excitations.

Two methods of carrying out these very com-
plicated integrations have proved to be particularly
useful. One is based on a linear-interpolation
scheme introduced by Gilat and Raubenheimer'(GR),
whereas the other employs quadratic interpolation
as exemplified in the "Quad" scheme recently de-

veloped by Mueller et a/. Vfe will not elaborate
on the details of these two different approaches,
since they are quite adequately described in the
references cited. .The GR scheme was originally
developed for treating phonon systems, while Quad
was developed later with applications to electronic
systems as the primary consideration. It is pos-
sible to generalize the original GR method so that
it too can be applied to electronic systems, and
there is considerable interest at the present time
in the relative merits of the two approaches for
various systems.

In the course of using the original GR and Mueller
et al. programs to do BZ integrals it became clear
to us that a combination of these two approaches
might (i) give a single code which could be used for
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a variety of applications and (ii) reduce the total
computer time required for most calculations.
The purpose of this paper is to describe briefly our
combined linear- and quadratic-interpolation pro-
cedure, which we shall refer to as Cl»Q, and to
compare it with its two constituents taken inde-
pendently.

II. LINEAR, QUADRATIC, AND COMBINED METHODS

A. GR Linear Scheme

The GR scheme was initially applied to the prob-
lem of calculating the phonon density of states
from a given force-constant model. The method
breaks up the irreducible segment of the BZ into
very small cells in which the functions f,(k) in-
volved in the integration are expanded to first order
in the wave vector k, i. e. ,

f»(k) =f»(kp)+ (rc —kp) ' &f»(k)
~

g j

k0 is the wave vector at the center of the small cell.
The resulting approximation to the integral inside
each cell can then be evaluated exactly to give an
analytic expression for the integral in terms of the
f»(ko) and the gradients of f, (k) evaluated at ka.
Finally, the results for each cell are summed to
give the integral over the entire irreducible seg-
ment of the BZ. In principle, the size and hence
the number of cells can be varied until conver-
gence is reached. Since, by using group theory,
the integral of any function over the entire BZ
can be reduced to an integral over the irreducible
segment, we, again in principle, can use the GR
scheme to evaluate any integral of any combination
of reasonably well-behaved functions over the full
BZ.

Given the values of the functions and their gradi-
ents at the center of each cell, the evaluation of
the integral in the GR scheme is very fast since
all one does is evaluate an analytic function for
each cell and then sum over all cells in the irre-
ducible segment of the BZ. The calculation of the
functions and their gradients, however, is another
matter. Since the number of cells needed for con-
vergence is rather large, the amount of time re-
quired to calculatef, (ko) and 'Vf»(k) at each ko
becomes very important. In particular, if band
energies are needed, it would require many hours
of computer time to generate from "first-princi-
ples" band-structure programs for the E(ko) and
'7E(k) at enough ko points to make the GR scheme
converge. This fact alone suggests the desirability
of combining the GR approach with some other
interpolation procedure. For some cases, such
as a Born-von Karman force-constant model for
phonon systems with one or two atoms per unit
cell, the entire calculation takes no more than a
few minutes on the IBM 360/91.

It should be apparent from the foregoing discus-
sion that a combination of the two methods might
possibly lead to a further reduction in computer
time and provide a single flexible code which could
be used for a wide variety of calculations. The
most obvious thing to do in combining these schemes
is to use quadratic interpolation to set up the analyt-
ic expressions for the f»(k) fromwhich the gradients
'7f»(k) can be calculated. Thus, we obtain from
Eq. (2)

10

&f»(k) = +~&»~&C»(k) (3)

B. Quad Scheme

The Quad scheme was developed by Mueller
et a/. in an effort to overcome what they felt were
some serious disadvantages of the GR approach
when electronic systems were treated. One of
these has already been mentioned in the preceding
paragraph; another important one which we will
discuss later has to do with the treatment of crit-
ical points. Instead of working entirely within
the irreducible part of the BZ, they chose to work
in a large cube called the "working volume, " e. g. ,
one-quarter of the BZ in a cubic lattice. This
working volume was then subdivided into smaller
ones. By using several ingenious mathematical
devices they were able to set up a very fast method
for obtaining analytic expressions for the f, (k)
based on a quadratic-interpolation scheme in each
of the small cubes. That is,

10

f»(k) = ~~&»»C»(k) (2)
&~1

where the &&& are the expansion coefficients for the
small cube under consideration and the C& (k) rep-
resent linear combinations of products of k„, 4„
k, through second order. There are ten independent
terms in the expansion and the A. ]~ are found by a
least-squares fit to values of f» at 2V points in a
small cube.

