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In a medium consisting of a spatially uniform source of scattering supplemented by ran-
domly distributed localized scatterers, the current distribution is spatially nonuniform. The
nonuniformity arises from the fact that the current flow suffers a detour near an obstacle to
the extent that the localized scatterer's cross section exceeds that of the equivalent volume
of background material. Thus a typical obstacle will be exposed to an incident current which
has been increased by the "detour" currents of the other scatterers. This increase in the
local current incident on an obstacle results in a contribution to resistivity which is nonlinear
in both the density of the obstacles and in their scattering cross sections.

INTRODUCTION

The Lorentz correction in dielectric theory
arises from the fact that a polarizable atom sees
an electric field which is different from the simple
space average of the electric field. The polariz-
able atom under consideration sees this different
local field because it is not at an average position
but guaranteed to be at a position outside that of
the other polarizable atoms. When we consider
the typical residual resistivity process in metallic
conductors, we find a similar situation. Usually,
the resistance arises from a random array of im-
purities with localized potentials in addition to a
uniform background of thermal scatterers. A
typical impurity is guaranteed to be outside of all
other impurities. We can then expect the current
incident on an impurity to be modified by the cur-
rent-flow distortions produced by other localized
scatterers. The purpose of this paper is to point
out the general form of such a correction, using
an admittedly very simple physical picture.

The ordinary Lorentz correction leads to a di-
electric constant which is nonlinear in atomic con-
centration and polarizability. In the conductivity
problem we can expect a resistance which is non-
linear in scatterer concentration and in scattering
cross section. Before launching into the discussion
of the conductive Lorentz correction, we would
like to remind the reader that there is another
source for a nonlinear dependence of resistivity

on the scattering cross section of a localized ob-
stacle. This is made most clear by reference to
the case of a single plane obstacle, such as a grain
boundary, or a region which has to be traversed
by tunneling. In the case of a barrier reflecting
most of the carriers incident on it, it has always
been apparent' that current flow and conductivity
are proportional to transmission probabilities.
This gives a resistance which varies as 1/(1 —r),
with the reflection probability r. For weak scat-
terers, on the other hand, the resistance must be
proportional to the scattering rate r. It is not
surprising that more complete analyses~' yield
a dependence of resistivity on t/(1 —r) 'The d. e-
nominator (1-r) insures that the resistance goes
to infinity as the obstacle ref lectivity approaches
unity, despite the fact that the scattering rate re-
mains finite.

This nonlinearity with r is not just an isolated
and anomalous feature of the plane infinite barrier.
It has been pointed out by one of us3'4 that a single
obstacle localized in three dimensions also gives
a resistivity contribution which is nonlinear in its
scattering cross section, though the nonlinearity
is clearly less pronounced in the case of point
scatterers. This particular nonlinearity, unlike
the Lorentz correction, is a characteristic of an
isolated localized obstacle and its interaction with
the otherwise unif orm environment. It results
from replacing the total cross section in a non-
scattering medium by that in a medium with scat-
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tering. In the language of Green's functions, this
corresponds to using propagators which take into
account the scattering property of the medium in
the calculation of the single-particle self-energy.
We note that the above remarks are based on the
assumption that the range of the scatterers is much
smaller than the mean free path of an electron in
the uniform medium.

LORENTZ CORRECTION
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In this section, we consider the nonlinear de-
pendence of conductivity on impurity concentration
arising from the fact that no more than one im-
purity can occupy a given site. Consider an im-
purity added to a system in a random location.
The current incident upon it, averaged over all
such possible locations, is equal to the average
current in the impurity-free region.

Consider a piece of metal connected to a constant-
current generator. We assume that there is a
uniform background scattering (say, from phonons)
oo per atom, so that the resistivity in the absence
of impurities is

3w nP~= pa 3 Oo~e

where no is the density of atoms and k~ is the
Fermi wave number. (We assume a spherical
Fermi surface. ) In the absence of impurities, the
current density is uniform with magnitude jo.

Now, introduce a density n' of impurities.
Assume the range of the impurity potential is small
compared to the electronic mean free path. Let

(& o'p) be the scattering cross section of one of
these impurities in the presence of the background
scattering. The current density is now no longer
uniform. Each impurity will redirect some of the
incident current and the current will be taken
around the impurity in a fashion described in de-
tail in earlier papers. ' These earlier papers
also point out that the additional field resulting
from the localized scatterers, in the presence
of a constant current flow into the sample, con-
sists of a superposition of dipole fields centered
about each of the scatterers. Let us assume that
the velocity distribution incident on the scatterer
deviates from equilibrium by an amount propor-
tional to cos~, where ~ is the angle between an
incident velocity class and the direction of current
flow. This will be the case if the scattering can
be characterized by a simple relaxation time. The
current J, scattered by each impurity is then

~.=j.(o- oo),
where j, is the (average) local incident current
density, and the scattering cross sections are cal-
culated in the usual transport-theory way, weigh-
ing the collisions by (1 —cosn), where n is the

EXTRA CARRIERS O SCATTERER, RADIUS a
&.i RADIUS 2a

scattering angle. Note that j, differs from j& for
the reasons cited earlier.

