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where X is the vector potential. The results ob-

theory developed here and in SP with which the
experiments give qualitative verification is ent-'rely
based on the assumption that in the presence of a
magnetic field, the Hamiltonian for the surface-
state levels is given by the replacement

tained here indicate that this approximation re-
mains valid when cubic terms are involved in the
band structure,
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The phonon frequencies and lifetimes in Na at T =5, 90, 160, 293, and 361'K have been com-
puted employing both the self-consistent (SC) and perturbation theories of anharmonic-1attice
dynamics. To describe Na an effective ion-ion potential derived from the calculations of Gel-
dart et al. which employs the Geldart- Taylor screening function was used. For all the sym-
metry directions the computed frequencies were in excellent agreement with the observed
values at both 90 and 293'K. The predicted lifetimes, however, did not agree so well, sug-
gesting higher-anharmonic damping effects may be important. Comparison of the SC and per-
turbation results suggest that the frequency shifts are reduced in the SC theory, that the SC
theory agrees marginally better with experiment, but that there is little to choose between the
two for Na. The agreement with experiment suggests that Na can be well described by an ef-
fective two-body potential.

I. INTRODUCTION

Since the pioneering study of Toya in 1958,
many calculations of the lattice dynamics in Na
have appeared. These have used various force-
constant, pseudopotential, and orthogonalized-
plane-wave (OPW) models with most incorporating
fitting procedures to solid data to fix the potential
parameters. All these calculations mere made
within the harmonic approximation with many
achieving very good agreement mith the observed
phonon-dispersion curves at 90'K of Woods et
al. ~ This work on sodium and the potentials are
discussed in detail in the review article by Joshi
and Rajagopal and by Price et al. to which the
interested reader is referred.

In this paper we specifically study the anhar-

monic contribution to the lattice dynamics in Na
to discuss three questions. First, by comparing the
anharmonic and quasiharmonic (QH) results we
may isolate the magnitude of anharmonic contri-
butions, particularly at high temperature. Sec-
ond, by computing the anharmonic contributions
in both the self-consistent (SC) and standard per-
turbation theories of lattice dynamics, we may
compare these two theories for a simple metal
and estimate the sophistication needed to treat
Na satisfactorily. Finally, by comparing with
experiment we may test the validity of both the
anharmonic theory and the fundamental interatomic
potential which we use. A similar study of K, but
employing a pseudopotential obtained by fitting
to phonon-dispersion curves and a perturbation
treatment of anharmonicity, has been made by
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FIG. 1. 90 K effective ion-ion potential in Na as a
function of the ion-ion separation in units of lattice param-
eter a = 4. 234 A.

Buyers and Cowley.

H. EFFECTIVE ION-ION POTENTIAL

For the present calculation we have chosen the
ion-ion potential derived from the calculation of
Geldart et a/. ' and discussed by Duesbery and

Taylor and Basinski et a/. ' For this potential
the bare electron-ion interaction was calculated
using a single OPW for the conduction-electron
wave function which interacted with the Na' ion
via the empirical Prokof jew potential. The
Prokof jew electron-Na' potential was constructed
to reproduce the spectroscopic-term values of
the isolated ion. The choice of electron-gas
screening for this problem is quite critical~' and

we have used the Geldart-Taylor' calculation of

the dielectric function since, on comparison" with
other functions, it appears to be the best one
available. There are then no adjustable param-
eters to fit to solid data. Hence in view of the
fundamental nature of the calculation and the ex-
cellent agreement with experimental lattice-dynam-
ic data at 90 'K obtained by Geldart et a/. and

Basinski et a/. , this potential seems a suitable
choice for anharmonic calculations. There are,
of course, other ion-ion potentials calculated for
Na, the most noteworthy of which is perhaps the
calculation of Shyu et a/. ~2

The extension of the potential calculation for the
higher temperatures considered here is made
simply by using the Na density appropriate to
these temperatures. The calculations of Geldart
et a/. were then repeated at these densities. A
typical potential is shown in Fig. 1.

