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Comparison of macroscopic (dilatometric) and microscopic (x-ray) precision thermal-ex-
pansion measurements at elevated temperatures has been widely used to obtain the equilibrium
concentration of vacancies in cubic crystals. For noncubic crystals these measurements must
be made in more than one orientation (e.g. , in axial crystals, along both the c and a axes).
Such measurements give information not only on the equilibrium vacancy concentration, but
also on the relative rates of climb of the various dislocations in the crystal, which act as
sources and sinks for the vacancies. Quantitative expressions are obtained for the ratio /Q,
where 6 is the difference between fractional macroscopic and microscopic linear expansions
along the c or a direction in an axial crystal. Consideration is given to the two extreme cases
of dislocation climb, viz. , the diffusion limited and climb-rate limited cases. An important
point is that the measurements, in general, will be sample dependent, so that the samples of
different orientation must be taken from the same single crystal.

I. INTRODUCTION

The use of precision thermal-expansion mea-
surements, both macroscopic (dilatometry) and

microscopic (x-ray lattice parameters), for deter-
mining the equilibrium vacancy concentration in
cubic crystals is well known. It has been widely
used to obtain the concentrations of vacancies in
thermal equilibrium in fcc metals (e. g. , Al, Ag,
Au, and Pb) and more recently in bcc alkali metals
(e.g. , Na and Li). The extension of such measure-
ments to noncubic (specifically, hexagonal) crystals
was recently reported. '" We shall see that such
studies of noncubic crystals offer the opportunity
to obtain information about the sources and sinks
for the vacancies, which could not be obtained in
the case of cubic crystals. The present paper ex-

plores the theory behind such measurements, while
the following paper (paper II) will apply this theory
to a detailed study of single crystals of cadmium.

The determination of point-defect concentrations
from thermal-expansion measurements derives
from the relation

V =Nv,

which relates the volume V of a specimen to the
average volume v of a unit cell, where N is the
number of unit cells. If N is unchanged on heating
the crystal from temperature Tp to temperature T,
and if the volumes at Tp are Vp and vp, and those
at T are V and v, respectively, then 5V/V0=5v/v„
where

6V= V —. Vp,
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~V =V —Vo . (2)

To relate 6v to the change in volume of the unit cell
as obtained from x-ray lattice-parameter measure-
ments is actually a subtle point which was first
discussed by Eshelby' who considered the distor-
tions about the defect in the elastic approximation,
and later in a more general way by Balluffi and
Simmons.

If, however, N changes upon heating up the sam-
ple due to the thermal generation of vacancies and/
or interstitials, Eq. (1) leads to the more general
result

5 V(T)/Vo ——5N(T)/No + 5v ( T)/v 0, (3)

C „(T)= 3(5L(T)/Lo —5a(T)/ao) (cubic), (5)

where L and a are, respectively, the macroscopic
.length and lattice parameter, again taken at both T
and To, and 5 is used in the same way as in Eq. (2).
There are two assumptions made in going from
Eq. (4) to (5): (a) The first is the obvious assump-
tion that 5L/Lo « I, so that higher terms are neg-
ligible. (If this were not valid, the equation could,
of course, easily be corrected. ) (b) The second is
the more subtle assumption that the sources and
sinks for vacancies are distributed randomly with

respect to the three cube axes. If assumption (b)
were not valid, macroscopic length measurements
in different directions would not give the same re-
sults. As an extreme example, consider a long
thin rod and suppose that the sources of vacancies
are the external surfaces. Then the length change
along the long axis would hardly show any evidence
for defect formation, i.e. , the right-hand side of
Eq. (5) would give almost exactly zero. On the
other hand, measurement of the diameter of the
rod as a function of T Mould show the vacancy con-
tribution.

