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The local thermodynamic properties of Heisenberg antiferromagnets with dilute substitu-
tional impurities are studied by Green s-function techniques within the random-phase approxi-
mation (RPA). A body-centered two-sublattice model, with a single exchange constant and a
single-ion staggered-anisotropy field, is used. A representative set of impurity exchange and

spin magnitudes is chosen for quantitative study. The spectral distribution of spin excitations,
including localized mode contributions, the zero-point spin deviation, and the temperature de-
pendence of the magnetization are examined for the impurity and its first four shells of neigh-
bors. Within the limitations of the single-exchange model (and of the RPA) a comparison is
made with resonance and optical experiments on Zn, Fe, and Ni impurities in MnF2. Good
agreement was found in the first two cases, but no successful fit to the Ni data was possible,
perhaps reflecting the importance of the substantial additional exchange with near neighbors in
this case.

I. INTRODUCTION

A number of papers have discussed the effect of
replacing a single spin in a Heisenberg antiferro-
magnetic by one of different magnetic properties. '
The problem has much in common with that of im-
purities in ferromagnets, ' or with that of the ef-
fect of foreign atoms on phonon spectra. The effects
upon the excitation spectrum of the systems are, in
all cases, much the same. If some suitable spec-
tral density is defined to measure the excitation
strength at any site, this will have some character-
istic form within the continuum of pure-host exci-
tations. On introduction of the impurity this spec-
tral density is radically modified at the impurity
and to a lesser extent on near-neighbor sites.
Peaks may occur within the continuum and these
are usually referred to as resonances. They may
be of any degree of sharpness; if they are very
narrow they become experimentally indistinguish-
able from localized levels. The latter occur in
some circumstances outside the host continuum
and, in simple theories which neglect damping, are
perfectly sharp. Since anisotropic antiferromag-
nets have an energy gap, such local modes may oc-
cur below the continuum as well as above. All ex-
citations of the impure system must reflect the
point-group symmetry of the impurity and may be
classified accordingly. The resonance phenomenon
and the sharp levels will occur within the excita-

tions of a particular symmetry, anditis appropriate
to refer to them as resonant or localized modes of
that symmetry.

The alteration of the excitation spectrum of the
spin system by the impurity changes the thermody-
namic properties of the whole system. Far from
the impurity one expects to see little change in the
thermal behavior of a host spin, but in its immedi-
ate neighborhood some modification must take
place. The impurity itself will clearly behave un-
like a host spin. The problem treated here is that
of evaluating the temperature dependence of the
impurity magnetization and that of a few shells of
neighbors. %e know that for the pure host a reli-
able calculation of the sublattice magnetization
can be made at low temperatures and, by means of
various renormalization schemes, less reliable
estimates can be given right up to the Curie tem-
perature. In the impurity problem the first part of
this statement remains true, but the extension to
higher temperatures becomes more uncertain. One
reason for this is that the presence of the impurity
has changed the local excitation spectrum and this,
in turn, modifies the various spin averages at dif-
ferent sites. The medium has now, in effect, been
modified and this alters the excitation spectrum.
The whole problem should therefore be solved in a
self-consistent way within any approximation
scheme such as the random-phase approximation
(RPA). This is prohibitively difficult. It is there-
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fore necessary to assume that the effect of the im-
purity on the spin averages in its neighborhood is
both small and of limited range. If this is the case,
it is possible to derive an answer and this may then
be examined to see whether it is consistent with
these assumptions. It appears that for a substantial
temperature range, this is, in fact, the case.
Note, however, that this is verified only for the
particular approximation used, which in the present
case was the RPA. Clearly, such a verification
lends no support to the RPA decoupling itself.

A more important limitation is that approximation
schemes, such as the RPA, may have a narrower
range of applicability for the impurity problem than
for the case of a pure host. Some evidence that
this is, in fact, true will be pointed out later.