III. ANHARMONIC THEORY

The SC theory of lattice dynamics' ' has been
discussed and reviewed "' 'by many authors and
we outline below only those parts which are specif-
ically used here. Starting with the usual QH
theory, the lowest-order self-consistent harmonic
(SCH) theory can be derived by retaining all the
anharmonic terms which appear in the first-order
anharmonic perturbation correction to the QH
frequencies. These are all even anharmonic terms;
the fourth-order term V&, the sixth-order term
Ve, and so on (V4+ Ve+ V8+ ~ ~ ~ ). The summation
of these contributions into closed form yields the
expression for the SCH frequencies. This summa-
tion is represented graphically in Fig. 2 and the
closed expression for the SCH frequency (0,/) for
phonon with wave vector q and branch j is

1 g (e(,".Rr, & 1) g a s v(r(ll'))
q/

—
/tf a/ c/ s& (I) s& (I~)

(1)
where R(ll') is a lattice vector, &„ is the & com-
ponent of a polarization vector and v(r(ll') ) is
the effective ion-ion potential. The expectation
value in (1) can be written as a space integralt4't7

in the difference coordinate u=r(fl') —%(ll') as

and P=1/kT. Since A(ll') depends on 0,/, (1)-
(3) must be solved iteratively to obtain the final
SCH frequencies.

If, however, the QH frequencies &o, / are sub-
stituted into (3) and the resulting A (ll') is used
directly to compute the expectation value, then
the frequencies obtained from (1) are the QH

+ — + = + — 4- ~ ~ ~
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FIG. 2. (a) QH frequency plus the even anharmonic
terms appearing in the first-order correction ivhich are
summed to obtain the SCH frequency expression; {b) cu-
bic anharmonic term as computed in the QH and SCH basis.
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frequencies plus a perturbative shift &I,(PT) due
to the anharmonic terms; V4+ Vs+ ~ ~ ~ . Employ-
ing (1)-(S)with a prior calculation of the QH
frequencies in this way, we may thus compute
the frequency shift &v~(PT) due to those anharmo-
nic terms which appear in the SCH theory as they
would be calculated in a standard perturbation
theory.

The leading correction to the SCH frequencies
is the cubic anharmonic term. ' The frequency
of phonon qj = ~ with this cubic term added as a
perturbation is then identified with the peak in the
response function:

2~3,~ I'((I))
[- ~' ~ n'„+ mn„a(~))'+ [2n„r(~)[')

I I I I I I I I I I I I I I I I I
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FIG. 3. Phonon-frequency dispersion curves in Na at
T=90 K: solid line, SCH+C; dashed line, QH. The cir-
cles are the observed values of Woods et al.

where

x —(1 —e~"
)

2m

g ~(V(X, X,X,))~2S

be computed.

IV. NUMERICAL RESULTS

A. SC Theory and Comparison with Experiment

1. Phonon I'xequenci es

and

X (ng+n2+1 nq+n2+ 1
+

(Q&+ Q2+ (d)& (Q~+ Q2 —(d)&

+ +
n2 ng 2 n1

(5)(n~-n~ w)~ (n, —n~ —w)~)

r(X, ) = P
~ & V(~, X„X,)) ~' ((,

|)(2

x[5(Qg+ Qm —v) —5(Qg+ Q+ (o)]

+ (n, -n, ) [5 (Q, —Q, —ar) —5(Q, —Q, + (d) ]]
(5)

are the real and imaginary parts of the self-energy
due to the cubic term, respectively; Oq = A&~ are
the SCH frequencies, n, = (e8""I-1), and V(X, X, ,
&,) is the cubic-potential coefficient [see Eq. (8)
of Ref. 20]. The representations 1/(x), =x/(x'+ e')
and II5(x) = e/(x + c ) were used for the principal
part and 5 functions. With the cubic term includ-
ed, the resulting frequencies are denoted here as
SCH+ C. The frequency shift due to the cubic term,
&~~(SC), is defined bere as tbe difference between
the peak in (4) and the SCH frequency.

In standard perturbation theory, the correc-
tion to the QH frequencies for the cubic term is
identical to (4)-(6) except that (V( &, Q, Xz) ) is re-
placed by V( &, &, , Q) and the QH ~,~ replace the
SCH Q,J everywhere. Also, in the denominator
of (4) we must include the shift due to the first-
order terms. Making these changes the cubic
shift in standard perturbation theory, &vs~(PT),
defined here as tb difference between the fre-
quency QH+ &v~( PT) and the peak in (4), may

The phonon-frequency-dispersion curves com-
puted in the SCH+C and QH approximations at
T=90'K are shown in Fig. 3. From Fig. 3 an-
harmonic effects are clearly small at 90 K and
both approximations compare equally well with
the experimental values of Woods et al. The same
dispersion curves at T= 293 'K are shown in Fig.
4 along with the experimental data of Millington
and Squires. There, anharmonic effects are
important and the SCH+ C approximation compares
much better with experiment. The net shifts in
frequency due to anharmonic effects are most
pronounced near the (1, 0, 0) point and along the
two transverse branches in the [110]direction.