It is well known that dislocations rather than the
external surfaces provide the sources and sinks for
vacancies via the climb mechanism. Accordingly,
the above assumption (b) means, in fact, that the
climbing dislocations are distributed randomly in
a manner consistent with the cubic symmetry of the

where 5N=N(T) N, and-N, is the number of unit
cells at temperature To. In obtaining Eq. (3) we
have dropped the term in 5N6V which is usually
negligible. If, as is the case for most metals, only
vacancies are produced thermally, and if To is
taken sufficiently low that the vacancy concentration
at To is negligible, then 5N/No simply becomes
C„(T), the equilibrium mole fraction of vacancies
at temperature T. Under these conditions

C „(T)= 5 V (T)/Vo —5v (T)/v 0 . (4)

Equation (4) is applicable to a crystal of any sym-
metry. For cubic crystals, one customarily writes

and

&,= (5L(T)/Lo), 5c(T)/c—o

&, = (5L (T)/Lo), —5a(T)/ao,

(6)

where L, and L, are macroscopic lengths parallel
and perpendicular to the c axis, respectively, and
c and a are the corresponding lattice parameters.
The subscript zero and the difference 5 have the
same meanings as in Eq. (3). Since Eq. (4) is also
valid for noncubic crystals, we may make similar
assumptions as we did in going from Eq. (4) to (5)
for the cubic case, and obtain, for axial crystals

C,(T) = 2t, (T)+t,(T) . (8)

Equation (8) is the basic relation from which the
vacancy concentration may be obtained from com-
bined dilatometric and x-ray measurements on t;vo
properly oriented samples. The experiments, how-

crystal. Thus, for example, edge dislocations
with Burgers vector b along [110]are equally prob-
able to those for which b is a.long [IKO], [101], etc.
Since samples used for dilatational measurements
are often relatively long thin single crystals, or if
polycrystalline, worked into long thin rods, it is
by no means obvious that the rod axis will not in
some way be preferred. This point has not been
given the discussion in the literature that it de-
serves. Nevertheless, in a number of past (un-
published) experiments on Pb using a differential
dilatometer, the present authors looked for devia-
tions in L(T) among different samples with negative
results; fully systematic experiments were not
carried out, however.

If we accept the assumption of randomly distrib-
uted sources and sinks, it is then clear that dilato-
metric measurements in cubic crystals give no in-
formation on the relative effectiveness of various
types of dislocations which serve as sources and
sinks for vacancies. In the present paper, we will
show that as soon as one turns to crystals of lower-
than-cubic symmetry this statement is no longer
true. Rather, the combination of dilatometric and
x-ray measurements gives information not only on
the concentration of vacancies but also on the dis-
locations which equilibrate them. In view of the
greater interest in axial crystals (hexagonal, te-
tragonal and trigonal) as compared to those of still
lower symmetry, we will confine our analysis to
axial crystals.

In the case of axial crystals there are two inde-
pendent thermal-expansion coefficients, one paral-
lel to the c axis (the major symmetry axis) and the
other perpendicular to the c axis or in the basal
plane. ' Expansion in the basal plane is isotropic.
For the comparison of macroscopic and microscopic
expansion, one may define two quantities 4, and
~, by
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(~.), = (~.), cos~», ,

(4,),= (d „),sing, cos Q, .
(io)

Here g and P are the polar coordinates of n with

ever, provide tzvo independent functions of tempera-
ture, h, (T) and r, (T), while Eq. (8) utilizes only a
linear combination of these measured functions.
There is, therefore, information contained in the
experiments in addition to C„(T). This additional
information is most conveniently expressed as the
ratio 4,(T)/&, (T). It is the significance of this
ratio that we wish to determine. We will show in
this paper that the quantity b,,/6, measures an
over -all property of the totality of dislocation
sources and sinks for vacancies in the crystal,
which may be sample dependent.

II. THEORY OF DcIJ'~a FOR AXIAL CRYSTALS

The dislocations which should be considered as
sources and sinks for vacancies at temperatures
close to the melting point are those originally pres-
ent in the well-annealed crystal in local thermal
equilibrium. The basis for this statement is that
cooling and heating rates in dilatometric experi-
ments are sufficiently slow that the sample is not
strained, and also that supersaturations are never
great enough to give rise to the nucleation of dis-
location loops of the type produced upon rapid
quenching. "

Consider a dislocation segment l shown in Fig.
l(a), which is a diagram of the slip plane defined

by both / and the Burgers vector b. I,et n be the
unit normal to / which lies in the slip plane, and P
the angle between b and n. Thus p = 0 for an edge
and —,