II. MODEL

In the limit of extreme dilution the impurities act
independently, and the theoretical problem is con-
veniently simplified to consideration of a single im-
purity in an otherwise perfect crystal. The validity
of such an approximation relies on the effective
range of interaction between impurities being
smaller than their average separation at experi-
mentally useful concentrations. In insulators, the
exchange forces themselves have a short range, so
one must worry primarily about the modification of
the host medium about one impurity which may be
felt by a second. As pointed out in the Introduction,
these effects do appear to drop off rather rapidly
with distance.

We have chosen to examine the two- (magnetic)
sublattice bcc crystal, with the "up" syins, say,
occupying the body-center sites and the "down"
spins occupying the cube corners. The results,
however, are applicable to any body-centered lat-
tice, since only the topology of the structure is
critical in the analysis. The effective Hamiltonian
of the system is taken to be given in terms. of spin
operators associated with each lattice site; explic-
itly, orbital effects are ignored. The interaction
between syins 8; and S& on sites i and j is described
by isotropic Heisenberg exchange (J,,S; 8~), and
the number of parameters in the model is reduced
by taking only a single nonvanishing-exchange in-
tegral J&&—that between a spin and its nearest neigh-
bors on the opposite sublattice. We represent the
effect of crystalline anisotropy in terms of an an-
isotropy field -g, p, aH", S', (g, is the g factor of the
ith spin), which again simplifies the analysis. The
field H& must, of course, be staggered or reversed
in sign from one sublattice to the other for the host
spins; for the impurity it may have either sign. It
must fall off in magnitude as the temperature in-
creases toward TN, we have taken it usually to be
proportional to the magnetization (S', ) at the site
on which it acts. We point out that our procedures

may be readily modified to accommodate any other,
more realistic, temperature dependence of H", . Qnly
systems in zero applied magnetic fields will be
considered in this paper in order to avoid consider-
able algebraic complication.

The Hamiltonian, then, is of the general form

R = 5~ j()8) ~
8) -Q K( ( S( ) Sf . (2. 1)

The host is characterized by the magnitude of
each spin S, by the single nonvanishing-exchange
integral J between nearest neighbors on different
sublattices, and by the anisotropy constant K. The
results will depend parametrically on S, J, and E
and on the corresponding quantities S', J', and K'
associated with the impurity which has substitution-
ally replaced one of the host spins. We assume
that only the impurity nearest-neighbor exchange
integral differs from the host value. It should be
noted that there is evidence in some cases that
this may not be valid.

~ e ~ (1 —e 8 )(o.ls;ly)(yls, l +)
E-E +i0'

&& 5(E —E„+E~), .(3. 2)

where ~ and y are summed over the exact eigen-
states of the Hamiltonian of energy E„P=1/kT, .
Z = g e ~ &. Thus the poles of G„(E}occur at the
exact excitation energies of the system, with resi-
dues characterized by matrix elements which mea-
sure the probability amplitudes that the spins at i
and j are flipped by these excitations. From the

III. GREEN'S FUNCTIONS

The most convenient tool for studying the thermo-
dynamic behavior of the spins is the two-time
thermodynamic Green's function. Use has been
made of the function G„(t) defined by

(3.1)

where 8(t) is the unit step function, the operators
are given in the Heisenberg representation, and
the angular brackets denote the thermodynamic
ensemble average of the expectation value of the
operator within. The square brackets indicate a
commutator. These functions are discussed in de-
tail in a variety of references; here we wish to
emphasize only their properties that bear directly
on the present calculation.

G~~(t) measures the response at time t of the spin
at site i to a field which flips the spin at j at time
t=0. Its behavior is more readily interpreted from
its spectral representation (time Fourier trans-
form}:
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f'dz' ( e"'-)A„(z ')
2' E -E +io' (s. 6)

The diagonal elements A„. are of particular inter-
est; they measure the probability of flipping the
spin at i with energy E. In the limit of a large sys-
tem the eigenvalues coalesce to describe a quasi-
continuous spin-wave band. If this limit is taken
before the imaginary part of the energy is taken to
zero, then the A«(E) are smooth functions (rather
than sums of 5 functions) representing the integrated
contribution over many excitations, where each is
of energy very nearly E. These functions thus have
folded into them an energy density of excitations,
as well as the factor of the spin-flip probability at
the site i due to these excitations. The A&~ satisfy
a useful set of sum rules, which are an immediate
consequence of the commutation relations of the
spin operators