In the vicinity of an obstacle, the current flow
is disturbed. The total current

consists of the incident current j& plus the effects
due to the scattering, shown symbolically in Fig.
1. Here j, denotes the deviation in current flow
from the incident current pattern. Since the cur-
rent across any plane not parallel to the direction
of j& in Fig. 1 mustbe the total incident current,
we must have

J'j,d7 = 0, (3)

where the integral extends over the whole sample.
It now becomes convenient to break the whole
sample into two regions which are separated by
the dotted line in Fig. 1. This is a sphere with
twice the obstacle radius. The center of another
obstacle, exposed to the current disturbances
j, of the obstacle shown in Fig. 1, must be outside
of this dotted line. If within the crude approxi-
mations of this discussion we identify the current
incident on an obstacle with the current incident
on its center, then we are interested in the current
j, outside of the dotted line. We then have

—fj,d7= Jj,dr, '

(4)

where I indicates an integration over the volume
inside the dashed sphere of radius 2a and 0 in-
dicates the volume outside of this sphere.

Figure 1 shows that the current due to the local-
ized scattering, j,(o' —oo), is carried around the
obstacle. If we assume that the mean free path
l is large compared to the scatterer radius a, then
the scattered "extra" and "deficit" carriers shown
in Fig. 1 as emanating from the obstacle volume
will almost all pass through the dashed line of
radius 2a. Thus j, carries a current j,(o' —o)

FIG. 1. Symbolic representation of current disturbance
near a localized scatterer. After scattering by the ob-
stacle, the carriers typically move a mean free path 5 in
unscattered flight, and then are subject to a more macro-
scopic flow, as indicated by the heavy arcs.
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j =j o+n'j, (v' —o'o) &
Solving for j„we find

~ jQ
1 —n'(o' —oo) &

Without the Lorentz correction we have a re-
sistivity:

Sve
p =

o o [noo'o+ n' (a' —o'o)]
k~e

(8)

(8)

The Lorentz correction increases the current in-
cident on the extra scattering power, e' —oo, and
therefore raises the final right term in Eq. (8),
giving

3m If n'(o' —oo)
a'ri' ' ' I-s'((r'-vg)n& ) (9)

The result in Eq. (9) can alternatively be pictured
in terms of the model in which the extra potential
due to each localized scatterer consists of a dipole
field around each localized scatterer ' which is
proportional to the localized scattering power
(o'- oo) and the local current j,.

COMMENTS

The specific expression given in Eq. (9) is valid
for a degenerate spherically symmetric Fermi gas.
The factor

around the outside of the dotted sphere. The exact
value of the right-hand term in Eq. (4) depends on
which part of the scattered current passes through
which part of the sphere of radius 2a. As an order-
of-magnitude approximation, however, the current
typically gets carried a distance 2a in going from
the left-hand side of the sphere of radius a to the
right-hand side. Thus

J j,dr =j,(o' —vo) gd, (8)

where g is an undetermined coefficient of order
unity and we have written d for 2a. An exact cal-
culation of g from the existing semiclassical
theories~'4 would be relatively meaningless in any
case. Unfortunately, at this time, a quantum-
mechanical version of this viewpoint exists only
for the one-dimensional case. '

[A direct uncritical
application of Eq. (4. 9) of Reference 8 does yield
q=l. ]

If we now consider a density n' of scattering
centers, an additional center inserted into the
space outside of all the dotted spheres will see an
average current increment, due to all the j, con-
tributions from the other scatterers, of nj', (o' —o,)
x +. Thus

1
1-n'(o'- o'o) gd

(10)

by which the local current is increased, however,
has a broader validity and does not depend, for
example, on the degeneracy of the Fermi gas.
This expression only assumes that there is a highly
localizable source of scattering which reroutes
the current around the obstacle involved. The
long-range screened Coulomb fields, typical of
impurities in semiconductors, do not meet this
qualification.

Experimental comparisons will be difficult. As
we increase the concentration to bring the correction
factor (10) away from unity we will be likely mod-
ifying many other aspects of the material, e.g. ,
carrier densities. Thus there are other sources
of nonlinearity in the dependence of resistivity on
obstacle density.

