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We present a first-order Green’s-function analysis of the Heisenberg ferromagnet based on
a decoupling scheme which produces excellent agreement with exact results. We believe this
to be the most reliable simple method available for the calculation of Curie temperatures or
of other statistical properties. Explicit polynomial expressions for the Curie temperatures
of Heisenberg ferromagnets with nearest-neighbor and next-nearest-neighbor exchange are
given for the three cubic lattices. The theory predicts a Z-dependent renormalization of the
magnon energies for non-nearest-neighbor models. In the case of nearest-neighbor and next-
nearest-neighbor exchange, it suggests an antiferromagnetic-ferromagnetic transition for a
certain narrow range of the ratio of the exchange constants. The method is illustrated by ap-
plication to the europium chalcogenides. It is shown that the empirical paramagnetic and
ferromagnetic Curie temperatures are inconsistent with the assumption of first- and second-
neighbor exchange only. The inclusion of magnetic dipole interactions removes the contradic-
tion between theory and experiment and allows the determination of the ratio Jo/J;. This ratio
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is found to be about 0.7 for EuO and —0.1 for EusS.

I. INTRODUCTION

Some years ago Callen presented a simple meth-
od for the decoupling of the Green’s-function equa-
tions for a Heisenberg ferromagnet. His purpose
was to improve the accuracy beyond the random
phase approximation (RPA)%® while retaining a con-
veniently practical theory. Such a theory could be
the working model for a wide variety of theoretical
investigations in ferromagnets, wherever a knowl-
edge of the basic magnetization process would be
required. The purpose of this paper is to improve
and extend the Callen theory, with a particular in-
terest in the application to the europium chalco-
genides. By a simple modification of the Callen
decoupling (CD) excellent agreement with the Padé
approximant®~7 predictions of the Curie tempera-
tures was achieved, and agreement maintained with
Dyson’s low-temperature expansion.® The resulting
theory is as simple and convenient as RPA, but very
much more accurate. Furthermore, the author
believes that where Padé results are not available
the method provides the most reliable simple esti-
mates of the Curie temperatures.

The application of the results of this theory to the
case of the europium chalcogenides has been con-
sidered. It has been found that the measured ferro-
magnetic®° and paramagnetic*!:!2 Curie tempera-
tures are inconsistent with the assumption of first-
and second-nearest-neighbor exchange only. The
inclusion of the magnetic dipole interactions in the
Hamiltonian removes the contradiction between
theory and experiment and allows the determination
of the ratio of the exchange constants (y=J,/J;)
through a knowledge of the ratio of the ferromag-
netic to the paramagnetic Curie temperature. The
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ratio of the exchange constants is found to be ap-
proximately 0.7 for EuO and ~0.1 for EuS, in con-
trast to previous estimates of - 0.1 for EuO and
-0.5 for Eus.™

The theory predicts a k-dependent renormaliza-
tion of the magnon energies for non-nearest-neigh-
bor models. In the case of nearest-neighbor and
next-nearest-neighbor exchange, it suggests an
antiferromagnetic-ferromagnetic transition for a
certain narrow range of the ratio of the exchange
constants.

For convenience in future work, we have calcu-
lated explicit polynomial expansions for the Curie
temperatures of Heisenberg ferromagnets with
first- and second -nearest-neighbor exchange for
the three cubic lattices

II. DECOUPLING METHOD

The well-known exposition of the basic Green’s-
function analysis! shall not be repeated here. Callen
terminated the infinite hierarchy of equations of
motion at the first order by invoking the decoupling
approximation

(S S%; B))= (S¢)((S;; B)) —a(S;S:)(S;3 B)), g*f
(1)
and by choosing
a=(1/25%)(*) . (2

We may compare the results of this theory with
other theories by noting that the molecular field
approximation (MFA)® for nearest-neighbor ex-
change predicts Curie temperatures given by

ETY¥FA=25(S+1)Jz (3)
and that the RPA® result is then just
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TEPA=T3F4 /F(-1) , @)
where
15 _JO)
F-D=3 ? J(0) -J () (%)

The CD! then predicts
TEP=TEA{145(1+ /91 -FH(-DI}.  (6)

The CD predictions of Curie temperatures are in
good agreement with the Padé approximant results
for high-spin values and especially inthe limit of
infinite spin, but are relatively unsatisfactory for
low spins.