2 &S;&6,= iG„(f= 0') = j dZ(l - e ")A„(Z) .
(3.6)

The sum rules do not provide a means of finding
(S', ), since within the approximation we use for de-
coupling the equations of motion for G,J, those
equations are linear in the G's and the inhomoge-
neous driving term is proportional to (S& &, so that
the G;;(&u) are inevitably proportional to (S& &. How-
ever, the equality which survives when (S', & is can-
celled out of Eq. (3.6) is extremely useful as a
check for the numerical analysis, as will be em-
phasized below. Equation (3.6) was derived for the
exact Green's functions, but we show in Sec. IV that
it is valid for the type of approximation we have
used.

To determine (S;& from A«(E) we have used the
algorithms proved first by Callen' and later gen-
eralized by Callen and Shtrikman. They showed
that in renormalized spin-wave approximations (of
which the RPA is one) the magnetization (S', ) is
given by

&s;& =s, B, .(PII,), (3.7)

where Bs,(x) is the Brillouin function for spin mag-
nitude S;. It is defined by

standard dispersion relation form of Eq. (3. 2) it is
clear that all information is contained in the dis-
continuity of G;, (E) across the real E axis

lim [G&;(E+ie) —Gu(E —ie)]= —i(l —e )A«(E),
(3.3)

where the spectral-weight function A, &(E) is defined
by

(E)= g L e" &o'~s'~Y&&x~s
~

a&6(z-z, )

(3.4)

Then the full Green's functions are recovered from

Bs, = coth(S, + , )x-— — coth —,x2$]+ 1 (s. 6)

and 0, is the energy of a "quasiboson" determined
from

dE
QO] y

gE
J ~oo

Im Gq((E)
(s'& (s. 9)

Note that, under the special conditions where G;, (E)
is sharply peaked at some E which is proportional
to (S;), the above procedure leads to molecular
field theory.

It is of some interest to take special note at this
stage of the zero-point deviation of the magnetiza-
tion in this formalism. In the limit of zero tem-
perature Eq. (3.7) becomes

Iim (e'"~-I)-'=2„J' dz~&~~S;~0&~'6(z+E. )

(0 Is, s;Io&, (s. Io)

where
~
0& is the ground state and the energies are

referred to that of the ground state. Whereas for
the ferromagnet S', I 0& =0, so that PQ, - ~ and (Sf &

-S, (the ground state is fully aligned), this is not
so for the antiferromagnet. An "up" spin i can be
flipped up further from the ground state with non-
vanishing probability. We point out that this infor-
mation is all contained in A«(E) for negative E.
This part of A„(E) is not only identically zero for
the ferromagnet at T=O'K; it also vanishes at
finite temperature in renormalized spin-wave ap-
proximations. The turning down of the spin at i is
then some linear combination of the creation of the
various renormalized spin waves. In the corre-
sponding approximations in the antiferromagnet,
however, the flipping down of an "up" spin decom-
poses in part into spin waves which primarily have
amplitude on the "down" sublattice. Since the spins
are being flipped do&en, this part of the decomposi-
tion must correspond (with the exception of restora-
tion of the small zero-point deviation) to destruction
of a spin wave and thus to a negative energy con-
tribution to the spectral-weight function.

In order to avoid any confusion about signs we
recapitulate some salient facts. The spectral
weight function A« is positive by definition. Im G
~ ——,'(I -e )A« is negative for E &0 and positive
for E &0. The sum rule —J Im G«dz = (S;& is
made up of a positive quantity from 0 & E & ~ and a
negative quantity from —~ &E & O. The spin devia-
tion is given for small deviations as proportional to
—f'„"Im G/e~s —ldz, and its positive and negative
energy contributions are both positive. The last
statement holds for "up" sites; there is an analo-
gous proposition for down sites.