One place where the Lorentz correction can play
a role is in electromigration. 6'7 In the presence of
current flow, carriers pass their momentum pref-
erentially on to localized scatterers, giving the
scattering centers a drift velocity. The Lorentz
factors will enhance this effect. The nonunifor-
mity of the associated electric fields'4 may also be
relevant, if there are any direct electrolytic forces.
The existence of direct electrolytic forces on an
impurity screened by a dense and highly mobile
electron gas is, however, open to questions.

In dielectric theory the Lorentz factor can di-
verge, and this has on occasion been used to ex-
plain ferroelectricity. Expression (10) can diverge
if we have a relatively dense (n'a - 1) obstacle
array, and if the scatterers are relatively impene-
trable, i.e. , 0'- ao-a . Whether the expression
really can have a pole or not will depend on the
exact value of g. This tendency for the Lorentz
factor to become very large, however, is reason-
able and expected. As we fill space more and
more with relatively impenetrable scatterers, the
resistance must go to infinity. This obvious effect
is, however, not represented correctly by the
usual elementary impurity-resistance equations
of the form of Eq. (8), and demonstrates the need
for the Lorentz correction. The point where the
resistance goes to infinity (in a rigorous theory,
not necessarily in our approximation) may in fact
occur somewhat before the obstacles are dense
enough to fill the sample completely and block all
carrier motion. Before this point is reached, the
passages around the obstacles may, in typical
percolation-theory fashion, cease to provide a
completely continuous path through the whole
sample, even though they still permit some local
motion.
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Following a prescription by Ehrenreich and Hodges, a relativistic band structure for Au has
been constructed by the insertion of spin-orbit coupling into an originally nonrelativistic inter-
polation scheme. The bands are used to compute the energy distribution of the joint density
of states D(E, 5'cu) and its second derivative with respect to energy D"I, N~). Peaks in
-D" (E, Scu) are found to correlate quite well in energy location with structure in experimental
higher-derivative photoelectron-energy spectra measured on cesiated Au. The comparison
is made with previous data and with supplementary spectra presented here. Profile changes
in the experimental spectra on varying the photon energy I~ are also reasonably well accounted
for. The density of states computed from the same band structure shows d-band peaks at
2. 65, 4.00, 4.50, 5.05, 6.35, 6.85, and 7.60 eVbelow the Fermi level. From the derivative
spectra at the lower photon energies, the L6(L2.) L6(L&) band gap in Au is estimated to be
4.0 eV.

I. INTRODUCTION

Several relativistic band calculations on Au have
been performed recently, and they confirm that
relativistic effects are quite large in a heavy ele-
ment such as Au. Experimental information from
optical and photoemission studies is now sufficient-
ly detailed that the relativistic effects should be
taken into account in any realistic interpretation.
Christensen and Seraphin have laid particular
emphasis on this point, and it has been considered
also by Kupratakuln. 3 Indeed, an attempt made in
an earlier paper by the author to interpret the
photoemission spectra of Au using a nonrelativistic
band structure was significantly less successful
than similar analyses on the lighter metals Cu and

This paper presents a reanalysis of the photo-
emission data from Au using an interpolated band
structure into which spin-orbit coupling has been
inserted. It is assumed that the relativistic effects
other than spin-orbit coupling (mass-velocity and
Darwin terms) can be absorbed into the parameters
of the original nonrelativistic interpolation scheme.
In fact, we follow very closely the prescription
set down by Ehrenreich and Hodges. ' The inter-
polated band structure is used to compute the en-
ergy distribution ot the joint density of states
(EDJDOS) and its second derivative with respect

to energy. These results are then compared with
higher-derivative photoelectron-energy spectra
taken on cesiated Au. It is found that the inclusion
of spin-orbit splitting does bring about a significant
improvement in agreement with experiment and
permits a more reliable identification of structure.
Good agreement for photon energies greater than
about 9.0 eV has been reported alsoby Christensen, ~

who has computed the EDJDQS from a relativistic
augmented-plane-wave (APW) calculation.

New higher-derivative photoelectron-energy
spectra on cesiated Au are presented here in order
to supplement those presented in the earlier paper,
particularly in the lower photon-energy region.
The new spectra show some interesting profile
changes on varying the photon energy. It is shown
that these are also consistent with the predictions
of the interpolated band structure.

II. BAND STRUCTURE OF GOLD

A. Interpolation Scheme

The band structure used here is obtained from
the interpolation scheme of Hodges, Ehrenreich,
and Langv (EEL). As pointed out by them and by
Ehrenreich and Hodges, the original nonrelativis-
tic HEL scheme can be converted into a relativis-
tic scheme in an approximate manner by expressing
the model Hamiltonian as follows:


