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Self-Consistent Energy Bands in Vanadium at Normal and Reduced Lattice Spacings

Dimitrios A. Papaconstantopoulos ~

George Mason College, I'ai+ax, VA'ginia 2203o

and

James R. Anderson'
University of Maryland, College Park, Maryland 20740

and

Joseph W. McCaffrey
Naval Research I aboxatoxy, washington, D. C. 20390

(Received 20 September 1971)

Self-consistent energy-band calculations for vanadium were performed by the augmented-
plane-wave (APW) method, for different values of the statistical exchange parameter &, at
normal and reduced lattice constants. Comparisons have been made, with Fermi-surface,
soft-x-ray, photoemission, and electronic specific-heat experiments, and reasonable agree-
ment was found.

I. INTRODUCTION

Only in the last few years has good-quality vana-
dium become available for meaningful experimental
measurement. There now exist Fermi-surface,
soft-x-ray, ' and photoemission measurements for
vanadium. As a result enough experimental infor-
mation is available to warrant a self-consistent
fully convergent band calculation for comparison.

Non-self-consistent calculations on the band
structure of vanadium were made by Mattheiss, 4

Snow and Waber, Bolemon, and Anderson et al. ,
all using the augmented-plane-wave (APW) method.
Mattheiss calculated the energies for full Slater
exchange and two different atomic configurations.
Snow and Waber' ajso determined the density of
states for full Slater exchange but their agreement
with the experimental results was poor. Bolemon
calculated the bands for three different exchange
coefficients, and finally, Anderson et al. discussed
the effects on the band structure of varying both
the exchange potential and the lattice constant. In
the present work, having carried the calculations
to self-consistency, we wish to compare the calcu-
lated band structure with experiment and to consider
in greater detail, the effects of varying the exchange
potential and lattice constant.

While the present work was in progress a self-
consistent calculation was published by Yasui et
a/. , who used a combined tight-binding and orthog-
onalized-plane-wave (OPW) method. Also, Hattox'o
is performing APW calculations to study the mag-
netic state of vanadium for lattice constants greater
than the normal value.

II. DETAILS OF THE CALCULATION

The calculations have been carried out on a mesh

of 1024 points in the Brillouin zone, using the APW
method as programmed by Switendick and Wood with
the necessary modifications for use with a Univac
1108 Computer.

The starting crystal potential V(x) was obtained
from a superposition to fifth-nearest neighbors of
the Herman-Skillman free-atom (conf iguration
M 4s ) charge densities using the Lowdin & ex-
pansion. '

The starting values P, (r) for the numerical inte-
gration of the radial Schrodinger equation were
found from the expression given by Greissen

p ( ) + l+1 -r V(r ) /2(l+1) (1)

where l= 0, 1, 2, . . . , 12.
The quantity r" is the usual limiting form of the

radial wave function for 1jr potential, and the
exponential term noticeably affects only the s-like
points as is shown on Table I.

We performed calculations with l = 12 and l,„
= 7, and observed that the difference in the eigen-
values did not exceed 0. 0005 Ry; however, only
the charge densities for / up to 5 were used in the
self —consistent calculation.

Three complete self- consistent calculations
were performed. The first one using the full-
Slater-exchange potential (o'. = 1); the second one
using the Gaspar-Kohn-Sham (o'= —,') exchange po-
tential, and the third for a reduced lattice constant
a= 0. 95ao (ao= 5. 713 a. u. )

' with o'=-', exchange.
This reduced lattice spacing corresponds to a pres-
sure of about 240 kbar. (The compressibility Kr
at 4. 2 'K is 6. 26 &&10 ~ kbar '.")

In performing the self-consistent calculations the
"frozen- core" approximation was used. That is,
the spherically averaged radial charge density
p(~) = (4'') ' o (r) was found from the expression
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TABLE I. Comparison of eigenvalues for the two dif-
ferent choices of the starting values for the integration of

the radial equation with an initial mesh size of h= 0. 005.

