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The theory of diffusion-controlled correlated reaction kinetics is developed for the radiation
boundary condition (RBC) at the reaction surface. Limited only by the assumptions of purely
radial spatial dependence, of a spherical reaction surface, and of continuum diffusion, these
results comprise a complete solution for these kinetics. The limiting solutions are obtained
for the case of the Smoluchowski boundary condition (SBC) at the reaction surface; numerical
solutions are presented, as are the analytic forms of certain limiting cases. The initial re-
covery for the RBC is linear in time, whereas for the SBC it is well known to be proportional
to the square root of time. The discussion is presented in the context of radiation damage in
solids, although the results are applicable to other fast-kinetics systems, e. g. , radiation and

photophysics, chemistry, and biology.

I. INTRODUCTION

The treatment of diffusion-controlled reaction
kinetics goes back to Smoluchowski. ' He showed
that in a system of randomly dispersed reacting
species (in his case, molecules coagulating to form
colloidal particles), there is an initial fast process
arising from the fact that in the uniform distribution
of reacting species some are very close to each
other and can react with very little diffusional mo-
tions. This fast process is enhanced when the
reacting species are not uniformly distributed with

respect to each other but have an initial spatial
correlation between reacting species. While cor-
related reaction kinetics is a special case of diffu-
sion-controlled processes, it nonetheless occurs
widely, since often the physical phenomena which
create the reacting species produce them with a
spatial correlation, and a major motivation for
studying this kinetics is the elucidation of these
phenomena. For example, when energetic colli-
sions dissociate molecules or create free radicals,
ion-hole pairs, electron-hole pairs, vacancy-in-
terstitial pairs, etc. , the kinetics describing the
recombination (and other fate of the species) must
perforce reflect the initial correlation of the parti-
cles arising from the production process. Thus
such kinetics occur in many areas of physics,
chemistry, biology, etc. , in particular, the radia-
tion and photosubfields. We will discuss the prob-
lem in terms of the radiation-damage example,
e. g. , lattice vacancy-interstitial (Frenkel) pairs;
it is here that the theory has advanced furthest and

received its most thorough application and testing.
Briefly, in radiation-damage experiments an

energetic collision displaces a lattice atom, creat-
ing an interstitial atom and leaving behind a vacan-
cy. The dynamics of the displacement process is
generally such that the interstitial is close to the
vacancy. Several regimes can be distinguished.

First, the displaced inte stitial can stop its outward
motion at such a smal' distance from the vacancy
that they strongly interact and immediate recombi-
nation occurs; the collisio~ has heated the lattice,
but no Frenkel pair results. Second, the interstitial
may stop beyond this spontaneous-recombination
volume but still come to rest in a site where it in-
teracts statically with the vacancy; at a sufficiently
low temperature the interstitial will be frozen in
its site —a bound Frenkel pair exists and is termed
a "close pair"; when the interstitial, say, is
thermally stimulated to,jump, the intera=tion im-
pels the interstitial to return to its vacancy with
very high probability. Third, the interstHi;:t, l may
come to rest beyond the close-pair volume; when
the interstitial subsequently moves, it undergoes
a random walk oblivious of the near presence of
its own vacancy. This is precisely the regime of
correlated reaction kinetics: The interstitial still
has a significant probability of encountering the
capture volume of its own va, cancy (correlated re-
combination), simply because of the spatial corre-
lation, but the interstitial also may "escape" the
correlation and undergo uncorr elated re combination
or other processes.

These concepts were introduced into .adiation-
damage literature by Fletcher and Brown, who ob-
tained approximate analytic expression, for the
various stages and an outline of the more complete
treatment. They considered both a continuum dif-
fusional treatment and the numerical treatment of
diffusion in a discrete lattice' by difft rence equa-
tions. Waitee 5 developed the continuum theory
into a mathematically sophisticated comprehensive
form. He considered two boundary conditions at
the recombination surface: (i) the Smoluchowski
boundary condition (SHC) —the concentration of the
diffusing species (interstitial) is set to zero at the
boundary at the initiation of diffusion and remains
zero throughout the problem; and (ii) the radiation
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boundary condition (RBC)—the gradient of the con-
centration is proportional to the concentration. The
SBC leads to simpler mathematics and gives solu-
tions which seem quantitatively applicable to experi-
ments. "" The RBC is more general, since it
contains the SBC as a special case, and, physically
speaking, allows for (fractional) reflection of the
interstitial from the vacancy capture volume. That
partial reflection can occur experimentally is im-
plied in the Wertheim" ' model for defects in
semiconductors and of course by the accommodation
coefficient in precipitation.

Waite obtained solutions of diffusion-controlled
kinetics for the SBC for the case of a uniform initial
distribution of reacting species and for the case of
an initially correlated distribution; he also obtained
the solution for the RBC for a uniform distribution.
We present the solution for the RBC for an initially
correlated distribution.

In See. II we review the elements of the Waite
formulation. In Sec. III we obtain separately the
solutions for the correlated recovery and for the
uncorrelated recovery; in Sec. IV we obtain the full
solution for both correlated and uncorrelated re-
covery. Section V contains the concluding discus-
sion.