' ~ for a screw dislocation. Climb of the dis-
location segment takes place in the plane perpen-
dicular to n, as shown in Fig. 1(b). Thus, to first
order, all dimensional changes resulting from such
climb must be parallel to n. Let us define (b„), by

(&„),= [(6L/L )„—(bd/d )„], , (9)

where (4L/L, )„and (&d/d, )„rea, respectively, the
fractional change in macroscopic dimensions and
in lattice spacing parallel to n, and the subscript i
refers to the dislocation type, defined by b and n.
Thus (6„), is the difference between fractional
macroscopic and microscopic dimensional changes
in direction n due to climb of dislocations of type i.
By an argument analogous to that which led from
Eq. (1) to (4), it follows that (b,„),=(C„)&, where
(C„), is the concentration of vacancies generated
by the climb of dislocations of type i. Since (5L/Lo)„
and (5d/do)„are (to first order) components of a
strain tensor, like thermal-expansion coefficients,
these quantities and their difference may be re-
solved into components (6,), parallel to the c axis
and (4,), parallel to the a axis, according to

n

(a) (b)
FIG. 1. {a) Diagram of slip plane, showing a segment

of dislocation line l, its Burgers vector b, and the unit
normal n. (b) Three-dimensional view showing the extra
half-plane which increases or decreases in area as climb
occurs ~

(dC„)(= (d&„),= —v, A(r)ddt, (12)

where e, is the atomic volume, A, the dislocation
density (length per cm~) of type i, and the minus
sign comes from the fact that gene~ation of vacan-
cies requires a negative o. It is easily shown that
the speed s& of dislocation climb is related to the
climb rate x& by

s, =v,r;v/(b cosP, ) .
From the first of Eqs. (10), together with Eq.

(12), we may obtain the total 4, of the crystal by
summing over all dislocation types and integrating
over time:

respect to the crystal axis, i.e. , g is the angle
between n and the c axes, while P is the angle be-
tween the projection of n in the basal plane and the
a axis. Equation (10) represents the purely geo-
metrical aspect of dislocation climb.

We now consider the presence of a distribution of
dislocation types each having its own density,
Burgers vector and polar angles, as well as climb
rate r &(T) defined as the number of vacancies ab-
sorbed per second, per unit dislocation length, and

per unit vacancy supersaturation. The supersatura-
tion v(T, t), which depends on both temperature and

time, is defined in the usual way, as

o = ln(C„/C„) =(C„/C„)—1,
where C„ is the actual vacancy concentration and

C„ its equilibrium value at that temperature, and
the approximate equality applies when o «1. In
the present type of experiment o is always small,
but depends on the time-temperature history of the
sample. Because of the small value of cr, it is rea-
sonable to take the climb per second as proportional
to o (as implied by our definition of r, ) From.
these definitions, the concentration of vacancies
generated in time dt by dislocations of type i is
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&,(T) = v, ~5, A& cosg&I, (T), (14)

where I,(T) is the time-temperature integral

I,(T)= —j „„~,(T)o(T, t)dt

from a relatively low temperature To at t = 0 over
a time-temperature history T(t). I,(T) is thus the
total number of vacancies generated by a unit length
of dislocation line of type i in going from To to T.
The summation g, over dislocation types may be
over a continuous distribution (where integration
is then implied), e. g. , it may be thought of as a
summation over Burgers vectors and an integration
over the polar angles (g and g) of the unit normal
n. Similarly, we obtain for 4„

&,=v, &~, A, sin $, cos Q, I,(T) . (i8)

Just as in the cubic case [assumption (b), following
Eq. (5)J, in the absence of information to the con-
trary, we assume that climbing dislocations are
distributed in a crystallographically random man-
ner. This means that the length A, of all crystallo-
graphically equivalent dislocations is the same.
Obviously, ~P, and I, are the same for equivalent
dislocations. Thus cos~p, may be replaced by its
average value. For an axial crystal, it is not dif-
ficult to show that (cos~P, )„=-,'. We therefore ob-
tain, for the desired ratio, the result

b,,(T) 2g, A, cos'q, I, (T)
A, (T) g, A, sinai, I,(T)