In a careful analysis of known results, and a
comparison with existing theories, Tahir-Kheli'*
observed that the known Padé approximant results
were reproduced remarkably accurately®® by a
formula which can be written as

TTR = TRPALY 4 1(1 —1/8)[1 - F}(-1)]}. )

He proposed a means of superposing these results
onto a Green’s-function analysis, albeit by a some-
what ad hoc procedure which was not a direct-de-
coupling approximation.

The essential key to our method is to note that
the preliminary choice of « as

1]

-1
S+1

s (®)

a= L
T 28°
gives precisely the Curie temperatures of Eq. (7).
In the low-temperature region, Eq. (8) predicts
the correct terms in T3/%, 7%2, and T"2 for the ex-
pansion of the magnetization. Unfortunately, how-
ever, it also introduces a spurious 7° term for
general spin, and it predicts an inaccurate coeffi-
cient for the 7% term. To correct these short-
comings, one can include in « an additional term to
ensure that a-1/2S as (§*)— S [in agreement with
Eq. (2) in the low-temperature limit] while pre-
serving the same Curie temperatures as Eq. (7).
In particular, we amend Eq. (7) to define the modi-
fied Callen decoupling (MCD). We have

1 s-1,, 1 S\? .
@= 5% 571 S 5D (—s—) : @)
The choice of the exponent in the last term of
Eq. (8) reflects the work of Copeland and Gersch.!®

For S=1, the first term of Eq. (8) vanishes and
our expression for « coincides with theirs. They
noted that unless the exponent was equal to or
greater than 3, the magnetization would be double
valued. This observation leads us to the choice of
a cubic rather than quadratic dependence on the
magnetization for the second term of Eq. (8).

It is easily corroborated that this choice of a
does eliminate the 7° term in the magnetization,
and that it restores the coefficient of the T* term
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to that calculated by Dyson in the Born approxima-
tion. Furthermore, the first two terms of the high-
temperature expansion of the susceptibility are re-
produced exactly and the third is reproduced ap-
proximately (as in RPA and CD).

III. EXTENSION iBEYOND NEAREST-NEIGHBOR MODELS

Now that we have established a decoupling scheme
for the case of nearest-neighbor interactions, we
proceed to extend it to investigate more general
cases. We first define a shell of neighbors of some
“central site” as the set of sites which are mapped
onto a given site by operations of the point group of
the crystal. Then we can again simplify the
Green’s-function equations. Indexing the shells by

€« -

j,” we find the magnon energy to be

E(K)=pp H+2(%)23, (7,00 —J;(E)][l +2af,],
(9)

where

T(R)=d, T e'8iE (10)
Aj

The Z, are the vectors connecting the central site
to the members of the jth shell and

— 1 o -E (k) /AT =1 -1
fi= 7,00) ? J;(k)[e -1]t. (11)

Together with the other equations of the Green’s-
function method, these form a set of simultaneous
equations which can be solved self -consistently for
the magnetization and for other quantities of inter-
est.

It is interesting and important to note that many
theories, including RPA- and Callen-type decou-
plings restricted to nearest-neighbor models,
predict energy spectra similar to the simple spin-
wave spectrum, but with a k2-dependent renormali-
zation factor R:

E(K)=pgH+2SR[J(0) -J(K)] . (12)

However, MCD does not predict a spectrum of
this form for models with more than nearest-
neighbor interactions. Instead, we can refer the
result of MCD to a simple spin-wave spectrum by
introducing a distinct renormalization factor R; for
each shell which interacts with the central site.
Thus, we can rewrite Eq. (9) as

E(R)=ppH+2S 2 R;[J,(0) —J{(K)], (13)
where
R,;=(*)/S)1+2af;] . (14)