II. ELEMENTS OF WAITE FORMALISM

r=r —r (2. 3)

We will assume without loss of generality that the
interstitial is the migrating species. Letting D = D,
and employing (2. 3), we write (2. 2) as

D'7 p;J( r, t) + f„(t)p;;(r, t) = s,p;;(r, t) . (2. 4)

An additional assumption made in the Waite calcu-
lation is that there is spherical symmetry about
each vacancy; i.e. , the capture surface is a sphere
and the distribution function is a function of radius
only. While this hypothesis is of dubious validity,
the gross features of the recovery process may not
be very sensitive to the symmetries of the damaged
material, and we shall take spherical symmetry as
approximate. If the recombination surface is a
sphere of radius xo, then with Waite we can write

NO N N»
0

f;;(4)= —4w~j'j44 C' (4,4;,),,+ ~' ~ (4,4;)„)
V k&j I m&i

(2. 5)

The Frenkel pairs produced in electron irradia-
tion in the MeV energy range are randomly distrib-
uted throughout the sample, which we otherwise
assume to be homogeneous. The spatial dependence
of the p„can thus be completely described by the
coordinates

The probability of finding an interstitial at a given
position in the irradiated crystal will depend, in
general, on the locations of the vacancies in its
proximity. Hence the rate of change of defect con-
centration will depend in an average way on the joint
probability that an interstitial is in an element of
volume at some position and that a vacancy is in
another element of volume at some other position
at the same time. More precisely, the quantity of
interest in the Waite theory ' is the probability
that the ith vacancy is in dV; at r; at time t and the
jth interstitial is in dV, at r; at time f, which is
denoted as

p;;(r;, r„ t)dV;dV, . (2. I)

2 2D»+ p 4+Dr+4 p 4+f;4'('t)p;, = S'& p;; (2. 2)

where the f;;(t) act as time-dependent chemical
rate-of -reaction coefficients; D~ and D, are the
vacancy and interstitial diffusion constants.

The functions p;,. are probability densities in the
six-dimensional hyperspace spanned by the set of
ordered pairs (r;, r&). In a given elemental hyper
volume dV;dV, , the time rate of change of p;, is
due, in part, to the next flux of probability current
through the bounding hypersurface and, in part, to
the probable rate of recombination of the ith vacancy
with all interstitials in dV; and of the jth interstitial
with all vacancies in d V,. As Waite demonstrates,
the p;; then satisfy

Ny
0

dCI dCy 2=- 4mxoD~
i=1

~ (s,p;,)„,
j=1

(2. 6)

p, ,(», t)= " ' exp ) f,,dt
0

(2.7)

The task then focuses on solving the simple one-
dimensional diffusion equation

DS„'w;, (», t) = &, (wt»), (2.8)

with appropriate boundary conditions. Since all of
the spatial variation of p;; is contained in w;, /»,
we designate w;, as the p»inciple function. In what
follows, we concentrate mainly on developing ex-
pressions for principle functions compatible with
a variety of boundary and initial conditions.

where C, and C~ are the macroscopic concentra-
tions of interstitials and vacancies, respectively,
and N~z and N» are the corresponding initial num-
bers. Equation (2. 6) indicates the precise manner
in which the defect concentration is related to the
joint probability functions. Of course, to evaluate
(2. 6) it is necessary to solve (2.4); the system
given by (2. 4) and (2. 5) forms a set of coupled
equations which, from a mathematical point of
view, may present a formidable problem. We will
return to this point later.

A formal solution to (2. 4) can readily be achieved
by the substitution
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(&,p;;).,= &p~~(»0 t) (2. 11)

for all i and j, which for the principle function be-
comes

For the physical circumstances with which we
are interested, the ith vacancy and ith interstitial
will display a coupling due to spatial correlation.
If the members of all the uncorrelated vacancy-
interstitial pairs are related to one another in es-
sentially the same manner (i.e. , there are no dis-
tinguished pairs), there will exist two fundamentally
different solutions to (2. 8) reflecting spatial corre-
lation or lack thereof. We need consider, there-
fore, only the two separate cases of Eq. (2. 8),
along with the associated boundary conditions, in
which i is, and is not, equal to j; If we rewrite
(2.6) in a trivial way as

Ny
0

Ng
0

"„'=-=4-.*»= (~,. ), .&(~~„)„),
(2. 9)

then, in view of the above argument, a distinction
can be drawn between the two contributions to the
rate-of-defect depletion on the right-hand side; the
first term is due to correlated recovery, the second
to uncorre lated recovery. The physical expectation
is that the former will dominate during early an-
nealing times, while the latter, because diffusion
"washes out" the correlative aspects of the prob-
lem, should become the major term in the late
stages of recovery.

The final point to be mentioned in this brief re-
view of the W3ite theory deals with the boundary
condition imposed on solutions to (2. 8) for radial
separations equal to x0. The SBC expresses the
assumption that the vacancy and interstitial re-
combine spontaneously whenever they pass within

the critical distance x0 of each other, and requires
that the probability of finding a vacancy-interstitial
pair with spatial separation x0 vanishes, i. e. ,

p;;(»0, t) = 0 for all i, j and all t . (2. 10)

Instead of demanding that recombination be inevi-
table at the critical approach, we may assume that
it is only highly probable, and thus that there is a
small but finite probability of escape from reac-
tion. This circumstance can occur if, for instance,
the recovery mechanism requires some activation

energy, however small, and will certainly exist
when the activation energy for recombination is
comparable to or larger than activation energies
for free diffusion. Waite has given boundary condi-
tions appropriate to such a system called the radi-
ation boundary conditions (RBC) in analogy with
those of similar form in the problem of heat trans-
fer. ' Explicitly, we have

for all i and j, where

y = (Pro+ I)/ro . (2. 13)

The RBC are more general than the SBC since the
latter are obtainable from the former in the limit
of infinite P.