THERMODYNAMIC PROPERTIES OF IMPURE HEISENBERG. . .

IV. GENERAL FEATURES

A. Equation of Motion

The equation of motion of the Green's functions
G,„(t) is

t —„G,„(t)= 2 &s'„&6,„6(t)—te(t) ([[s'„a]„s„-(0)]&,

(4. 1)

where the subscript t indicates that the value is
taken at time t. With the general form of the
Hamiltonian (2. 1) this yields

t —C,„(t) = 2(S'„)6,„6(t)+K,(S*,) G,„(t)

—2ttI(t) &~ ~»a &[(s»SD» s.(0) —(s»sa)» sm(0)l&

The notation k(l) will be used to denote sites k which
are nearest neighbors on the opposite sublattice of
a specific site l. The simplest RPA-decoupling
scheme, in which a term such as ([(S»S;), S„(0)]&
is approximated by (S» &([S~(t), S„(0)])has been
used. This seemed reasonable in an exploratory
analysis of this type, but there are some very
cogent objections to it which will be discussed in
Sec. VII. With this approximation, Eq. (4. 1) be-
comes

t —„G, (t) =2(S'„)6,„(t)+K,(S;)G, „(t)

r,„(~)=16 zs. &s'„& G,„(z), s, = (s„) '&s', &,

tr, (e) = —5, + n»s»r»~(e)
1

j,„[S,r„„(~)—S,r,.(e)] .
k(l)

(4. V)

For / on the up and down lattices, respectively,
these equations may be arranged in the form

1(~-I —n)r, „(e)-- & r„„(e)
f(g)

= (I/~)6, „+(»».,8, —n)r, „(e)

+ —P [(j„s,-1)r,„(~)-(j„s,+1)r,„(e)]1

f(g)

-=(I/~)6,.+P,„,
(a+1+ n)r~ (e)+ —5~ I', (e)

1

g(f)

(1 /7T)5f + (Qf Sf + o»)rf (E)

(4. 8)

(4. 6)

where J is the exchange constant for the interac-
tions between nearest neighbors on opposite sub-
lattices in the pure host and K is the anisotropy for
the latter. One now has

+ 2 5 J,„[(s;& G (t) —(s'
& G „(t)] . (4 .2)

If the time Fourier transform G,„(E)of G, (t) is
introduced, where

~ »e

(4. 3)

with A set equal to unity, one obtains

zc,„(z),= 26,„"+K, (s', ) G,.(z)(S*„&

+2 5 &„[&S;&G, (&) —(S'&G (E)] (4 4)

Let an arbitrary site of the up lattice be desig-
nated by the subscript g and one on the down sub-
lattice by the subscript f. In the pure host or at
great distances from the impurity one will have

(s,') = - (s,' &
= s„, (4. 6)

o.'» = (16 J) K, ,
-1j)

where S„ is the sublattiee magnetization of the
normal host crystal. It is now convenient to intro-
duce the following normalized variables appropriate
to the body-centered structure:

E =(16 Js„) E, o. = (16 J) K,

+8 ' [(i y,s»+1)r, (~) —(jy,s, —1)ry (~)]
g(f)

—= (1/m)5g +Q»„.

We shall label the site occupied by the impurity
as "0" and assume it to be on the up sublattice.
The terms P» and Qz„ in Eq. (4. 8) would vanish in
the absence of the impurity; they now fail to do so
for two reasons. Since the interactions between
the impurity and the anisotropy of the impurity will
not, in general, have the values typical of the host,
jof and eo will differ from 1 and e, respectively.
Hence Po„and Qt»0& will differ from zero. In addi-
tion, the presence. of the impurity will, in principle,
change every Sg and Sf from its normal value.
Thus, every P,„and Qz„departs from zero to some
extent. A complete solution of the impurity problem
would entail solving the infinite set of equations for
the I"s in terms of the S, and Sf, which, in turn,
would have to be calculated self-consistently from
the I'„and I'ff. Clearly, this is not feasible
and one must eventually replace the original problem
by a tractable model. In practice, this means we
must assume that the S's are negligibly different
from +1 beyond some definite distance from the
impurity.