Figure 5 shows the SCH and SCH+ C approxima-
tions for the (110) direction at 29S 'K. The dif-
ference between these two curves represents the
shift due to the cubic anharmonic term hI 3~(S).
Comparing Figs. 4 and 5 we see that (a) for the
longitudinal (L) (110) branch the shift from the
QH to the SCH case is essentially cancelled by tbe
cubic shift so that the QH and SCH+ C values are
nearly equal; (b) for the transverse T2 (110)
branch the QH to SCH shift and the cubic shift are
both downward with the cubic shift being much
larger; and (c) for the transverse TI (110)branch
the QH to SCH shift is about twice the cubic shift.
As a result of the large first-order shift, the
temperature dependence of the Tq (110) phonon
frequencies differ in sign for the QH and SCH+ C
cases with the latter agreeing with experiment at
293 'K. Hence, to get agreement with experiment
for the T, (110)branch at both 90 and 29S 'K, an-
harmonic contributions are crucial. The phonon
frequencies for the (110) directions and (1, 0, 0)
and (0. 5, 0. 5, 0. 5) points are listed in detail in
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(q 00) (q q 0) TABLE I. Temperature dependence of the phonon fre-
quencies (in 10 Hz) for the [q, q, o) direction in Na as
observed (obs) (see text) and computed in the QH, SCH,
and SCH+ C approximations. S' is the computed phonon
group width at half-height (in 10' Hz).

Temperature ('K)
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FIG. 4. Phonon-frequency dispersion curves in Na at
293'K. solid line, SCH+C; dashed line, QH. The open
squares are the transverse and the solid squares the lon-
gitudinal observed values of Millington and Squires. The
open circles are the observed values of Woods et al. ,
Brockhouse et ai. , Woods, and some unpublished Chalk
Hiver results.

Tables I and II. Also listed are some observed
results taken from Woods et al. ,

' 4 Woods,
Brockhouse et al. ,

' and unpublished Chalk
River data. The estimated error on the observed
points is 2-3%.

The elastic constants and bulk modulus obtained
from the long-wavelength limit of the SCH+ C
phonon-dispersion curves are listed in Table III.
They have been summed over 19 neighbors only
and not to complete convergence as discussed by
Basinski ef; al.

2. Phonon Group Widths

The phonon group, as given by Eg. (4), for the
Tt(0. 5, 0. 5, 0) phonon is shown in Fig. 6 for five
temperatures from T= 5'K to 361 'K. The full
width at half-height W= 2I' of this group was as
large as any other phonon group, which is unusual
for a relatively low-frequency phonon. Since
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FIG. 5. Phonon-frequency dispersion curves along the

(q, q, ol direction forthe SCH and SCH+C approximations
in Na at 293'K. The difference between these two curves
represents the frequency shift due to the cubic anharmonic
term &p33 {SC).
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I I TABLE III. Elastic constants (in 10 /dyne/cm ) 1n Na
as computed from the long-wavelength limit of the SCH
+C phonon-dispersion curves. B is the bulk modulus,
B=-'( «+2 12)

C12
1

C44 'f (C~f C12) B
o 5

D
4

O

O

5
90

160
293
361

7. 89
7, 90
7. 84
7. 51
7. 00

7. 01
6. 96
6. 78
6. 48
5. 96

5.44
5.25
4. 97
4. 14
4. 12

0.447
0.470
0. 531
0. 519
0.519

7.30
7.27
7. 13
6. 82
6.31

LIJ

Z 20
Q.

Ct:

0.6 0.7 0.8 0.9 1.0
FREQUENCY (THz)

1.2 1.3

FIG. 6. Phonon group or scattering-response function
for the T&(0. 5, 0. 5, 0) phonon as a function of temperature;
1, 5'K 2, 90'K. 3 160'K 4 296'K', and 5, 361'K.
The solid dots show the values of the QH harmonic fre-
quencies at the five temperatures.

Tq(0. 5, 0. 5, 0) has a relatively low frequency,
the predominant contribution to I" must come from
the last two terms in Eq. (6). The large width

thus suggests there is an unusually large density
of phonons arranged so that O1 —02 + is often near-
ly zero for & approximately equal to the frequency
of the Tq(0. 6, 0. 5, 0) phonon. Phonon groups
for the (I, 0, 0) and L(0. 5, 0. 5, 0) phonons are shown

in Fig. 7. These and Fig. 6 aretypical of all the
phonon groups and no unusual peak shapes or
doubly peaked groups were found.