III. PRINCIPLE FUNCTION

A. Correlated Recovery —Correlated Principle Function

In the previous section we indicated that the
Waite model provides an analytical technique for
describing the diffusion-limited regime of the re-
covery process. The rate of change of defect con-
centration given by (2. 9) includes both the corre-
lated and uncorrelated recovery contributions,
though in low-temperature annealing of radiation
damage in metals most of the diffusion-limited re-
covery (-70/~) is due to correlated Frenkel pair
annihilation. '7 Further, the correlated and uncor-
related processes are conceptually, as well as ex-
perimentally, separable for low defect concentra-
tions. Hence we can begin our discussion with the
investigation of the solutions to (2. 8) for the case
in which the vacancy-interstitial pairs are corre-
lated via spatial proximity.

At the time of production, a given interstitial is
assumed to be much closer, on the average, to the
lattice site it has just vacated than to any other
vacancy. It then commences to migrate through
the lattice in a way much akin to a random walk.
This jumping yrocess is therefore Markovian and
can be characterized by "loss of memory. " As a
consequence, it is probable that the interstitial will
have lost its initial vacancy correlation before re-
combination if it has wandered a distance of the
order of (C») t (C» is the initial concentration of
vacancies), that being the order of the average
separation of radiation-produced vacancies; the
subsequent recombination cannot be considered as
part of the recovery due to correlated pairs.

If we concentrate solely on the depletion of cor-
related Frenkel pairs, we can approximate solu-
tions to the full diffusion equation (2. 4) without
having to know the rate of loss of pairs due to com-
petition, described by the f«p« term, by utilizing
the above argument. We assume that each vacancy
is isolated with its correlated interstitial within a
cell of volume 1/Co». If we replace this cell with
an equivalent spherical volume —,7tR, then we can
account for the loss of correlation as the interstitial
passes out of the cell by requiring that the prob-
ability of finding a correlated pair separated by a
distance R vanishes. This is the same as imposing
the following boundary condition on Eq. (2. 8):

w„(R, t)=0
(&W„)„,=ya;, (»0, t) (2. 12) for all t. Thus, once the initial spatial distribution
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The k„are the nonvanishing roots of the transcen-
dental equation

k„= —y tan(k„X) . (3.11)

FIG. 1. Roots of —33/yX= tan(33).

X= R -ro,'
then we must solve

DB„w«(x, t) = 3),3u33(x, t)

on the interval [0, XI, with conditions

(33„~33)„o=y~33(0, t),
w33(X, t) =0,

and

w33(x, 0) =(x+ro) g«(x) .

(3.3)

(S.4)

(S.5)

(3.6)

(S.7)

Equation (S.7) results from the initial probability
density p«, which we have taken to be

p«(r, 0) =~«(r), (3.8)

of correlated pairs is known, we can integrate
(2. 8), in principle at least, and consequently eval-
uate the empirically relevant relation (2.9).

We can summarize this discussion by collecting
the various parts of the problem we wish to solve.
Let

(3. 2)

Equation (3.11) results from the boundary conditions
(3. 5) and (3.6). In Fig. 1 we see how these roots
vary as X is changed, as we will later do. %e can
evaluate the coefficients a„by implementation of
the initial condition (3.7), since

a„=$ M „(x, 0)P„(x)dx . (3.12)

At this point it is obvious that no further progress
can be obtained without detailed knowledge of how

the interstitials are initially distributed about their
corresponding vacancies.

The form of the vacancy-interstitial distribution
function should be obtained from experiment, but
there are indications that its exact nature is not of
crucial importance to the gross features of the
Waite analysis. " For an initial correlation between
pair members to be meaningful, a spatial cutoff is
necessary; in addition, as we will see in a moment,
the positions of the maxima as well as the "width"
of the distribution determine the fraction of corre-
lated pairs which eventually recombine. Beyond
this, little more can be said. Originally, Waite
suggested the use of a Gaussian distribution func-
tion, and others have studied various exponential
and 5-function forms. In this paper we use as an
initial distribution a step function. Such a distribu-
tion is not proposed to mirror physical reality in
any exact sense but serves as an illustrative exam-
ple for which the analytic procedures are relatively
simple. At the same time, it seems likely that any
physically realistic distribution can be approximated
by a sum of such step functions with the resultant
calculation being a slight generalization of our re-
sults.

In what follows we assume that all the various
Frenkel pairs are indistinguishable. Hence we shall
assume that p« is a function of x and t which is in-
dependent of the index i. Then the precise functional
expression of our initial distribution is

where g„ is as yet unspecified.
In the interest of simplicity we will develop solu-

tions of (3.4) utilizing the method of separation of
variables. The general solution for (3.4) can be
expressed as

(S.9)

p, 3(r, 0) = q8 (r3 R„R,)
or, equivalently,

3o «(x, 0) = (x+ rp)7)Q(x 3 Xi X,) .

The function O is defined as follows:

0" (x; Xi, Xs) = 1 if Xi & x ~ Xs

(3.13)

(3.14)

where the $„'s form a complete set of eigenfunctions
of the separated spatial equation, which when nor-
malized on [0, Xj are

Wk„[cos(k~) + (y/k„) sin(k~)]
[X(y'+ k'„)—(y/2k„) sin(2k„X) I'"

= 0 otherwise, (3.15)

where 0 X1 X~ X and X,= R„-xo. The constant

g is a normalization coefficient which assures that
initially
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p;]dt/']dV, '= 1 . (3.16) (3.17)
over total

volume of samyl e

We are now in the position to carry through the in-
tegration in (3.12).