Formally, if one regards I"as a matrix, Eqs.
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(4. 8) have the form

Mr = (1/m)1+ cr,
where

1 —n —s~1

M=
&+1 —n

(4. 9)

(4. 10) S = (S+—,
'

) coth(S+ —,') y ——,
' coth —,'y (4. 18)

tion S„. One has, in fact,

r,', = (I/, )(~+ i+ n) U, (o),
and from Eqs. (S.V)-(3.9) S„is determined by the
two relations

r'= (I/~)m-' . (4. ii)

and & is a (square) matrix with unit elements be-
tween nearest-neighbor sites on opposite sublat-
tices. M is partitioned, in this case, by sublat-
tices. C is the perturbation matrix whose elements
are the P~„'s and Q&„'s. If the approximation men-
tioned above has been made of ignoring the differ-
ences S, —1 and Sf+ 1, beyond some definite distance
from the impurity, C is a finite matrix. Here
"finite" means not of the order of the number of
lattice sites.

I', the solution for I' in the pure crystal, is
clearly given by

1 1 de
y (16JBs )e (6 + 1 + n) Im U, (0)

aOO

(4. 19)
where S is the magnitude of the host spin and
P= (kT), where k is Boltzmann's constant. If we
let 16 JpS„be denoted by zv, it is clear that y and,
subsequently, S can be found for a given ze. Know-
ingw and S„, one can find por T. Thus S and T
are found parametrically in terms of M. The RPA
decoupling, combined with the Callen-Shtrikman
prescription, gives a definite Neel temperature for
the system. In fact, we have

Thus, (4.9) may be rewritten as

r = r'(1+ ~Cr) (4. 12)
).'7„(GALS(S+1) ( [—ImU, (0))

)J S(1+c) J„e
1 (@+I+a)U, V,

—V, (e —1 —c.)U,
(4. 14)

where the partitioning is again by sublattices. Here
we have

-iR (g-g')

N hen+ - (6+'5) —(1+(1) + (k)

(4. 15)

and has the formal solution

r=(i -~r'c) 'r' .
The matrix r, the pure crystal Green's function,

is given in the form

The behavior of S„near TN is of the form (T„—T)'~2

reflecting the molecular field character of (4. 18).
Suppose the matrix C has been reduced to finite

dimension by cutting off the disturbance of the S 's
and S&'s beyond some shell surrounding the impu-
rity. We may write now

(4. 2o)

where the partitioning now simply segregates the
set of sites between which C is supposed to have
matrix elements. From this, one may obtain I",
and I'„, which contain the diagonal elements of I', in
the form

(4. 16)

N is the number of sites on one sublattice, k is a
reciprocal-sublattice vector, and y(k) = 8 g,, e' ' ',
where the 6, are the displacements to a nearest
neighbor on the opposite sublattice. e2= (1+c.)
—y(k) is the dispersion relation for spin waves in
the body-centered antiferromagnet and in a finite
system U and V would have poles at the spin-wave
energies. As was remarked earlier, if we proceed
to the limit of an infinite system before allowing 5
to go to zero, U and V become complex within the
spin-wave band, (2().+ c.2) ~~& I& I& 1+ o.. The functions
U and V are obviously of basic importance in this
problem and their evaluation forms a substantial
part of the computational task.

From r one can obtain the pure-host magnetiza-

and

r.= (1 —~r.'c)-' r.' = r.'+ ~r.' c(1 —~r,'c)-'r,'
(4. 21)

r, = r„'+~r,'c(1-))r,'c)-'r,' . (4. 22)

If we indicate by "i"sites between which C has
matrix elements and by "j"all others, we have

r„=& (i -&r.'c), ', ,r'. . . (4. 2s)

r»= r„.+0
)Tr~g(cg( ~ (1 —mI; C)g'(~~rg" g .