In Fig. 6, the width W computed for the Tz(q, q, 0)
phonon groups are shown and compared with the
observed Wof Woods. The comparison shows
clearly that the computed width for this branch is
much too small —as much as a factor of 3 at

large q. A similar discrepancy was found by Buyers
and Cowley' and this is discussed in Sec. V.

B. Comparison of SC and Perturbative Treatments

The frequency shifts due to anharmonie terms
as calculated in the SC and standard perturbation
theories for the q = (0. 5, 0. 5, 0) phonon are listed
in Table IV as a function of temperature. A
similar comparison for the Tq[q, q, 0] branch at
T= 361 K is made in Table V. In these tables
hv, ( PT) is the size of the frequency shift due to
the anharmonic terms V4, V&, Vs, ~ ~ ~ when they
are treated as simple perturbations to the QH
theory. bv~(SC) =—Q(SCH) —Q(QH) represents the
size of these terms when evaluated in the SCH
basis. &v33(SC) and &v33(PT) are the sizes of
the cubic shift when it is evaluated in the SC and
perturbative methods, respectively. The exact
definition of each shift is given in Sec. II.

From Table IV we see that both shifts are nearly
always reduced when evaluated in the SCH basis.
This is particularly true for ~v&. From this
point of view the SCH basis can be regarded as an
improvement since subsequent corrections to it
are small. The difference, however, is of signif-
icance only for room temperature and above and
then really only for the TqI q, q, 0] branch. For
this branch 4vq is reduced by 25% in the SCH

TABLE II. Temperature dependence of the phonon fre-
quencies (in 10 Hz) for the q= (0.5, 0.5, 0.5) and (1,0, 0)
phonons in Na as observed (obs) and computed in the QH,
SCH, and SCH+C approximations. W is the computed
phonon group width in 1012 Hz.

MI-

cd 3—
CL (1,0, o)

Na

T = 861'K

Pho non

(o. 5, o. 5, o. 5)

(1, 0, 0)

Approx.

obs
QH
SCH
SCH+ C

W

obs
QH
SCH
SCH+ C
8'

2. 877
2. 910
2. 87
0. 015

3.644
3, 663
3.61
0, 020

90 160 215 296 361

2. 88
2. 852
2. 909
2. 86
0. 046
3.58
3.613
3, 631
3, 54
0.032

2, 795
2.892
2. 82

0. 076

3. 557
3.585
3.45
0. 060

2. 82 2, 72
2. 680
2. 846
2, 70
0. 099

3, 41 3, 29
3, 450
3.489
3.26
0, 053

2. 632
2. 830
2. 64
0. 18

3.414
3.463
3.20
0. 77

Temperature ('K)
Z0

2
O
Z
LL

LIJ
I

O
CL
CO

LLI

(Z

~ 5,0)

FREQUENCY (THz)

FIG. 7. Phonon groups for theI (0. 5, 0. 5, 0) and

(1,0, 0) phonons at T=361'K.
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FIG. 8. Group width W for the T2 (q, q, 0) phonons at
T =296'K. The circles and solid line are the observed
values of Woods. The squares and dashed line are the
values computed here in the SCH+ C approximation.

basis. Also, since ~v1-0. 60&H for this branch,
the SC theory can be regarded as an improvement
since this large term is incorporated in the zero
order in the SC theory while it remains a correc-
tion in the perturbation method. This last argu-
ment cannot be generalized to any crystal or any
branch and will certainly not be convincing if

V33 V1 ~

The perturbation frequency is defined here as
the QH frequency plus a perturbative evaluation
of V4+ Ve+ Vs+ ~ ~ ~ to first order and the cubic
term to second order, Q(PT) = A(QH)+ &vt(PT)
+ &vaa(PT). It should not be confused with the
usual anharmonic-perturbation frequencies which

normally include only V4 to first order and the
cubic term as treated here. The first-order shift
then would not be so large. From Tables IV and

V we see that the perturbation and SCH+ C values
do differ somewhat. For the L(0. 5, 0. 5, 0) and

Ta(0. 5, 0. 5, 0) phonons this difference would be
increased if only V4 were included and from Fig.
4 the SCH+ C values agree better with experiment.
The largest difference is for the Tt[q, q, 0] branch
where the perturbation values lie -10% above the
SCH+ C values. Here, however, including only

V4 in perturbation theory would tend to bring the
two cases together. In summary, a perturbation
treatment such as that of Buyers and Cowley' using
the present QH frequencies would give substan-
tially the same results as the SCH+C approxima-
tion with the two differing by at most -5%). Where
these differences occur the SCH+C values appear
to agree best with experiment.