Because of the quadratic terms and the fact that
many cubes havepoints in common, only a relative-
ly small number of fitting points are needed to set
up quite accurate interpolation formulas. However,
because of the quadratic terms in the expansion of
the f, (k), Mueller et al. chose a Monte Carlo pro-
cedure for evaluating the integrals. This method
requires a relatively large amount of computer
time when compared with the analytical integration
in the GR scheme. However, in most cases in-
volving electronic systems, the time saved because
of the need for fewer first-principles band energies
greatly outweighs the increase in time due to the
Monte Carlo integration.

C. Combination of GR and Quad
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Since the C, (k) are known simple analytic functions
of k„, k„and k„ the differentiation can be carried
out readily and then programmed once and for all.
With analytic expressions for f;(k) and Vf;(k) known,
the fast GR integration can be used to evaluate the
integrals instead of the relatively slow Monte Carlo
procedure.

One final point should be made here about com-
bining these schemes. Quad was originally set
up to run over the small cubes which together make
up the working volume. The GR scheme runs over
the small cells which collectively make up the ir-
reducible part of the BZ. Thus far, we have found
that the fastest procedure is obtained by first set-
ting up the quadratic-interpolation formulas only
within those small Quad cubes which lie at least
partially inside the irreducible sector of the BZ.
We then subdivide these cubes into the smaller cells
used in the GR scheme. Since the A;& are known
in this Quad cube, we can use the GR integration
scheme to calculate the integral in that part of the
Quad cube which lies inside the irreducible seg-
ment of the BZ and then move on to the next ap-
propriately chosen Quad cube.

III. EXAMPLES AND COMPARISONS

each small cube; it therefore controls the statis-
tical accuracy of the Monte Carlo integration.
The running time of the Quad scheme is a very
sensitive function of N„. Mueller et az. estimate
that 1/o statistical accuracy requires an average
of 10 samplings per histogram box. In fact, if
we have interpreted their statements correctly,
they indicate that N„can be obtained from the re-
lationship

NqM N„= 10 NI, . (4)

Here N& is the number of bands and N& the number
of histogram boxes. Consistent with this statisti-
cal accuracy, it was felt that a value of 10-13 for
M should give acceptable fitting accuracy even
around critical points. If N, and M are held fixed,
an increase in N„ implies an increase in N„and
hence in the Quad running time which is necessary
to retain about l%%uo statistical accuracy.

An important factor to be considered here is
that it is, in general, not necessary to increase
N„beyond a certain value. For example, if the
error inherent in the calculation of the electron
or phonon energy fitting points from a given po-
tential or model is &, then we can keep

For simplicity, we will use calculations of den-
sities of states to illustrate the relative speed of
the three methods outlined above. More specifi-
cally, we will consider calculations on phonons
in copper and electrons in nickel. In all cases,
the parameters which control the accuracy of
each method also strongly influence the computer
time, and so we will first give a brief discussion
of these parameters.

The accuracy of the GR scheme depends on a
parameter K which ultimately determines the num-
ber and magnitude of the small cells into which
the irreducible segment is divided. As we have
used the GR programs, the distance from I to X
of the BZ for an fcc lattice is subdivided into 4K
equal intervals. It has been our experience from
previous calculations that setting K= 9 is sufficient
to guarantee very good convergence, and so we
have used this value in the present calculations.
Although in practice the GR method, like the other
two, represents the density of states by a histo-
gram, the computational time is not very sensitive
to the histogram parameters. This is a result
of the analytic integration which makes the GR
approach, in principle, not a histogram method.