To proceed further, one must examine the inte-
gral I,(T). Based upon what has been said so far,
it might be expected that I,(T) is a function of the
time-temperature history in arriving at final tem-
perature T. However, we will now show that under
the conditions of a dilatation experiment, I, for each
dislocation type is independent of history and is a
function only of the final temperature T. The basis
for this conclusion is that the temperature is varied
slowly enough that the vacancy concentration is al-
ways very close to equilibrium. Thus, consider
the case of constant temperature T and apply Eqs.
(ii) and (12) to get

(21)

The first term on the right-hand side is the change
in (- o) with time at constant T, taken from Eq.
(19). The meaning of the last term in Eq. (21) is
—(Bv/BT)„ i.e. , the increase in (- o) that would

occur due to heating by dT if the time-dependent
decay did not take place. In view of our assump-
tion of a very rapid equilibration, however, over
a small finite temperature interval 5T the time-
dependent decay given by the first term will elimi-
nate the increase in (- o) just as rapidly as it is
produced by the heating. The total increment 5(- o)
is then very nearly zero. This means that the
quantity odt which appears in the integral (15) may
be calculated from Eq. (21) by setting d( —o) equal
to zero. Accordingly,

I,(T)= ' " dT,, g(T) dT
(22)

where g(T) is given by Eq. (20). The integral is
independent of the time-temperature history of the
sample, which completes the proof. Inserting Eq.
(22) into (7) then given a general expression for
A, /A, .

An interesting special (but unrealistic) case is
that which only one dislocation type is present. In
that case the integral I(T) and the dislocation den-
sity cancel in Eq. (I'7), to give

b, /b, =2cot g, (23)

time is much less than the time to raise the tem-
perature appreciably. This latter time is 6T/y,
where y is the heating rate and 5 T is a small tem-
perature change, of the order of 1 'C. (Experi-
mentally, we have ample evidence for the validity
of this assumption, see paper II. ) We may write
the total change in cr in an infinitesimally small
time-temperature interval. However, since the
temperature is considered to be increasing with

time, it is more convenient to use the undersatura-
tion —a rather than the supersaturation as the quan-

tity of interest. Thus,

dC„—da
dt "dt=Cv = -Va+ f~Ff ~

which may be written

do vg 0

dt V„

where

g(T) =- v, Z, A, r,

(18)

(i9)

i.e. , the ratio depends only on the angle $ between
n and the c axis.

The general problem may be simplified further
by considering two extreme situations under which
climb may take place, namely, diffusion-limited
and climb-rate-limited processes. These two
cases have been discussed by Lothe, ' and Friedel,
Thomson and Balluffi, ' and others. We consider
the two cases in turn.

and r ~—= g/C„. This result means that at a constant
temperature, 0 decays exponentially with time
constant 7'. Let us assume that this equilibration

A. Diffusion-Limited Climb

In this case the creation (or annihilation) of
vacancies at the dislocation core is rapid enough
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C„

0 I SLOCAT I ON
LINES

(b)

and perpendicular to the c axis (D, and D„respec-
tively) are, in general unequal. This anisotropy is
probably not too serious, however, since at least
for metallic axial crystals, D, and D, usually differ
by less than a factor of two near the melting point. '
Furthermore, most dislocation lines are so oriented
that the diffusion illustrated in Fig. 2(b) involves
both D, and D, rather than just one of these coeffi-
cients. The second problem relates to the depen-
dence of climb rate on dislocation separation 8
which is given by' '~

(24)

in which D is the coefficient of self-diffusion (as-
suming isotropic diffusion) and Ro is a small cut-
off distance. This dependence of climb rate on R
is only through the logarithmic term, and it is
therefore reasonable to consider that even if R
were to depend on dislocation type i, the effect upon
r; is relatively unimportant. Thus we conclude
that, in the case of diffusion-limited climb, the
integral I, is approximately independent of i, and
it therefore cancels out of Eq. (17) to give

(c)

g;A;cos g;
(25)

0

FIG. 2. (a) Two dislocation lines separated by a dis-
tance R. (b) Schematic illustration of the profiles of
vacancy concentration at successive times (0, 1, 2, ... ,
~} in the case of diffusion-limited climb, and (c) the
corresponding vacancy concentration profiles in the case
of climb-rate limitation.

to maintain equilibrium immediately adjacent to the
dislocation. The rate of climb is then controlled
by the rate at which vacancies diffuse toward or
away from the dislocation line. Recall that I;(T)
is the total number of vacancies generated by a unit
length of dislocation line of type i when the sample
is heated from To to T. In the diffusion-limited
case, this integral depends only on the rate of dif-
fusion of vacancies away from the dislocation line.
This involves, approximately, a cylindrical diffu-
sion problem as illustrated in Fig. 2(b), in which
A is the mean spacing between parallel dislocations.