V. DISCUSSION AND CONCLUSION

The results of Sec. IV show that anharmonic
effects are clearly important in Na at room tem-
perature and upwards. The net shifts in phonon
frequency are most pronounced around the (1, 0, 0)
point and along the two transverse branches in
the [110] direction. The shift is downward for the

Ta[q, q, 0] branch and upward for the T,[q, q, 0]
branch so that the separation between the two
branches and hence the crystal anisotropy is
considerably reduced in the SCH+C case. For
this reason a QH theory employing a realistic
potential could not hope to fit the observed disper-
sion curves closely at room temperature. If a
fit were obtained, the potential would have to
simulate the anharmonic contributions in some
way. The anharmonic contributions also predict
a pronounced flattening of the L[q, 0, 0] branch at
large q which agrees with the shape observed by

TABLE IV. Frequencies, shifts, and widths (in THz) computed for the [0.5, 0.5, 0] phonon in Na employing the pertur-
bative (PT) and self-consistent (SC) Inethods as a function of temperature. QH: quasiharmonic frequencies; SCH; self-
consistent harmonic frequencies; QH+4vf(P): QH plus perturbative evaluation of the terms V4+ V6+ V8+ ~ ~ ~ which are in-

cluded in the SCH case; SCH+C: SCH plus self-consistent evaluation of the cubic term; PT: QH+hvf(PT) +Av33 (PT);
&vf(PT), 4vf(SC): frequency shift due to V4+ Ve+ Vs+ ~ ~ ~ in perturbation and SC cases, respectively; ~v33 (PT), hv33(SC):
frequency shift due to the cubic term in the perturbation and SC cases, respectively. W(PT), W(SC): scattering response
width in PT and SC eases.

Temp.
Branch QH SCH QH+Avf(P) SCH+ C P T Avf(P T) 4vf(SC) Av33(PT) ~v33(SC) W(PT) W(SC)

90
160
293
361

90
160
293
361

90
160
293
361

3.758
3.680
3.522
3.426
2. 559
2. 529
2.476
2.464
0. 885
0. 824
0. 777
0.776

3.829
3.796
3.724
3.680
2. 548
2. 513
2.439
2.421
0. 996
1, 022
1.097
l. 132

3. 831
3.801
3.744
3.708
2. 545
2. 500
2. 404
2. 378
0. 984
1.068
1.219
1.274

3.77
3.68
3.53
3.45
2. 51
2. 46
2. 33
2. 31
0. 89
0. 93
0. 95
0. 97

3.74 +0.073
3.66 +0, 121
3.48 + 0.222
3.37 + 0.282
2. 51 —0. 014
2, 44 —0. 029
2. 31 —0. 072
2, 25 —0. 086
0. 89 +0. 129
0. 94 +0.244
1.06 +0.442
1.08 +0.498

+0. 071
+0. 116
+0.202
+0.254
—0. 011
—0. 016
—0. 037
—0. 043
+0. 110
+0. 198
+0.320
+0.356

—0. 09
—0. 14
—0.26
—0. 34
—0. 05
—0. 06
—0. 09
—0. 13
—0. 09
—0. 13
—0. 16
—0.20

—0. 06
—0, 12
—0.20
—0.23
—0. 04
—0. 06
—0. 11
—0. 12
—0. 08
—0. 09
—0. 16
—0. 16

0. 08
0. 14
0. 25
0.29
0. 05
0. 09
0. 22
0. 28
0. 13
0. 30
0. 15
0. 20

0. 07
0. 13
0. 17
0. 22
0. 04
0. 09
0, 11
0. 12
0. 10
0. 17
0.28
0.23
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TABLE V. Comparison of the perturbative (PT) and self-consistent (SC) shifts and width (in THz) for the T& [q, q, 0j
phonon at T =361'K. The notation is explained in Table IV.