Owing to the differing temperature and magnetic
field dependences of the f;’s, the renormalization
factors of different shells also exhibit different
functional dependences on temperature and mag-
netic field. These reflect the fact that the correla-
tions between two spins depends on the distance be-
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TABLE I. Coefficients of an expansion of £T,/J; in powers TABLE III. - Coefficients of an expansion of £T,/J; in
of v for a sc crystal in the range 0 <y <1, powers of ¥ for a bee crystal in the range 0<y<1,

S a, ay 2 as S ay ay a
0.5 1.758 5.640 -0.8345 0.2973 0.5 2.603 2.445 -0.1065
1.0 5.286 15.47 —-1.933 0.6832 1.0 7.660 6.871 —0.2393
1.5 10. 29 29.29 —3.469 1,227 1.5 14.81 13.11 —0.4225
2.0 16.76 47.10 —-5.434 1.925 2.0 24,06 21.15 -0.6555
2.5 24.70 68.89 -7.825 2.774 2.5 35.40 30.99 —0.9382
3.0 34.11 94.66 —10.64 3.776 3.0 48.84 42.65 -1.271
3.5 44.99 124.4 -13.89 4,930 3.5 64.37 56.11 —1.653
© 2.945% 7.975* -0.8527* 0.3039* x 4.194* 3.617* —0.0994*

2The values listed for S=« refer to an expansion of
kT,/J:S? in powers of v.

tween the spins. As a result of the form of Eq.
(13), the magnon spectrum will change shape (& de-
pendence) as well as magnitude as a function of the
temperature and applied magnetic field.

One of the more dramatic effects of the k2-depen-
dent renormalization is the possibility of a change
of the character of the energy spectrum from fer-
romagnetic (lowest energy is up H and is located at
E=0) to antiferromagnetic (lowest energy is less
than pz H and is located at some & #0).

IV. NEAREST- AND NEXT-NEAREST-NEIGHBOR
EXCHANGE MODEL

We consider the specific predictions of the MCD
theory for the case of nearest-neighbor and next-
nearest-neighbor exchange. This is the simplest
case exhibiting the change in the & dependence of
the magnon spectrum. Furthermore, this case pro-
vides the basis for the application of the theory to
the europium chalcogenides.

Using MCD, we have calculated kT, /J, as a func-
tion of y =dJ,/J; for all spins and for each of the
three cubic lattices. Agreement with Padé approxi-
mant work is again within the accuracy of the Padé
results.

The Curie~temperature results are so useful for
application to materials of current interest that we
have empirically fitted the results of the numerical

TABLE II. Coefficients of an expansion of BT,/Jy in
powers of ¥ for a sc crystal in the range — 0.15<7y<0,

2The values listed for S=« refer to an expansion of
kT,/Jd.S% in powers of v,

calculation to simple polynomials in y of the form
BT,/dy=ag+ayy +azy®+asy® . (15)

The coefficients obtained in this way are given in
Tables I-VI. Curie temperatures calculated from
these tables agree with the Padé approximant re-
sults*~7 to within 1% in the domains indicated, with
the exception noted in Ref. 15.

The criteria for the stability of the ferromagnetic
ground state can be obtained from simple spin-wave
theory. If J; >0, the ferromagnetic ground state is
stable when y is greater than a critical value y *.
This critical ratio of the exchange constants is lat-
tice dependent, but spin independent. For the cubic
lattices, it is given by

S- 1, fcc
y*={~2  pcc
2- %, simple cubic (16)

which agrees with the results of RPA, MFA, CD,
and MCD.

MCD and RPA differ qualitatively in the forms
which they predict for the curve of kT./J, vs ¥
(except for S=1, when the curves are identical).
For all spins, RPA predicts an infinite slope at y*
and no solution to the equations for the phase bound-
ary for y <y*.

TABLE IV. Coefficients of an expansion of kT,/J; in powers
of v for a bee crystal in the range —0.4<y <0.