States P (~) -~'+' P (~) 7+1 )(~-r~&(r&/2(l+1)
g

t'

r,
~~'5

6)(400)
4, (400)
H(2
N(
N2

P4

0. 331
0. 812
0. 949
0. 557
0. 711
0. 525
0. 538
0. 692
0. 680

0. 269
0, 812
0, 949
0. 531
0. 711
0. 525
0. 523
0. 692
0. 680

~(+)= L + (+)+ + +, (+) (2)

where the first term on the right-hand side, repre-
senting the charge density of the core electrons as
given by the atomic calculation, was kept constant.
The second sum is the charge density over the oc-
cupied conduction-band states (Sd and 4s) and was
recomputed at each cycle of the calculation. This
second term was found from the wave functions of
a sample of seven points in 4'8th of the Brillouin
zone (see Table II) properly weighted in order to
take the symmetry within the zone into account.

The resulting charge density p(x) was used to
find the potential V""from Poisson's equation

the new and old charge densities and the same
weighting as for the potential [Eq. (2)].

We have also noticed that our results after the
first iteration with Slater exchange are very close
to the results of the last iteration with a = 3 ex-
change. This cancellation of the effects of self-
consistency and exchange was also pointed out by
Connolly' and Snow and Waber' for nickel and

copper, respectively.
Finally, the Fermi level E~ was found by inte-

grating the density of states to a value of five elec-
trons per atom, and the Fermi surface was calcu-
lated by solving the equation E(k) = Ez graphically.

III. WAVE FUNCTIONS AND CHARGE DISTRIBUTION

By solving the radial SchrMinger equation using
the self-consistent potential and a mesh of 128
points in the Brillouin zone we found the radial
probability density r~ua, for the occupied conduction-
band states, for @=3. This is plotted in Fig. 1
together with the corresponding atomic orbitals.
We note a spreading out of the valence electron
charge density in going from the atom to the solid.

In Table III we list the self-consistent electronic
charge resolved into s, p, d, and f components, as
well as that outside the muffin tin. We found these
charges using the calculated radial wave functions
and the following expressions':

Q,„,= (0/N)Q Zv*(k, ) v(k&)A, &

V""was then averaged with the potential V" of
the previous cycle using the formula

V(t) = 0. 75V' (t)+ 0. 25 V"'"(r)

In Table II we show the convergence of the seven
points as a function of iteration. We achieved a
convergence to within 0. 002 Ry after eight iterations
for the &= 3 and after six iterations for the Slater
exchange. However, we observed that in the &= 3

case the same convergence was achieved after five
iterations if the averaging was done instead with

In the above equations, 0 i.s the volume of the unit

cell, N is a normalization constant, C&» and A&&

are the probabilities of finding an electron within
and outside the APW sphere, respectively; v(k, ) is
an eigenvector of the APW secular equation, u, is
the radial wave function, and R, the radius of the
APW sphere.

Comparing the two calculations (Table III) at
normal lattice spacing we note that for n =3 all
charges except Q„are greater than for n =1. Thus
the d character is more pronounced for the full

TABLE II. Convergence of energy bands of vanadium for o' =3 exchange. Energies are expressed in rydbergs.

~c
r,
a, (4oo)
a, (400)
H(2
N&

N2

P4

1st
—1.16638

0. 366 17
0. 66870
0. 972 96
0. 73059
0. 708 87
0. 999 83
0, 91492

2nd

—1, 352 71
0.31890
0. 604 58
0. 862 41
0. 643 40
0. 62944
0. 86407
0. 81401

—1.454 46
0.293 16
0.568 12
0.789 18
0.585 93
0.577 89
0. 778 83

. 0.74928

4th

—1.50572
O. 280 09
0. 54879
0. 74828
0. 553 77
O. 549 04
0. 732 57
0. 71321

5th

—1.53034
0, 273 75
0. 539 18
0. 727 74
0. 53757
0. 53447
0. 709 64
0. 695 02

6th

—1.541 89
0, 27073
0.534 57
0. 718 00
0. 529 88
0. 527 52
0. 698 83
0. 686 35

7th

—1.54728
0. 26930
0. 532 41
0. 713 50
0, 52634
0. 52431
0. 693 86
0. 682 33

8th

—1.549 81
0.268 61
0. 53139
0.71146
0.524 75
0. 522 85
0.691 62
0.680 49
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Slater exchange.
Looking at the two e = 3 calculations, we observe