The accuracy of the Quad scheme depends on two
parameters. One of these is the mesh size M de-
fined so that M gives the number of small cubes
in the working volume. The mesh size will deter-
mine the accuracy of the quadratic interpolation.
The second parameter N„gives the number of
randomly distributed k vectors which are used in

where &E is the electron- or phonon-energy band-
width. For the case of nickel, which we will pre-
sent later on, the first-principles band energies
are generally accurate to within several milli-elec-
tron-volts (larger inaccuracies do occur at a few
points) and the bandwidth is about 1 Ry. Thus, for
this case, a realistic upper bound for N„ is about
1800. For convenience and as an aid in making
direct comparisons between the three schemes, we
have used 1800 histogram bins in almost all of the
calculations discussed here.

The accuracy of the CLQ scheme depends on the
same mesh parameter M used in Quad and the If
parameter used in the GR integration. For simplic-
ity, we generally choose K as an integer multiple
of cVi and, in fact, we have found that for 1Vl = 10,
K=M is usually sufficient. Thus, since we keep
M = 10 in all of the calculations discussed herein,
we have K= 10 for the CLQ scheme compared with
K= 9 for the GR scheme. Because the combined
approach utilizes the GR analytic integration, it is
quite insensitive to the histogram parameters.

The first example we give is a calculation of the
phonon density of states for copper based on a
Born-von Karman force-constant model. The re-
sults for the Quad, GR, and CLQ schemes are
given in Fig. 1. The curves were not exactly super-
imposed because they are essentially indistinguish-
able from one another except for small differences
in the region A-B shown on the figure, The dif-
ferences which are observable are evidently due to
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TABLE II. Comparison of CPU times to compute the
electronic density of states of nickel. .

Program

CLQ
Quad

IBM 360/91.

Time in sec ~

30.32
342. 28

VVe discuss the copper results first. It should
be apparent from a careful study of Fig. 1 that the
times shown in Table I must be interpreted with
caution. We were seeking 1% statistical accuracy
from Quad when working with M = 10 and 1800 histo-
gram bins. It can be seen that the result already
approximates the GR curve quite well, with the
major differences coming in the A-B region. To
test the convergence further we carried out a CLQ
calculation with M = 13 which should substantially
improve the quadratic-fitting procedure. The re-
sulting curve was practically indistinguishable
from the GR result in Fig. 1 except near the point
B where there were still some minor differences.
If the statistical noise is ignored, we expect the
Quad scheme to give almost exactly the same re-
sult and so it would appear that the Quad and CLQ
curves would eventually become very nearly identi-
cal to the GR curve. This illustrates the importance
of both statistical and fitting accuracy in the Quad
scheme and suggests that if the accuracy of the
three methods could be made strictly comparable
the time factors in Table I would change.

One might argue that 1800 histogram bins are
really not needed for the copper calculation because
of the relatively slowly varying density of states
(compared with electrons in nickel, for example).
We have carried out a Quad calculation with M = 10
and 180 histogram bins. The number of Monte
Carlo samplings for 1% accuracy was thus reduced
by an order of magnitude compared with the number
used to obtain the Quad curve in Fig. 1. The den-
sity-of-states curve differed little in gross features
from those shown in Fig. 1 but it had become

a factor of 11 faster than the Quad scheme. Al-
though the programs do not lend themselves to a
quantitative step-by-step comparison of the times
involved, the following seems clear. For any
one energy band, the time required by the CLQ
scheme for the evaluation of the energy and gradi-
ents at each k point and for the subsequent GR
analytic integration is greater than the simple eval-
uation of an energy required by Quad. However,
the difference in time from this source is more
than compensated for by the greatly increased num-
ber of k points (randomly generated) which must
be considered to obtain a given accuracy with Quad.

IV. DISCUSSION AND CONCI. USIONS

rather lumpy in places due to the statistical noise
and the relatively large bin width. In fact, without
more refined curves for comparison, some of the
statistical noise might easily be misinterpreted,
although the calculation would probably be quite
useful for many purposes. The time required for
this calculation was about 72 sec on the IBM 360/91.