S ag aq as as S a ai ay as
0.5 1.754 5.827 —1.089 11.22 0.5 2,601 2.488 -0.1390 0.3960
1.0 5.277 15.92 —2.398 25.86 1.0 7.657 6.958 —-0.3328 0.7011
1.5 10. 27 30,13 -4,180 47.76 1.5 14.81 13.25 —0.5993 1,138
2.0 16.73 48.44 —6.444 76.16 2.0 24.05 21.37 —0.9389 1.690
2.5 24.66 70.84 —-9.187 111.0 2.5 35.39 31.31 —1.352 2.355
3.0 34.06 97.34 -12.41 152.2 3.0 48.82 43.08 —1.838 3.132
3.5 44.93 127.9 —-16.11 199.8 3.5 64.35  56.66 —2.397 4.020

s 2.941* 8.199% —0.9592* 12,74* s 4.192* 3.649* —0.1467* 0.2228*

2The values listed for S=« refer to an expansion of
RT./J;S? in powers of v.

2The values listed for S=« refer to an expansion of
kT,/J1S? in powers of .
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FIG. 1. MCD phase diagram for S=3%
(fec). y axis: RT/Jy; x axis: v=Jy/J;.
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For S=%, MCD predicts a phase boundary of the
form indicated in Fig. 1. Near y=y*, the boundary
which separates the ferromagnetic (F) and para-
magnetic (P) regions has a small positive slope and
a positive second derivative.

For S >1, the situation differs even more sharply
from the predictions of RPA. The MCD equations
now have solutions for a certain range of values of
vy which are less than the critical ratio y*. The
situation is illustrated in Fig. 2. In this phase
diagram, the solid curve which bounds the ferro-
magnetic region is calculated from the MCD theory.
The dashed line is only a schematic suggestion of
the boundary between the paramagnetic and anti-
ferromagnetic (AF) regions. For values of y just
below y*, MCD indicates a paramagnetic-ferro-
magnetic-antiferromagnetic sequence of transitions
as the temperature is decreased. This behavior is
plausible in terms of the renormalization of spin
waves as previously discussed. The MCD magnon
spectrum retains a form characteristic of a ferro-
magnet to the right of the 2T, /J; curve even in the
limit H-0.

The behavior of the ferromagnetic Curie tempera-
ture for values of y between zero and infinity is also

TABLE V. Coefficients of an expansion of 2T ,/J; in powers
of y for a fee crystal in the range 0 <y<1.

-1.00-0.97-0.94 -09I -0.88 -0.85 -0.82 -0.79 -0.76 -0.73 -0.70

interesting. In this region there is qualitative
agreement between the various Green’s-function
theories. We shall consider the ratio of the ferro-
magnetic Curie temperature to the paramagnetic
Curie temperature 6. It has been shown that the
paramagnetic Curie temperature is given exactly
by the molecular field result.!” We have

BO=RTYMFA=25(S+1)(J12; +J525) « 17

By plotting T, /6 against v/(1 +y) we compress
the region from zero to infinity between the limits
of zero and one. The resultant curve for the fcc
lattice for S=Z in the MCD approximation is shown
by the solid line in Fig. 3.

From one point of view, MFA consists of the as-
sumption that the interaction between a site and one
of its neighbors is equivalent to the average of such
interactions between a site and all other sites in the
system, This clearly overestimates the energy of
all excitations whose wavelength is greater than the
true range of interaction between sites. MFA will
consequently overestimate the ferromagnetic Curie
temperatures of all systems with a finite range of
interaction. On the other hand, the more sites
which interact with a given site the more accurate

TABLE VL. Coefficients of an expansion of kT /J in powers
of vy for a fcc crystal in the range —0.5<vy <0.