that for the reduced lattice spacing, the amount of
charge Q,„, outside the APW sphere is greater,
while the charge contribution inside the sphere is
smaller. Kmetko has per for med calculations of
this type for several metals. He generally finds
that the effect of compression in simple metals is
to reduce the s- and p-like charges and increase the
d and f components (Pb is shown in Table III as an

example. ) However, for the transition metals,
where the d character is very strong, this rule
does not seem to hold. From Table III we see that
Kmetko's results for W agree with ours in that Q„
decreases with pressure.

IV. ENERGY BANDS

A. Comparison with Previous Calculations

Figures 2-4 show the self-consistent (SC) bands

for the three different calculations performed. They
all have the same general shape characteristic of
the transition metals with the body-centered struc-
ture, similar, for example, to Cr and Fe. The
main difference is the width and position of the d
band as is shown in Table IV. We observe that
the s-d separation and the d and s-p widths are
all increased as we go from the Slater to the Kohn-
Sham exchange. A further increase is noted when
a reduced lattice spacing is used. From Table II
it is evident that extensive changes in the band
structure occur upon carrying the calculation to
self-consistency. In particular, the d-band widths
and the s-d separation are reduced at each iteration.
The only change in level ordering occurs for the
N,

' state which falls below N4 and N& when the ex-
change is reduced.

Comparing with Yasui et al. , we note a major
difference in the position of the Fermi level for

YA BLE III. Self-consistent charges.

V
V
V

@=1
G=—23

2
3

Compression

0
0
5%

0
5%

0. 915
1.139
1.191

0. 705
0. 795

0. 389
0.445
0.411

1.428
l. 351

0.246
0.307
0.305

1.550
1.513

3.429
3.076
3, 056

0.224
0.256

0, 032
0. 049
0. 028

0, 063
0, 076

Present results

Kmetko

W ~ =0.70

Reference 20.

0
5%

l. 364
l.460

0. 350
0. 306

0.352
0.322

3.914
3.783

0. 069
0. 106
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FIG. 2. Energy bands of vana-
dium for 0' = 1 at normal lattice
constant ap.
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a = 1. In our calculation E~ is below the state 125
while in theirs, EJ; is above I"z,. As shown in
Table IV for n = 1, we have found larger band widths
and s-d separation than Yasui et al. Comparison
between the reduced exchange calculations cannot
be made directly since they used n =0.725. How-

ever, qualitatively these calculations seem to
agree, except that their energy band b,s appears to
dip down and touch the Fermi level. Table IV also
shows the widths for the non-self-consistent calcu-

lation (NSC) with Slater exchange and 4s' configura-
tion which are in agreement with the previous cal-
culation by Mattheiss, and, as we pointed out in
Sec. III, are close to those of the a=3 self-con-
sistent results.

B. Comparison with Experimental Band Widths

If we consider the separations E~-H» and E~-I',
to be a measure of the occupied d-band and s-d
band widths respectively, then as is shown in Table
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FIG. 3. Energy bands of vana-
dium for 0'= at normal lattice
constant ap.
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IV, our values for Er-H, z (SC o. = &) are in good
agreement with photoemission measurements by
Eastman. Also, our values for E&-1"„ the occupied
portion of the Sd 4s band, agree well with soft-x-
ray emission measurements by Fischer. We must
point out, however, that our NSC n =1 calculation
is in a slightly better agreement with experiment
than the SC n = 3.

V. FERMI SURFACES

The Fermi surfaces at normal and reduced lattice
spacings for n=z are shown in Fig. 5 for (100) and
(110)planes. The surface at normal spacing is
very similar to that for niobium, ' consisting of a
second-zone octahedral-hole region centered at
1, a set of third-zone hole ellipsoids centered at

TABLE IV. Energy band widths in rydbergs.

s-d separation
25 1 H26 1

ff width
H2'5 —H)2

Occupied d width

E~-Hg

Occupied
s-d width

&z- ~~

s-P width
Ni' —I'(

0. =1
Q=—23
0'=3, a=0. 95ao2

NSC 0'=1

Mattheiss (APW)
0, =1

Yasui et al.
MTB-OPW

0. =1
n =0.725

Eastman
. photoemission

Fischer
x ray

0.393 0. 587
0. 543 0. 791
0. 564 0. 869
0. 527 0. 754

0. 53 0. 75

0.334 0. 586
0.454 0. 758

Present calc.

0.404
0, 535
0.657
0.495

Other calc.

0.49

0.395
0.476

Expt.

0. 192
0.241
0.276
0.212

0.23

0. 166
0. 159

0.22

0.375
0.497
0.488
0.471

0. 50

0.357
0.441

0, 47

0.564
0. 583
0.647
0. 569

0. 587
0.594
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TA BLE V. Ellipsoids.

Orbit
plane

Normal
direction

dHVA frequency
(MG)

Expt.

d lnE
dp

(kbar I)

Calc. Cale.

m+

mp

Expt. a

HNP
&NP
&NP

[110]
[oo1]
[110]
[100]
[110]

55. 7
52. 6
67. 1
60. 2

52. 6

46. 5
44. 9
59.5
51. 8

48. 0

0, 0029
0 ~ 0024
0. 0023
0. 0027
0. 0025

0, 92
0. 86
1, 3 1, 7-2. 1

B. A. Phillips, Ref. 1.

the zone face (N), and a third-zone hole sheet of
multiply connected (100) arms extending from I"

to H, the so-called jungle gym.
In the case of the 5% reduced lattice spacing, the

ellipsoids at N have merged with the jungle gym,
and thus the multiply connected hole surface is con-
siderably more complicated. From a very crude
estimate, assuming a linear variation, with pres-
sure of the energy levels along I'-N, we predict
that the ellipsoids will connect with the jungle gym
at 135 kbars. Unfortunately, this is still beyond
the range of low-temperature high-pressure ex-
periments, but it would be interesting to determine
whether there is any change in the superconducting
properties of vanadium at these pressures.

The main experimental data relating directly to
the Fermi surface are the pulsed-magnetic-field
de Haas-van Alphen (dHvA) results of Phillips, ' for
the hole ellipsoids at N. Our Fermi-surface areas
.8 for n = 3 have been converted to dHvA frequencies
E and compared with Phillips's measurements in
Table V. Although there is qualitative agreement,
our calculated frequencies are about 15% smaller.
This discrepancy should be reduced if, following
the results of recent self-consistent atomic calcu-
lations, ' we use an exchange multiplier e =0.715
instead of 3. For example, using our self-consis-
tent n =1 and n = 3 results, we have estimated by
linear interpolation the dHvA frequency for an
ellipsoidal cross section in the HNP plane normal
to [110]for o. = 0.715 to be 52&& 10' G which differs
from Phillips's value by only about 8%.

We have also calculated the cyclotron masses
for the ellipsoidal sections from

m* h dC~
m, 2mm, dEj~

as shown in Table V.
These calculated values must be multiplied by an

enhancement factor 1+X to compare with experi-
ment. McMillan ' has used superconducting prop-
erties to estimate the enhancement factor for vana-
dium and gives a value of 1+X=1.6. The experi-
mental cyclotron mass value of Phillips is in good
agreement with our value multiplied by the above

NORMAL

G N

REDUCED 54/o

G N

FIG. 5. Fermi surfaces of vanadium at normal and
reduced lattice constants for & =3.