QH SCH qH+ hp, (P) SCH+ C p T 6pf {pT) Qp f(SC) Lak p33(p T) Av33(SC) W(P T) W(SC)

0. 5

0.4
0. 3
0. 2

0, 1

0. 776
0. 738
0.629
0.451
0.225

l. 132
l. 077
0.918
0.664
0.344

l. 274
1.211
1.029
0. 744
0.386

0. 97
0. 91
0. 74
0. 51
0. 25

1.08
1, 00
0.78
0.48
0.21

+0.498
+0.473
+ 0.400
+0.293
+0. 161

+0.356
+0.339
+0.289
+ 0.214
+0. 119

—0.20
—0.21
—0.25
—0.26
—0. 18

-0.16
—0. 17
—0. 17
—0. 15
—0. 10

0, 20
0, 27
0. 45
0. 22
0. 09

0. 23
0. 15
0. 11
0. 08
0. 06

Millington and Squires. Koehler has predicted
a similar flattening of this branch in solid Ne due

to anharmonicity.
Since the SCH+C dispersion curves in Figs. 3

and 4 broadly agree very well with the observed
curves, further anharmonic or many-body poten-
tial contributions not included here are either
reasonably small or such that their contributions
to the frequency shifts largely cancel. The work
of Shukla and Cowley on the thermodynamic prop-
erties of alkali halides suggests that the latter is
possible although one would not expect this to be
true for each branch. Figure 3 and 4 do suggest
however, that there may be some discrepancy out-
side the experimental error near the (1, 0, 0} point
and along the T,(110) branch. Since these are the
areas, particularly T,(110), which are most
sensitive to anharmonic effects, these differences
suggest some small further anharmonic contribu-
tions. The additional terms included by GoMman
etal . , ' for example, are of the correct sign and
approximate magnitude to improve the agreement.

The comparison of the anharmonic contributions
computed in the SC theory and standard perturba-
tion theory shows that these contributions are re-
duced in the SC method, particularly when their
contribution is large. From this point of view
the SC method can be regarded as an improvement
on the perturbation treatment. However, since a
perturbation treatment of the quartic and cubic
terms combined with the present QH theory would

give nearly as good final results as the SCH+C
case here, there is not much to choose between
the two from an operational point of view in Na.
This dif fer s from the situation in rare- gas crys-
tals where perturbation treatments appear to
break down completely at higher temperatures.

The present results can be most closely com-
pared with those of Buyers and Cowley' in K.
They employed a pseudopotential, with parameters
determined by fits to the observed dispersion
curves at 9 'K and the elastic constants, together
with a perturbative calculation of the quartic and
cubic terms. They found explicit anharmonic
frequency shifts of essentially the same size and
variations throughout the Brillouin zone as found

here. In particular, the quartic shift for the

T,(0. 5, 0. 5, 0}phonon was also- 60/g of the QH fre-
quency in K which, since this is the same size as
the shift hv, ( PT} here, suggests that nearly all
of b, v, (PT} is due to the quartic term. The most
significant difference occurred in the treatment
of the thermal or expansion shifts appearing in
the QH approximation. For the L(111) branch
the downward shift in the QH f requency was much
greater here and apparently in much better agree-
ment with experiment. It is difficult to say whether
this is due to the more exact QH theory employed
here or to a difference in the screening appearing
in the potential. Since Millington and Squires used
the more exact QH theory and a fitted screening
function similar to Buyers and Cowley and also
computed a L(111) branch giving larger frequencies
then observed, the difference here may well be
due to an improved potential.

The computed phonon group widths were gen-
erally much less than the observed ones. This
discrepancy, in the same direction and size, also
occurred in the calculations of Buyers and Cowley
who discuss a number of phonon damping contri-
butions which have not been included in either
calculation. Of these contributions, higher-order
anharmonicity and one-phonon or two-phonon in-
terference or multiphonon contributions to the
scattering cross section appear the most probable
to us. However, we are not able to add anything
more concrete to the explanations of Buyers and

Cowley and this remains a significant disagree-
ment with experiment.

Millington and Squires have computed dispersion
curves for Na at room temperature within the QH
approximation and employing a fitted pseudopoten-
tial. Their computed dispersion curves differ
from their observed points, most along the (qqq)
direction at large q, the L(q, q, 0) at high q and

along T,(q, q, 0) . Comparing with the present
results, the discrepancy along T,(q, q, 0) is almost
certainly due to anharmonic effects. For the
(q, q, q) at large q, the discrepancy is probably
a complicated combination of anharmonicity and
their particular choice of screening. For L(q, q, 0)
it is most probably a screening effect. Geldart
et al . have discussed in detail the dependence of
the dispersion curves on screening and their re-
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suits suggest that a Hubbard screening model
would provide dispersion curves which are general-
ly too high at large-q values.

In conclusion then, the present results show
that with a careful choice of dielectric function
and including anharmonic effects, good agreement
with experimental dispersion curves at T =90 'K
and room temperature can be obtained without

prior fitting to solid data.
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