S a ay Qs S ay aq ay as
0.5 4.084 2.991 —0.2100 0.5 4.081 3.061 -0.2984 0.5177
1.0 11.91 8.0744 —0.4631 1.0 11.90 8.221 —0.6600 1.003
1.5 22,96 15.21 -0.8127 1.5 22.95 15.46 —-1.154 1.737
2.0 37.24 24.38 —1.257 2.0 37.22 24.79 —-1.780 2.682
2.5 54,75 35.61 -1.797 2.5 54.73 36.18 —2.539 3,835
3.0 75.50 48.88 —2.430 3.0 75.46 49.66 —-3.431 5.193
3.5 99.47 64.20 —3.158 3.5 99.42 65.21 —4.456 6.756

o 6.467% 4.097* —0.1891* i 6.464* 4.158* —0.2653* 0.4092*

2The values listed for S=« refer to an expansion of
ET./dS® in powers of y.

2The values listed for S=~ refer to an expansion of
kT,,/Jls2 in powers of y.
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FIG. 2. MCD phase diagram for S=3%
(fce). y axis: RT/Jy; x axis: y=dJy/d;.
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MFA is expected to be. For nearest-neighbor ex-
change models we would expect the ratio 7,/6 to

be most nearly equal to one for the lattice with the
most nearest neighbors. Hence, the fcc lattice
should have the largest value of T, /6 for cubic lat-
tices and the simple cubic (sc) lattice should have
the smallest. This is in agreement with the RPA,
CD, and MCD theories as well as the Padé approxi-
mant calculations.

On this basis, several features of Fig. 3 can be
readily understood. Since the second-nearest-
neighbors in an fcc lattice generate an sc lattice,
the value of T, /6 for the fcc lattice at /(1 +7)
=1 (J; /J»=0) must equal T,/6 for the sc lattice.
From the discussion of the preceding paragraph,
the value of 7T, /6 for y/(1 +7)=1 should then be less
than the corresponding value at y/(1+7)=0. Bya
similar argument, we would expect to find that when
the two exchange constants are roughly equal, the
value of T,./6 is higher than at either end of the
curve. :

The region near y/(1+y)=1 is especially inter-
esting due to the infinite slope of the curve at that
point. This is a general effect which does not de-
pend on the particular lattice. A discussion of the
physical origin of this effect is presented in the
Appendix.

V. APPLICATION OF MCD TO EUROPIUM CHALCOGENIDES

The first step toward the application of the theory
of the Heisenberg model to the ferromagnetic
europium chalcogenides, EuQ and EuS, is to deter-
mine the appropriate values of the exchange con-
stants.

McGuire and Shafer!'! estimated the values of the
exchange constants for all four of the europium
chalcogenides on the basis of the MFA. They began
with EuTe, which is an antiferromagnet with type-
I order.'® According to MFA, the Néel tempera-
ture of a type-II fcc antiferromagnet is independent
of J;. The experimental value of the Néel tempera-
ture then gave a direct estimate of J,.

0.94

0.90~

KWITH DIPOLE INTERACTION

FIG. 3. Dependence of the ratio of
Curie temperatures (T,/6) on the exchange
constants for S=% (fcc). y axis: T./6;

x axis: ¥/ (1+7).
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TABLE VII. Exchange constants resulting from the method
of McGuire and Shafer (Ref. 11).

Substance 'y=J2/J1 Jl/kB JZ/kB
EuO —0.098 0.634 -0.062
EuS —0.486 0.199 —-0.097
EuSe -0.854 0.125 —0.106
EuTe —-8.36 0.014 —-0.124

The assumption was then made, for lack of other
information, that the value of J, in EuO is half that
in EuTe and that it varies linearly with the lattice
constant. These assumptions enabled the calcula-
tion of J, for EuS and EuSe.

The paramagnetic Curie temperatures, which
are given correctly by MFA as previously noted,
were then used to determine the values of J; for
each compound. The experimental values of the
ferromagnetic Curie temperatures were not used
and the effect of the magnetic dipole interaction was
neglected. Table VII gives the results of applying
this procedure to current experimental values.

We shall attempt to improve upon these estimates
by considering the theoretical dependence of T./6
on Y and by comparing it to the experimental re-
sults. A difficulty which we shall encounter is that
T,/6 varies slowly as a function of v in the region
of interest. This slow variation makes y quite
sensitive to the measured values of 7T, and 6.

Although the ferromagnetic Curie temperatures
are known to a high accuracy, there is considerable
uncertainty about the paramagnetic Curie tempera-
tures. For EuS, 0 is given only to the nearest
degree. 1 For EuO, the situation is much worse.
Values of 77, 80, and 76 °K!! have been re-
ported. Most recently, Menyuk et al.'? published
data which, when analyzed in the usual way, 2 indi-
cate that §=81°K. Table VIII lists values of T,/6
corresponding to values of 6 lying in the range of
reported experimental results.

As seen in Fig. 3, the maximum theoretical value
of T,/ is 0.862 for an fcc lattice and for S= .
This corresponds to a value of y~2.15. As shown
in Table VI, only the results of Menyuk ef al.'?
(6=81°K for EuO) correspond to a value of T,/6
which is below this maximum. All other reported
results correspond to values of T,/6 which are
greater than 0.862. These values are therefore
inconsistent with a Heisenberg Hamiltonian which
includes only first- and second-nearest-neighbor
exchange.

Fortunately, the discrepancy between the theo-
retical and experimental results is removed if we
include the effect of the magnetic dipole interac-
tion. 2 This effect represents an energy of the
order of 1 °K. It is significant in the europium
chalcogenides because of their low Curie tempera-

tures (T, is 69.19 °K for EuO°® and 16.5 °K for
Eus'?).

The long range of the magnetic dipole interaction
allows it to be treated in the MFA. The variation
of T./6 with v/(1+v), appropriate to EuO, is shown
by the dashed curve in Fig. 3. This curve is shifted
upwards from the solid curve which was drawn for
the case of no dipole interactions. It now intersects
the experimental values of 7,/6. The only qualita-
tive change in the curve occurs away from the re- v
gion which is relevant to the europium chalcogeni-
des; 8(T,/6)/3(y/(1+7)) is no longer infinite at
v/(1+y)=1. The values of y, predicted by this the-
ory, are given as a function of possible values of 6
in Table VIII.

For EuO, plausible values of y range from 0.1 to
1.8; this is in contrast to the negative value ob-
tained by the method of McGuire and Shafer.!* We
might also note that Menyuk ef al.'? concluded that
¥=0.5+0. 2 on the basis of their careful considera-
tion of a complete high-temperature expansion, but
neglected the dipolar interaction. This value lies -
within the range of values listed in Table VIII.

For EuS, the situation is simpler. There is only
one reported experimental value for 6, namely,
6=19 °K. This leads to y=-0.113.% This should
be contrasted to the value of —0.5 based on the
work of McGuire and Shafer. !

In conclusion, we note that all the values of v
obtained by our analysis for both EuO and EuS are
significantly greater than those obtained by the
method of McGuire and Shafer. !
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APPENDIX

This appendix discusses the physical origin of
the infinite derivative of T./6 with respect to
¥/(1 +v) at the point y/(1 +y)=1. This is shown for
the fcc lattice and S= % in the solid curve in Fig.

TABLE VIII. Exchange constants resulting from the
ratio of the Curie temperatures when the analysis includes
the effect of the magnetic dipole interaction.

Substance 0 T./6 v=dy/dy Ji/kg Jo/kp
EuO 77 0.899 1.80  0.315 0.567
78 0.887 0.792 0.434 0.344

79 0.876 0.459 0.499 0.229

80 0.865 0.254 0.552 0.140

81 0.854 0.105 0.598 0.063

Eus 18.5 0.892 0.137 0.130 0.018
19 0.868 —0.113 - 0.151 ~0.017

19.5 0.846 —0.288 0.171 —0.049
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k=0 k=k, k=k,

FIG. 4. Excitation spectrum for various exchange
constants.

3. The divergence of the derivative is not peculiar
to either the lattice or the spin. It will be shown
to be a general result.