First we calculate the coefficient g. The function

p, , has been defined in terms of the separation coor-
dinates (2. 3), while the integrations in (3.16) are
over the position coordinates of the individual pair
members. If we perform the coordinate transfor-
mations

then (3.16) can be shown to reduce to

4tTV7l Je (r; Rg, Ro)r dr =1, (3.18)

q= 3/4vv(R', -R,') .

Returning to (3.12), we find

(3.19)

where Y is the sample volume. From this g is
easily seen to be

&2k„q
[X(y +k„) —(y /2k„) sin(2k„X)] ~

1

(x+ro) [cos(k„x)+ (yjk„)sin(k„x)] dx

su 2
4tt V (R o

-R &)[(y + k „)(R —ro) —(y /2k „)sin(2k „(R - ro) ) ]
~

x(r[sin(k„(r -ro)) —(y/k„) cos(k„(r —ro))]+(1/k„)[cos(k„(r -rp))+(y/k„) sin(k„(r -rp))]}
~

. (3.20)
r=R1

dC 8—= —47trpDt3N pt;(ro, t), (3.21)
dC 6DH t'p C ~& 2 y2 Dg (3.22)

Our ultimate goal is to evaluate the rate equation that the p;; are all identical, and that the boundary
(2. 9). For correlated recovery this becomes simply condition (2. 11) is valid. Using (3.20) in conjunc-

tion with the solution (3.9) yields

where C =Cz= Cr and No=NI=N„. In writing (3.21)
we have used the assumptions that the p;, vanish, with

fr[sin(k„(r —ro)) —(y/k„) cos(k„(r —ro))]+ (1/k„)[cos(k„(r —ro)) + (y/k„) sin{k„(r —ro))]}~tto

k„(R -r,)(y'+k„') —(y /2) sin(2k„(R -r, ))

y(t) = (c'- c)/c', (3. 23)

then

Wo )~ F (1 -tt„Dt)
1 n=i

(3.24)

Equation (3.24) gives the fraction of recombined

here C is the initial defect concentration. We see
that this rate equation is immediately integrable:
If we let

k„=n~/(R-r, ), n=l, 2, . . .
and (3.24) becomes

(s. 26)

correlated defects as a function of time, when a
finite correlation volume is assumed and the RBC
is employed. The initial density of defects is uni-
form for pair separations between R1 and R2, and
is zero everywhere else. The corresponding solu-
tion for the SBC may be obtained by taking the limit
of (3.24) as P approaches infinity. In this limit the
transcendenta. l equation (3.11) has the roots

otto(t) =
o o 5~ —r cos nest ~+ o sin ntr o now (1 e-" ' Dt~' -"o& ). (3.26)

6ro(R -ro) &-&o 'I R -xo & &o a
R2-R1 n 1 R rp j nv — R-rp

R1

We may utilize the latter expression to illustrate
the comment we made previously about the charac-
teristics of the initial distribution determining the
ultimate fraction of recovery. As is shown in the
Appendix, the infinite time limit of (3. 26) is

(
'rp Rt+Ro

R —ro ' '
k R ro Ri~+R-iRo+Roo

(3.27)

The inequality string
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Rg+R2 &
2
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3

from which it is clear that

4s(") '-1

FIG. 2. Effect of the width of the initial pair separation
distribution on the ultimate capture fraction. Here we
have taken R& =&p and R =11~p.

limit of infinite dilution (i.e. , even when corre]a-
tion volume extends to infinity). Figures (2)-(4)
further amplify how the annealed fraction depends
on the width and position of the initial distribution.
In Fig. 2 the effect of varying the width of the initial
distribution is demonstrated. We fix R& to be ~o in
(3. 2V); g~ (~) is then plotted as a function of Ra.
We conclude that the broader the initial distribu-
tion, the less correlation exists, and the less cor-
related recovery can be expected. Next, we assume
an initial 5-function distribution localized at R;, and
show the effect of centering of the distribution on
the ultimate fraction of recombination. We see
again that the more correlated the distribution,
i.e. , the closer R& is to ~„ the greater will be
P~(~). Finally, we select a 5-function distribution
at R; =1.5~o and vary R to test the dependence of
Q~(~) on the range of correlation. As we expect,
the fraction of correlated recovery is maximized
by maximizing the range of correlation (R- ~).

Of possible interest is the solution of the corre-
lated-recovery rate equation when the initial source
has the form of a 5 function. The 5 function can be
approximated by the O. function defined in (3.15)
when R& and R, are taken arbitrarily close to one
another. Hence the desired result emerges directly
from (3.24) when this approximation is invoked,
namely,

as we expect. The equality obtains for the special
case

o-Ri-R2

y'(t)= hm y(f) asR, -R, .

If we let

(3. 28)

which is equivalent to a 5-function initial distribu-
tion located at xo. This argument is in complete
accord with the requirements of the SBC which de-
clares that vacancy and interstitial combine spon-
taneously when separated by a distance ~o. We note
that in any other case there is a finite probability
of an interstitial escaping its vacancy, even in the

R&=x, R2=x +&,

and allow e to vanish, we have

2 Pro," cos(k„(r; r,)) + (y/—k„) sin(k„(r; —ro))
„, (R -ro)(ya+k„) —(y2/2k„) sin(2k„(R —ro))

I.OOO- I.OOO-

.800-

.400-

f (oo)

.800-

.600-

,400-

asymptote = ago

,200- .200-

I 2 3 4 5 6 7 8 9 IO II

R, «o

FIG. 3. Effect of the centering of the initial distribu-
tion on $8(~). Again, R = 11&p and the initial distribution
is taken to be a 6 function at R~.

I I I. I I I I I I I I I

I 2 3 4 5 6 7 8 9 IO II l2

R/»o

FIG. 4. Effect of the variation of the initial correlation
volume on Q~(~). The distribution is taken to be a 6 func-
tion at R& =1,5~p.
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x(1 —e 'n ') . (3. 29)

The corresponding Smoluchowski solution is

2 Yp ~ sin [n)r (3, rp-)/(R 1 0)]
n=1 nor

x(1 n2r D-t&(D;rp)
) (3 30)

which provides the asymptotic value

(3.31)

Of course, the same relationship is easily obtained
as well from (3. 27). The infinite-dilution limit of
(3. 31) is the well-known result rp/r,

In general, we will not be interested in restrict-
ing our attention solely to the correlated phase of
the recovery. The complete process includes both
correlated and uncorrelated aspects, as well as
competition between them, and the principle func-
tion for correlated pairs, in the diffusional analy-

sis, is defined over the entire spatial extent of the
sample (assumed to be very large compared to xp).
To determine the appropriate principle function,
we allow the correlation radius R to grow without
bound in the expression for the principle function
that we have already derived for the case of a finite
correlation volume. Again, we point out that use
of the RBC in (2.9) provides the simplification that
we need know only the principle function for the
sPatial seParation 3'0, i.e. , only 1()«(xp, t) (here,
and in what follows, the functions u, &

and p&& will
be understood to be defined over the infinite medi-
um). If we check Fig. 1, we see that as R becomes
very large the roots of (3.11) become more and
more like

I „=nv/(R r,)-+O(R ') .
At the same time only the large-n terms in the sum
(3.9) will contribute, and if we define

e=n~/(R -~,),
then we can write

6 ! " e 'f(I -yr) cos(e(x 0"0)) +-(rt& y+/e) sin(e(x —rp)) }~
&&(+pt t)

4 V(R3 R3) I

2 1 (gpp 8+y2 2
& r=s,

(3.32)

Parts of this integral are tabulated in various
places' and with a little effort the entire integral
can be evaluated. The result is

large, we have

(Sr M)( «, 2)rp

3()(((fpt t)'
3

V 3 3 (1 —yr) erfc
I

y(at) +
2 at 1/2

1&2 r -rP
2 1 2 at

r=R1

(s. s6)

- (r rp) /4 Dt
0

ttr(Rt-nt) (2(Dt)'" ( Dt)t"

B2

x e" '"'" ""+erf
~

' . (3.33)&2(at)'"
-(r~-rp)2/4

3 )rp 8V ( at) (S. 37)

For a 5-function distribution located at ~; the pro-
cedure described in the preceding paragraph yields

1 (r& rp)2/4Dt
yt';;(y„ t)=, „t, —yerfc(y(Dt)'"

4~V~& ~wDt j

0
( r Dt+r(r(-rp) (3 34)' 2(at)'" &'

(s.P«).0= (s.~«).pe""'"' /3'0 (3.35)

For the SBC it is necessary to evaluate the gra-
dient of the probability density at xp for use in
(2. 9) rather than the function itself. It will be help-
ful, therefore, to be able to express the gradient
of the principle function at the recombination radius
xp, since

p„(r, 0) =const . (s. s8)

The normalization condition (3.16) shows that this
constant must be the inverse square of the sample
volume. In analogy to (3.13) we can write (3.38) as

B. Uncorrelated Principle Function

We turn our attention now to the uncorrelated
portion of the rate-of-reaction equation (2.9). As
before, we assume there are no distinguished pairs
so that the p„are index independent. These p, &

are
defined for all ~ xp and satisfy the general diffusion
equation (2. 4). We assume, as is appropriate for
electron irradiation, at the time of production the
uncorrelated pairs are distributed randomly
throughout the sample medium and hence

for the SBC. Using (2. 12) in conjunction with (3.33)
and (S.34), and allowing P to become infinitely

p„(r, 0) = lim Rp. (~l R1 R2)
R1 rp

(s. s9)
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where

y' 2 (3.40)
+N w(&(ro, t)e(o/(("' ], (4.1)

The relevant principle functions for the uncorrelated
recovery can be extracted by taking the same limit
in our previously derived relations (3.33) and
(3.36). Thus, we have

w(/(ro, t)={1+proerfc[y(Dt) / ]e' ~(j/yVo (3.41)

1+ro/(~Dt)'/o
(srw(( 8) () yo (3.42)

IV. FULL DIFFUSIONAL ANALYSIS

dt
= —4frro DpN [M (((r(), t)e

Our main intent in this paper, as we have stated,
is to present a treatment of the diffusion-controlled
recovery of Frenkel defects produced by irradiation
when a nonvanishing activation energy for recombi-
nation occurs. In particular, we are concerned with
the extent to which diffusion and the presence of an
activation energy influence the kinetics of the re-
covery process The .analytic developments of the
preceding section enable us to pursue this program
by providing us with the necessary information to
evaluate the kinetic rate equation (2. 9). If we again
assume that all of the p«are identical, as are all
of the p(, (i&j), and that the vacancy-interstitial
defects are created and annihilated in pairs (i.e. ,
N(=Nr=N, C,=cr=c), then (2.9) is

(c/c')ow„(r, t)
p(( rz (4. 2)

This enables us to write

f„(t)= 8vr,-Dp(N'/C')'C(t)w„(r„ t) . (4. 3)

Since the absolute number of defects remaining at
any given time is empirically less accessible than
the number relative to that at time zero, we define
the fraction of remaining pairs by

c = (c'-c)/c' (4.4)

(note that the symbol C refers to ((ll vacancy-in-
terstitial pairs, whereas the (t) of Sec. III was re-
stricted to correlated pairs), and rewrite (4. 1),
taking all of the above into account, as

for the RBC. 4 Equations (3.33) and (3.41) yield
the appropriate principle functions, so that the ex-
plicit formulation of the right-hand side of (4. 1)
lacks only the clarification of the exponential fac-
tors.

The mathematical complexity which arises from
the nonlinearities involved in the f„terms [see
Eq. (2. 5)] can be simplified somewhat by assuming,
along with Waite, that the concentration of vacancy-
interstitial pairs become independent of pair separa-
tion for large separation distances. It can then be
shown that p, ~ condenses to

(1 / n I)') I I 0 + + ((feoe1)og /44(oroel)(e-()

le«

R2/ 0
+erf z(zl+c 1+()rzerfe z z e'z'z'& ' «(1 e(z)]'I (4 li)z - "=R1/ro

0

e = (4Dt/r')'" (4.6)

The function e(e) is the exponential incorporating
(4. 3),

where the following notation has been employed: z
is a "reduced diffusion length, " a dimensionless
quantity defined as

term is due to the rate of uncorrelated pair recom-
bination. Allowing 8 to be infinite in (4. 5) produces
the analogous rate equation in the SBC:

dC, , 3 /'x - I= (2((roe)
( o o. erfl

dz

zlz) = exp
I

—4zr'C' ' z '(1 —4 (z'))
Hzo+1 „,

e-(x-1) /» R2/rO

v')( e "o
&s (e)

8&0+1 f (ar +1)2" '/4
x 1+~&oerfc

2
z e' " ' dz

(4.7)

The first term on the right-hand side of (4. 5) is the
rate at which the recombination of correlated pairs
contributes to the recovery process; the second

+C 1+ 1 —Cgz 2 . 4 8

Comparison of (4. 5) and (4. 8) reveals a clear
mathematical difference in the early-time behavior
of recovery for the two different boundary condi-
tions. %'e consider both the dependence for z-0
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and the small-z dependence. It is easily shown that

dc'
lim =0,
s "0 8

whereas

(4. 9a)

lim =4(v"m)) OC if R, &so
c-0 dz

(4. 9b)

3
=4(f')vO(C ~, 3 3

(

ifR~=r~. (4.9c)

dz ( ' (i~ +1) 4w(RI —RI))

-(x-1) R2[1 -x(Pro+1) j 1 ze '"

z'(pr, +1)+ 2(x —1) x —1 v' v x=R1/r 0

+C' 1+Pe,erfc ' z e""o+" ' "Py +1 a2

A plot of experimentally derived values for the re-
covered fraction versus the square root of time
will therefore be initially flat if the RBC is physi-
cally valid, or rise with finite slope, the value of
which depends on the parameters ~„C', and the
placement of the initial distribution, if the SBC
prevails. The difference between (4.9a) and (4. 9b)
or (4. 9c) would seem at first glance to yield readily
to such an empirical verification. As we have ar-
gued in Sec. III, however, correlation between
vacancy-interstitial pairs makes reasonable sense
only if (C )» 34 zros Henc. e in both the RBC and

SBC cases the initial slope may be small. This
limiting dependence carries over into the small-z
dependence, however.

Consider the general distribution with ~p &R1&Ra.
For z arbitrarily close to zero, (4. 5) may be ex-
pressed as

» 3 v(Rz -R,') j, then the correlated recovery term
begins to dominate the right-hand side of the rate
equation (4. 10) after a short transition time. During
this regime 4 is still p~opo~tional to z but now the
constant of proportionality is much larger. This
may be contrasted with the behavior of the SBC
recovery equation (4. 8), which is well known to be
initially such that 4' i s pr offoxtional to z (i.e. , to
It). Actually, with the distribution of interstitials
chosen for this calculation, Eq. (4. 8) reflects a
scheme analogous to that outlined above: growth
due to close-lying uncorrelated pairs, followed by
growth due to correlated pairs after a time corre-
sponding to (4. 11); in both regimes, however, C~
c z. Note that if P is sufficiently large, then it may
be possible for

1»z'» 2(x —1)/(P), +1)

to be valid, and in this case the small-z dependence
shows a transition from 4 proportional to z to 4
proportional to z. We illustrate this by the results
of numerical integration of (4. 5) shown in Fig. 5.
In this case the distribution is chosen so that the
initial interstitial distribution is exactly at the cap-
ture radius (R, =ra), so that the only delay in the
recovery is due to the boundary condition, not to
diffusional delay. We see that following an initial
z dependence there is a portion of the recovery
which is linear in z, but which does not extrapolate
to the origin. As R gets larger, the z region gets
smaller while the z region becomes more pro-
nounced and extrapolates closer to the origin. In
this way as P- ~ the transition from the RBC de-
pendence (cc z2) to the SBC dependence (~z) takes
place.

It can be shown that the correlated and uncorre-

(4. 10)
At the onset the first part of the sum on the right-
hand side will be much smaller than the second.
This is because our distribution of correlated pairs
has no such pair adjacent to ~0, while the uniform
distribution of pairs in the sample means there is
a small probability of uncorrelated interstitials
being adjacent to xp. During this period 4 grows
in proportion with g (linear in time) because of the
annihilation of very close-lying u~cor~elated pairs.
Typically very little recovery occurs in this way.
When z is such that

e(z)

7—

4—

P= 2xIO

5x IO

2x l09

~5x I08

2x IO8

Yp g R1 Jp (4. 11)

then the first expression beings to contribute. Note
that the amount of time associated with this z is
necessary for the inner portion of the interstitial
distribution to diffuse to the reaction radius xp. If
the interstitials are contained in a volume much
smaller than the correlation volume [(Co) '

I

.2
I I

.4
z

I

.5

FIG. 5. Comparison of very-early-time solutions for
different boundary conditions showing the progression
from RBC-like (initially ~Z ) to SBC-like (ccZ) as p in-
creases.
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FIG. 6. Comparison of solutions for
different boundary conditions: (I) for
Pyp=100 (SBC-like), (II) for Pep=1
(RBC). Both curves represent behavior
in the relatively early-time regime.

—=2v~, C ~ (I- C),dc', p Pep 2

dz ' p~ +1

so that
-1

4 -1 — mg0C3 0 t+0 28'0+1

when

(4. 13)

z» (~ppcp)-' .

lated terms in (4. 5) contribute equally when

3
( 3cp)-1 (4. 12)

verifying that the length - (C )
'~ represents the

average distance an interstitial must diffuse in order
to lose the correlation it had with its vacated lattice
site. Ultimately, as z becomes large compared to
1, the correlated term in (4. 5) contributes negligibly
and the late-time behavior is controlled by uncor-
related recovery. With z» I, (4. 5) becomes

For the purposes of further illustration, we have
numerically integrated (4. 5) and displayed the re-
sults in Figs. 6-8. We set the interaction radius
to be g0= 5~ 10 cm, and the initial correlated in-
terstitial distribution was taken to be uniform in a
thin spherical shell ranging from R& = 1.1x0 to R2
= 1 2/0 about each vacancy, in all plots. In Figs.
6 and 7 we compare the theoretical annealing his-
tories for a system in which the SBC is approximate-
ly valid with one in which there exist typical RCB
parameters. In particular, curve I is SBC-like
(P~p =100), while curve II is RBC-like (P~p= 1).
Figure 6 shows the early-time behavior of this an-
nealing: 4, is seen to rise sharply from zero to its
correlation asymptote of about 85/p, while C'„rises
much more leisurely and takes on a lower asymptote
(-40%). For the first 50% or so 4, is almost linear
(after a small zP region), agreeing with our expec-
tation for Smoluchowski behavior; 4 « is initially
flat and has practically no linearity prior to the

I.OOO-

.800-

.600-

.400-

FIG. 7. Comparison of solutions
for different boundary conditions over
four decades in g: (I) for Pap

——100, (II)
for Pyp=1.
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.000
IO

I

0
10 IO

Z

10
I

3
IO
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I.O—

.6-

02

FIG. 8. Effect of the initial concen-
tration on recovery. Curves I-V rep-
resent a family of theoretical recov-
ery curves for different concentrations,
all other parameters being fixed: C&

= y0 cm-3 C» —y0 cm-3, C»r =yP(8

cm 3, C,v = 10~6cm 3, Cov=10 cm

IO IO IO

I

IO IO

correlation limit. Figure 7 includes virtually all
of the annealing history for these two systems. In
each curve two distinct epochs can be differentiated
corresponding to correlated and uncorrelated re-
covery. An obvious correlation asymptote is ob-
served for 4 „while for 4» this characteristic is
much less clear. The physical reason for this dis-
parity resides in the fact that the RBC enhances the
probability of the interstitial escaping its correlated
vacancy, and hence diminishes the sense to which
correlation can be ascribed to Frenkel pairs. As
a consequence, uncorrelated recombination con-
tributes all along II in higher proportion than along
I.

In Fig. 8 we fix P so that Pvo= 1 and plot a family
of curves generated by varying the initial defect
concentration from a few percent to less than one
part per billion. For the sample in which the
heaviest damage was assumed (I), we see a very
uniform curve corresponding to a single epoch. The
conclusion to be drawn is that the copious initial
supply of pairs caused correlation to be meaningless
and the entirety of I is accountable in terms of un-
correlated recovery. A two-order-of-magnitude
diminution of defect concentration in II results in
observable correlative effects, manifest in a slight
but noticeable change in curvature between g = 1 and
z = 10. Smaller initial concentrations, and thus
larger correlation volumes, yield (in III and IV) the
two-regime behavior noted previously. The onset
of uncorrelated recovery is more and more post-
poned on account of the increase in average time
necessary for the interstitial to diffuse out of its
region of correlation. In fact, so great is the cor-
relation volume in V that, for the time scale plotted,
no uncorrelated recovery is detectable.

V. SUMMARY

In this paper we have developed the theory of dif-

fusion -controlled correlated reaction kinetics for
the case of the RBC at the reaction surface, i.e. ,
allowing partial reflection of the reacting species
at this surface. The results are parametrized by
a constant (P) which characterizes the degree of the
reflection reaction at that surface. As such the
results are quite general, containing as a limiting
case the results for no reflection —the SBC. Within
the confines of the relatively nonrestrictive assump-
tions made herein, the results constitute then thy
complete solution for this type of kinetics, ' the sub-
stantive assumptions are that the spatial character
of the problem is purely radial with the reaction
surface a sphere and that diffusion is treated in the
continuum.

As with others before us, the results are not ob-
tained in closed form but as a differential equation
requiring numerical integration. Solutions were
obtained which illustrated the major features of the
problem. For example, depending upon the value
of p, the RBC results do still exhibit the effects of
correlated recovery, e. g. , a portion of the re-
covery definably correlated and distinct from the
uncorrelated, but, over-all, as reflection at the
reaction surface becomes important, it tends to
diminish correlated reaction and enhance uncorre-
lated reactions and interactions.

%here appropriate, we have obtained limiting
cases of the functional dependence of the solution.
For example, for small recovery times we find
that the RBC results indicate an initial recovery
proportional to time, whereas the well-known SBC
result is proportional to the square root of time.

In the numerical examples here we have re-
stricted our consideration to a constant value of P.
Depending upon the physical origin of P this may be
correct and will certainly be approximately correct
where the reflection process is not the dominant
rate-limiting process. For example, in the case
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of the vacancy interstitial in a solid we expect that
the reaction surface for free interstitial migration
may contain swithin it several metastable close-pair
sites; capture of a freely migrating interstitial into
these sites would give a very high probability of in-
terstitial-vacancy recombination but would have a
small, largely temperature -independent, reemission
(reflection) probability. We should note here, how-
ever, that one possible origin of a reflection at the
recombination surface is a possible barrier to re-
combination. In that case, thermal activation over
the barrier would result in a temperature-dependent
P. The equations we present in this paper are cor-
rect and applicable for P(T), but comparison of the-
ory to data becomes more involved. This is be-
cause, in general, experiments are not feasible
over four decades of z or eight decades in time, so
the experimenter accelerates the process by going
to higher temperatures; for a constant P the kinetics
simply scale through the temperature dependence of
s; if P=P(T), an additional complication arises, but
we will defer illustration of this to a subsequent
paper.

In this paper we have not treated experimental
results, being content here to discuss the mathe-
matics and general features of the problem. The
SBC results, of course, have had their most ex-.

tensive test in the low-temperature recovery of
electron-irradiated copper; in a subsequent paper
we will reconsider those data in the light of the re-
sults of this paper. The field of fast-reaction ki-
netics is rapidly developing, and we trust that this
theory will stimulate experimentation which will
elucidate further the radiation and photosubfields
of physics, chemistry, and biology.
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APPENDIX

The infinite time limit of Eq. (3.26) requires us
to consider sums of the form

S ( ) )~ cos(gx)
n=1

(Al)

( )
~)" sin(nx)

f =1

before evaluation of Q~(~) is possible. It is clear
that

S,(x) = f, ,S,(x') dx', (A3)

so that the evaluation of S1 suffices, in principle,
to solve the problem. We note that

dS, ,
"

sin(nx)
n=1

(A4)

This sum is tabulated" and results in

S (x) -S (0) = —,
' f (x' —m)dx'

or

S,(x) = —, ~ ——ex+ —,x .1 2 1 1

From this it easily follows that

S,(x)=pox--, mx + ~x .2 1 2 1 3

(A6)

(A6)

(AV)
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Comparison of macroscopic (dilatometric) and microscopic (x-ray) precision thermal-ex-
pansion measurements at elevated temperatures has been widely used to obtain the equilibrium
concentration of vacancies in cubic crystals. For noncubic crystals these measurements must
be made in more than one orientation (e.g. , in axial crystals, along both the c and a axes).
Such measurements give information not only on the equilibrium vacancy concentration, but
also on the relative rates of climb of the various dislocations in the crystal, which act as
sources and sinks for the vacancies. Quantitative expressions are obtained for the ratio /Q,
where 6 is the difference between fractional macroscopic and microscopic linear expansions
along the c or a direction in an axial crystal. Consideration is given to the two extreme cases
of dislocation climb, viz. , the diffusion limited and climb-rate limited cases. An important
point is that the measurements, in general, will be sample dependent, so that the samples of
different orientation must be taken from the same single crystal.

I. INTRODUCTION

The use of precision thermal-expansion mea-
surements, both macroscopic (dilatometry) and

microscopic (x-ray lattice parameters), for deter-
mining the equilibrium vacancy concentration in
cubic crystals is well known. It has been widely
used to obtain the concentrations of vacancies in
thermal equilibrium in fcc metals (e. g. , Al, Ag,
Au, and Pb) and more recently in bcc alkali metals
(e.g. , Na and Li). The extension of such measure-
ments to noncubic (specifically, hexagonal) crystals
was recently reported. '" We shall see that such
studies of noncubic crystals offer the opportunity
to obtain information about the sources and sinks
for the vacancies, which could not be obtained in
the case of cubic crystals. The present paper ex-

plores the theory behind such measurements, while
the following paper (paper II) will apply this theory
to a detailed study of single crystals of cadmium.

The determination of point-defect concentrations
from thermal-expansion measurements derives
from the relation

V =Nv,

which relates the volume V of a specimen to the
average volume v of a unit cell, where N is the
number of unit cells. If N is unchanged on heating
the crystal from temperature Tp to temperature T,
and if the volumes at Tp are Vp and vp, and those
at T are V and v, respectively, then 5V/V0=5v/v„
where

6V= V —. Vp,