If diffusion were isotropic, and the distance 8
over which diffusion occurs were independent of
dislocation type i, then I,(T) would be independent
of i, i.e. , all unit dislocation lines would generate
vacancies to the same extent. Actually neither of
these two requirements are met. First, in an axial
crysta, l, the coefficients of self-diffusion parallel

In this approximation, the ratio 6, /n, , is therefore
independent of temperature. The major contribu-
tion to &, comes from dislocations for which g is
near zero, while the contribution to ~, is mainly
from those for which g is near —,

' ~.
It is also worth mentioning the intermediate case,

in which the diffusion-limited approximation applies
to a substantial fraction of the dislocation types,
but not to all of them. In this case these types will
dominate in the process of generation of vacancies,
since they are able to generate vacancies just as
fast as the defects can diffuse away into the sur-
rounding lattice. Accordingly Eq. (25) may still
be expected to be valid, but with the summation
taken only over the diffusion-limited-dislocation
types.

B. Climb-Rate Limitation

This is the opposite extreme to case A, in which
diffusion is rapid enough relative to climb that al-
most no concentration gradient is present during
the equilibration process. The concentration pro-
files are then, ideally, as shown in Fig. 2(c). In
general, I,(T) is a different function of temperature
for different types i, and &, /&, is then a function
of temperature. Qn the other hand, it is still pos-
sible for this ratio to be nearly independent of tem-
perature if for each type i, ~;(T) takes the form

(26)

in which Vl, depends on i but not on T, while f(T) is
independent of i. The quantity g; may then be re-
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garded as the relative climb efficiency for a dislo-
cation of type i .Actually, Eq. (26) is predicted by
the jog-model of climb considered by various au-
thors (see, e. g. , Friedel 7) in which the activation
energy E for the climb process turns out to be the
sum of the activation energy for self-diffusion Q, ~

and the jog-formation energy U&. Other terms can
appear, however, to complicate the situation. '
Nevertheless, if f(T) is dominated by ezpt-(Q, ~

+ U~)/kT] and, if U; is independent of dislocation
type i, then Eq. (26) is valid. In that case &, /+
is given by

+e

g& A& il; sin g;
(2V)

which is the same as Eq. (25), except that the con-
tribution of each dislocation type is weighted by its
relative climb efficiency g, .

Which of cases A and B is valid for specific ma-
terials may be difficult to evaluate, and in fact, the
usual situation may be intermediate to these two
cases. The most detailed model of dislocation
climb is that of Thomson and Balluffi who assumed
that, for the case of subsaturation (o (0), vacancies
are produced at jogs and then diffuse rapidly along
the core where they either jump off into the lattice
or are destroyed again at other jogs. For super-
saturation (o )0), arriving vacancies diffuse along
the core where they may either jump off or be an-
nihilated at a jog. Thomson and Balluffi separate
the above two cases A and B in terms of a param-
eter eL, where L is the average jog spacing and
~ ' is the mean distance that a vacancy travels along
the dislocation before jumping off. They show that
if nL (3, the diffusion-limited case applies, since
vacancies in excess of equilibrium have a higher
probability of reaching a jog than of jumping off.
On the other hand, if ~L)3, many vacancies jump
off the dislocation before they are annihilated. In
this range the activation energy for climb contains
Q,~ and U& as well as other terms, but for crystals

with a high jog energy, the sum Q„+U, will domi-
nate. Seidman and Balluffi have compared a va-
riety of experiments (primarily on gold) with theo-
retical expectations and conclude that in a number
of cases, climb occurs with high efficiency, i.e. ,
under diffusion control. However, most of their
work is done at moderate to high supersaturations,
in contrast to the present type of experiment.

III. CONCLUDING REMARKS

It has been shown that, unlike cubic crystals, the
study of high-temperature thermal expansion by
dilatometry and x rays in axial crystals does give
information on dislocation climb. This information
is lumped into one parameter 6, /b, „ the ratio of
the dimensional changes caused by the climbing dis-
locations parallel to the c axis to that in the basal
plane. This ratio may in general be a function of
temperature, although in special cases discussed
it is essentially independent of temperature. Al-
though b, /a, is a composite measure of the over-
all dislocation effect, it gives an indication of the
relative importance of nonbasal to basal dislocations
in the climb process in axial crystals.

An important result of this work is the realization
that in axial crystals, the measured values of the
separate quantities 4, and 4, are dependent on the
particular dislocation distribution in the samples
and may therefore be dependent on the method of
preparation of the sample. Only the combination
&,+2~, should be sample independent. In order to
obtain the correct vacancy concentration from Eq.
(8), therefore, both the c-oriented and a-oriented
samples should come from the same crystal. This
point will be given special attention in the work on
cadmium in the paper that follows.
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Precision measurements of macroscopic thermal expansion 6l/lo and microscopic (x-ray)
thermal expansion ddldo have been carried out for cadmium single crystals in both the a and
c directions, between room temperature and the melting point. In accordance with the pre-
diction of the previous paper (paper I) it was found that the difference b =(6L/Lo) —(5d/do)
in a given direction is sample dependent. Accordingly, information on the equilibrium defect
concentration was obtained from samples cut from the same large crystal. The mole fraction
of vacancies in equilibrium, given by 24, +b~, has the value 5. 6&& 10 at the melting point.
The results as a function of temperature are consistent with an interpretation in terms of
monovacancies only, with enthalpy and entropy of formation, respectively, of (0.40+ 0. 02)
eV and (0.3 +0.4) k. With the aid of self-diffusion data, appropriate vacancy-migration
parameters are also obtained. In addition, the ratio &,/&, is found to be independent of tem-
perature, and is interpreted in accordance with the theory of paper I. In particular, it is
found that nonbasal dislocations play a large role as sources and sinks for vacancies.

I. INTRODUCTION

The previous papert (henceforth called paper I)
discusses the theory involved in the comparison of
precision dilatometric and x-ray thermal-expansion
measurements at high temperatures for axial crys-
tals. It is shown that if vacancies are the pre-
dominant defects present in thermal equilibrium at
temperatures near the melting point, the vacancy
concentration is given by

where b, -=(5L/Ls) —(5d/ds) is the difference be-
tween the macroscopic and microscopic expansions
between the reference temperature Tp and an ele-
vated temperature T. The quantity C„(T) is a ther-
modynamic quantity and, therefore, should be in-
dependent of the sample studied. On the other
hand, it is pointed out that the separate quantities
4, and 4, may be sample dependent. The major
emphasis of paper I is on the interpretation of the
ratio b,,/6, in terms of the parameters of disloca-
tion climb.

Equation (1) gives the total number of vacant lat-
tice sites regardless of whether or not vacancies
are combined into higher clusters (divacancies,

trivacancies, etc. ). If, however, primarily mono-
vacancies are present (as has usually been the case
for cubic crystals ), C„(T) is given by

C„(T)=A e "ui (2)

with

A=g v~~s~

in which H~ and S~ are, respectively, the enthalpy
and entropy of formation of a vacancy. These two
parameters may then be obtained, in the usual way,
from the slope and intercept, respectively, of a
plot of lnC„vs T ~.

The present paper is concerned with describing
measurements of A, (T) and b,,(T) for metallic cad-
mium, in order to obtain the quantities H~ and S~,
as well as to examine the ratio 4, /4, in terms of
the dislocation-climb theory presented in paper I.
In view of the indication in that paper of possible
sample dependence of ~, and b„we have carried
out the principal measurements on samples cut
from one large single crystal. In addition, how-
ever, data were taken on several other crystals
to see if the predicted sample dependence does, in
fact, occur. The results are then compared with
those reported recently for other hexagonal metals