Comparison of the curves in Fig. 1 appears to
provide information on two other points of interest.
The first of these has to do with the question of how
well the GR scheme can handle critical points.
Mueller et al. state that no linear-interpolation
scheme can accurately treat critical points. For
the relatively simple critical-point structure ob-
served in copper, however, it would seem that the
GR scheme does very well indeed. The other,
somewhat related, point has to do with the problem
of band crossing, which has been discussed briefly
by Gilat and Herman and more extensively by
Janak [Ref. 4(b)]. It is easy to see that the order-
ing of frequencies or energies into bands may some-
times produce cusps, ridges, etc. , in the dispersion
surfaces. One might expect that the Quad and CLQ
schemes, as they now stand, would have trouble
fitting these accurately. That this i.s indeed the
case seems to be borne out by the behavior of the
curves of Fig. 1 in the region A-B and our results
for the CLQ calculation with M = 13. A glance at
the dispersion curves for copper in Ref. 5 shows
that ordering the bands in increasing frequency
produces cusps exactly in the region of 6. 2&&10'

Hz where the deviations of the GRand Quad results
from each other are greatest. As the mesh size
in the CLQ scheme is increased to 13, the deviations
are substantially reduced and those that still occur
do so in a much narrower region around 6. 2&&10'

Hz.
The two curves for nickel given in Fig. 2 are

virtually indistinguishable except for the statistical
noise on the Quad curve. The relative times shown
in Table II can be significantly altered by any change
in the number of random samplings used in the
Quad scheme. Our use of 1800 histogram bins
was dictated by considerations which we have al-
ready mentioned in Sec. III. According to Eq. (4)
a statistical accuracy of 1% for 12 bands and M = 10
requires 1500 samplings per Quad cell or l. 8 &&10~

for the entire working volume and this was the num-
ber we used to obtain the time shown in Table II.
We tried cutting this number down first to 1000 and
then to 500 while keeping N~, the number of histo-
gram bins, fixed at 1800. The former number
gave results which could hardly be distinguished
from the Quad curve of Fig. 2, but with the latter
number quite pronounced differences began to show

up. This suggests to us that for this case Eq.
(4) may tend to overestimate the number of random
points (lV„) needed for a given N„ in order to achieve
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I/q statistical accuracy. This is important be-
cause the Quad running time depends more or less
linearly on N„once M is fixed. With 1000 points
per cell the Quad time is 236 sec, which is still
almost an order of magnitude greater than the CLQ
time. One of the nice features. about the CLQ
scheme is that it is so fast that the parameter con-
trolling the number of linear-interpolation points
is not very critical. Our nickel results also have
some bearing on the question of how well the GR
scheme can treat critical points. It should be re-
called from our description of the Quad and the
CLQ schemes that both approaches are based on
the same quadratic-interpolation fit of the first-
principles band structure. In the CLQ scheme we
make an additional linear interpolation of this
quadratic fit in order to use the GR integration
technique. Thus, if there is any inherent difficulty
in using the linear-interpolation method, it doesn' t
show up on the scale we are using here for this
particular calculation. This was also found to be
true for five other nickel potentials that we con-
sidered.

The nickel calculations presented here do not
permit us to say very much about the problem of
band crossings. In this connection, the reader
should keep in mind that the least-squares quadrat-
ic fitting of the first-principles energies may lead
to new, slightly modified, dispersion curves in
which the cusps, ridges, etc, , arising from de-
generacies are deemphasized. Thus, it is quite
possible that some of the very fine structure on
the curves in Fig. 2 may be spurious. We are
somewhat reassured by an rms error of about 10 3

Ry, which indicates close agreement between the
first-principles energies and the least squares fit
to them for the vast majority of the 916 points in
k space. We found, in substantial agreement with
Janak, that the maximum fitting error was some-
what less than 10 '

Ry, but we also found that the
number of points and bands where errors of this
order of magnitude occurred was extremely small.
Furthermore, these large errors did indeed cor-
relate with band-crossing points and dropped rapid-
ly with increasing distance away from them.

We can summarize our experience with the three
schemes as follows. The most serious drawback
of the GR scheme is the very large number of
"exact" calculations which are needed in order to
justify linear interpolation. This may not be crit-
ical for many phonon problems but for electronic
calculations it is such a limiting factor that one is
almost compelled to couple the GB scheme with
some other interpolation procedure. The Monte
Carlo integration appears to be the major short-
coming of the Quad scheme and the CLQ scheme
eliminates this difficulty very effectively. We
have not yet uncovered any evidence that the GR

or CLQ schemes cannot handle standard critical
points adequately. There is some evidence that
quadratic interpolation may have minor problems
in fitting cusps, ridges, etc. , in the dispersion
surfaces caused by band ordering. We suspect
the same problems will arise with the GR scheme
if it is really necessary or desirable to order the
bands by energy. It may be possible to find ways
around the difficulty and perhaps its importance
should not be overemphasized at this time. The
CLQ scheme combines the best features of the GR
and Quad schemes. It has a particularly signifi-
cant advantage in running time over the Quad scheme
whenever a great many random samplings are
necessary in Quad.

Finally, we would like to point out that the de-
gree of accuracy we have been considering in this
paper is really not necessary for many problems.
We have found both the Quad and CLQ schemes
extremely useful for calculating phonon Green's
functions for use in defect problems, e. g. , per-
turbed projected densities of states, infrared side
bands, Raman scattering, etc. In many of these
cases the experimental information is not yet
detailed enough to demand high accuracy in the
calculations and so the computer time required
by Quad can be kept reasonably modest. Never-
theless, we have now gone over entirely to our
CLQ method for these problems because they in-
volve numerous computations of the relevant
Green's functions and any reduction in computer
time via the integration procedure is important .
For example, by going from Quad with marginally
acceptable accuracy to a highly accurate CLQ
scheme, we were able to reduce the time for a
typical calculation from about 5 to about 2 min on
the IBM 360/91. Because these calculations in-
volve more than just the BZ integration, the above
times do not represent a meaningful comparison
between the Quad and CLQ schemes; they do il-
lustrate, however, that a substantial saving in
computer time can be obtained over an extended
series of calculations. For another problem on
which we have worked, the integrals over the BZ
involved fermion-occupation functions at zero
temperature. In this case we required rather
high accuracy and again found that the CLQ scheme
is faster than Quad alone. We suspect that this
will prove to be true in almost all applications and
particularly so whenever high accuracy is needed.
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This paper describes a set of microwave transmission experiments carried out at a frequency
of 35 GHz and a temperature of 4.2 K, in the presence of a dc magnetic field applied normal to
the plane of the sample. Strong resonant bursts of transmission are observed in samples thin
compared with the mean free path and these are shown to be a new form of cyclotron resonance,
not of the Azbel-Kaner type. These resonances are called "cyclotron phase resonances, "be-
cause they occur when many propagating electrons arrive at the second surface of the sample
with the same microwave phase. This resonant effect arises where there is a la..ge region of
constant mass on the Fermi surface. In thick samples, a high-frequency version of the Gant-
makher-Kaner oscillation is observed. A mechanism is proposed, to explain the propagation
in thick samples, which is concerned with the "topological effectiveness" of the electron orbits.
A measurement of the microwave phase of the oscillation is used to determine the Fermi veloc-
ity by a time-of-flight technique.

I. INTRODUCTION

A thick slab of metal is generally thought of as
nontransparent to microwave-frequency electro-
magnetic radiation when its thickness is much
greater than the skin depth 5. However, there are
conditions under which an electromagnetic wave
initiated at one surface may be detected at the sec-
ond. Various mechanisms which are known to exist
for such effects include conduction-electron prop-
agation (anomalous-field penetration), ' plasma-wave
propagation, 2 spin diffusion, 3 spin-wave propaga-
tion, and antiresonance transparency in magnetic
metals. Other possible mechanisms would pre-
sumably include helicon waves (or Alfven waves) at
high fields and phonons in superconductors.

This paper discusses both experimentally and

theoretically some aspects of the mechanism of
electromagnetic -wave propagation associated with
conduction electrons of long mean free path, at
microwave frequencies, and in the geometry of a
dc magnetic field normal to the plane of the surface
of the specimen. Generically, the phenomena we
shall be studying would be classified as types of
anomalous -field penetration, by which it is meant
that the dynamics of transmission is dominated by
the trajectories of individual electrons in the mag-
netic field rather than by the collective aspects of
the self -consistent fields to which the motion of these
electrons give rise. However, the specific aspects
of anomalous-field penetration which will concern
us here have only recently been observed and under-
stood, '& and the present work is a full exposition
of the ideas and observations of our earlier commu-