We first note that

AT /0) _ [ v \?a(T./6)
ol /) <1+7) ay/1+7)’

so that a divergence of either derivative, at y=,
implies the divergence of the other. We therefore
consider the divergence of 8(T./0)/8(Jy /J,) at J;
=0.

Let us first consider the situation when J; is
positive and J,=0. Curve A in Fig. 4 indicates
schematically the energy spectrum of the ferromag-
net in the extended zone scheme from 2=0 to a

neighboring reciprocal-lattice point £ =k;. The
Brillouin-zone boundary lies halfway between these
points, by definition. The quadratic nature of the
energy spectrum at 2=0 leads to a square-root
Van Hove singularity in the density of states at zero
energy.

Now let us consider the situation when J, is posi-
tive and J; =0. The lattice can then be regarded as
being composed of interpenetrating sublattices
generated by the second-nearest neighbors. When
the nearest-neighbor exchange constant vanishes
these sublattices are completely independent. Thus,

(A1)

each sublattice is a nearest-neighbor ferromagnet
with an exchange constant J,.

Consider a point in reciprocal space which cor -
responds to a uniform phase within each sublattice,
but a nonzero phase difference between sublattices.
Such a point would be found on the boundary of the
first Brillouin zone. It is shown schematically in
Fig. 4 at k=k,. When the sublattices are indepen-
dent, this point is degenerate with the point at 2=0.
This is another way of saying that &, is a recipro-
cal-lattice vector of the sublattice. This will be
reflected in the energy spectrum indicated sche-
matically in curve B in Fig. 4. The point at 2=,
will also contribute a square-root Van Hove singu-
larity at zero energy, superimposed on the singu-
larity which arises from the point at £=0.

Now let J; be nonzero, but much less than J,.
This allows the sublattices to interact weakly, lift-
ing the degeneracy between the points £ =0 and %
=k,. Since there is a fixed nonzero phase differ-
ence between the sublattices at the point £=%,, there
will be a nonzero contribution to the energy at this
point. This energy “gap” at the point 2 =%, will be
proportional to J; to lowest order. The new spec-
trum is shown schematically in curve C in Fig. 4.

The two Van Hove singularities are now separated.
The one arising from the point 2=0 remains at zero
energy while the one arising from the point 2=k, is
displaced by an energy CJ;. The resultant density
of states at low energy is shown schematically in
Fig. 5.

At nonzero temperatures, the energy spectrum
will be renormalized due to thermal fluctuations.
To lowest order, this renormalization just multi-
plies the energy at the point & =&, by a factor pro-

portional to the maximum magnon energy, E,,,.

Specifically, we note that the derivative of the
density of states with respect to Jy, for J,=0,
evaluated at zero energy, is infinite. This diver-
gence is the source of the primary divergence which
we seek to explain, as we will show below.

For temperatures just below 7., the magnetiza-
tion is inversely proportional to the number of

f(E)

P S

o

E

FIG. 5. Density of states at low energy.
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magnons ®. We have

(s*)y=1S(S+1)at, (A2)

The number of magnons is given by the integral
of the density of states and the Bose factor. In
terms of a renormalized energy variable

X=E/E a0y , (A3)
we can write this as
1
&= [ f™-1)"ax . (A4)

At the critical temperature, the maximum magnon
energy goes to zero. We can then expand the Bose
factor. The number of magnons is given in this
limit by

s=g1EL, [ #f()dx .

[ (45)

The integral is simply a generalization of F(~1),
which was defined in Eq. (5). It is always conver-
gent because of the square-root Van Hove singu-
larity at zero energy.

From Eqgs. (A2) and (A5), we see that the ferro-
magnetic Curie temperature is determined by the
expression

1 -1
ET,=55(S+1) (f x'lf(x)dx) lim (g—";‘;’—"), (A86)
b (st -0\ (%)

so that T, is inversely proportional to the integral.

The previously mentioned divergence of the de-
rivative of the density of states leads to an infinite
derivative of the integral with respect to J; at the
point J; =0. This, in turn, gives the infinite de-
rivative of T,/6 with respect to J; /J, for J,/d,=0.
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