factor.
From the Fermi-surface areas at normal and

reduced lattice spacings we have calculated the
logarithmic pressure derivatives of the dHvA fre-
quencies (Table V}. We note a change of about
0. 25% kbar ' in the ellipsoid cross sections, a
rather large effect especially for a transition metal.
By way of comparison, from the scaling due to
compressibility, 3 Kr, one would predict -0.04%
kbar ' increase in area. There are no data yet
on the pressure dependence of the Fermi surface
of vanadium, but some preliminary experiments
by Anderson and Schirber on Nb give values for
the changes of cross sections in the ellipsoids in
this metal of about 0. 1% kbar ', in good agreement
with our self-consistent band calculations for Nb. '
Thus we predict a bigger effect in vanadium than
in niobium.

VI. DENSITY OF STATES

In order to find the density of states we interpo-
lated the APW energies using a Monte Carlo method
and a formula suggested by Mattheiss. The re-
sults, which involve 48000 points in the Brillouin
zone, are shown in Fig. 6. It is interesting to
note that for @=3, the Fermi level falls at apeak
of the density of states as might naively be expected
for a high-T, superconducting material.

In the one-electron approximation, the low-tem-
perature electronic specific-heat coefficient is
y= km'O'N(E~), where N(E~) is the density of states
at the Fermi level. The experimental value of y
is 8. 86 mJ mole ' deg . To compare with ex-
periment our calculated value of N(E~) = 26. 6 states
atom ' Ry ' was multiplied by the enhancement
factor 1+~=1.6. ' The result for y was 7.24 mJ
mole ' deg 2, which is reasonable in view of the
uncertainty in ~ and the limited accuracy of our
density-of-states calculation.

As is shown in Fig. 6, for the reduced lattice
constant, the density of states is similar, but N(E~)
= 21.6 states atom Ry is smaller. We, there-
fore, expect that at this pressure the transition
temperature may be less than the normal value.
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FIG. 6. Density of states of vanadium for + =~3 atnormal (A) and reduced (B) lattice constant. (A) corresponds to an in-
terpolation of the lowest six bands while (B) corresponds to the lowest four bands.

However, at much smaller pressures, Gardner and
Smith30 found the pressure derivative of T, to be
positive.
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Exchange Approximations Used in the Energy-Band Calculations of Metals
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The use of different exchange approximations in the self-consistent energy-band calculations
for a metal (Cu) is shown to yield different one-electron eigenvalue spectra. Specifically,
when an energy-dependent exchange potential proposed by Liberman was used, the resulting
bandwidths (s-p, d) were much wider than those obtained with the p exchange operator. Also
it is shown that when the energy-dependent exchange operator is screened, as in the Bohm-
Pines theory, the resulting bandwidths were considerably narrowed. Although the "p "opera-
tor and the screened-exchange operator yielded similar results, the variation of the screening
parameter did not correspond to a variation of the n parameter of the "p ~3"' method. Use of
the screened-exchange operator appears to yield a reasonable band structure.

I. INTRODUCTION

This paper concerns, in a pragmatic way, the
role of various exchange approximations used in

energy-band calculations of transition metals, and

the one-electron eigenvalue spectra generated by

these exchange operators are considered for three
regimes: the isolated atom, the metallic crystal,
and the electron gas. Copper was chosen for the
energy-band calculations because it typifies the
sensistivity of the d bands of the first-row transi-
tion metals to the exchange approximation. Since
none of the exchange approximations used here in

the band calculations has a rigorous theoretical
basis, they are compared solely on the basis of the
one-electron eigenvalue spectrum which each gen-

crated in self-consistent-field calculations. The
calculations are rel.evant mainly to those energy-
band-calculational methods in which the choice of
the crystal potential is independent of the self-con-
sistency criterion.

II, THEORY

Since Slater' derived the local-electron-gas-ex-
change approximation (p'~' or Xn method), it has
been used successfully in many atomic calculations
and in most energy-band calculations. This ex-
change operator is

where p(r) is the (nonuniform) electronic-charge
density. From the considerations ot Kohn and