(4. 24)
The evaluation of the required elements of the I'
matrix now involves only the inversion of the finite
matrix (1 —mr, C). One could, in principle, now
calculate those S's within the cluster which differ
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from the host value, using some initial assumed
values for these S's as a start. The procedure
would be iterated until self-consistency is obtained.
Making use of such self-consistent S 's, one may
then evaluate 1"«and I'» for the remaining sites to
obtain estimates of the corresponding S 's in order
to verify the original approximation.

B. Local Modes and Resonances

(4. 27)

Clearly, —Tr ImI'= —g, ImI'«= p(e), where p(&) is
the density of states. It is not inappropriate to
look upon —ImI'«as a local state density at site i.
We also have

When an impurity is introduced into the host lat-
tice the magnetizations of sites which transform
into one another under operations of the point sym-
metry group of the impurity are identical. Since
this is the case the matrices l", I", and C, or any
truncated version of the latter produced by the
method mentioned above, also have a symmetry
property. This is simply that

X;)= X~(])g(~), (4. 25)

(4. 28)

where the determinant D'"' and the matrix elements
of N"' and I;,'"' are, in the quasicontinuous case,
all complex numbers. We may expect to find peaks
in Iml, "under certain circumstances. Equation
(4. 26) has the form

Im[N"'I', '"(ReD'" —f lmD' ')]
(ReD(ll ))2+ (lmD(u ))2

which will peak near ReD' "(e,) = 0, provided that in
a range of

everything is slowly varying with e. ReD("'(&) =0
is the usual criterion for a "resonance, " but, in
real cases, the actual position of the peak may be
substantially shifted.

Returning for a moment to E(I. (4. 9), note that
the discrete E 's are the eigenvalues of
det(M(e ) —C) =0 and thus, we have

where 8 is an operation of the impurity point group
and X is any one of the matrices mentioned. One
may take advantage of this symmetry property to
facilitate the diagonalization into block form of the
matrix (1 —((r, C) before inverting it. Each diago-
nal block will correspond to one of the irreducible
representations of the point group. From the form
of E(I. (4. 22) it is clear that the singularities of I'„
in a large but finite system, will be given by the
zeros of the determinant of (1 —7(r, C). These will
be the excitation energies of the system containing
the impurity. The block diagonalization corresponds
to an initial sorting of these modes by symmetry
type. If we index the blocks by p. we have

where S is unitary and hence,

—J Imr«((.')de =1 . (4. 28)

This is equival4..nt to the sum rule cited earlier.
If sharp excitations exist outside the continuum

they correspond to real zeros of det(1 —((r, C) for
energies outside the spin-wave band, where, of
course, the determinant is real. Since detIM(e)
—CI =II (e —& ), we may derive the relation

1~ 8& 1
7T ~ 8Mgg 6 -E~ (4. 29)

For an isolated & the contribution to ImI";z is
—(Be /BM„)5(c —c )or —v5(e —e )(Br;I/Be) '. The
contribution of an isolated level to ImI' can thus be
found by studying how I' goes through zero at e = E~.

V. NUMERICAL ANALYSIS

A. Green's Functions and Computational Procedures

The calculation of the functions U and V has been
described in a separate publication where tables of
numerical values are given. 7 The neglect of any-
thing but nearest-neighbor exchange has the effect
of making U and V functions of the combination of
variables (1+n) —e . Since it is necessary to carry
out, many times, integrations over the continuum,
which runs from I e I

= (2n + n )'~a to I e I
= 1+n, it is

desirable to change the integration variable to
x= [(1+n) —e ] ~, which runs from 0 at the top of
the band to 1 at the bottom in all cases. Subdividing
the interval from 0 to 1 into subintervals and se-
lecting various numbers of points in each as ordi-
nates for Gaussian quadrature we obtained a set of
points at which the Green's function was evaluated.
The choice which was made was not perhaps the
most judicious. It was based on consideration of
the behavior of the pure-crystal Green's function
which has a rather strong divergence at the band
edge. This, in turn, stems from the fact that in
the bcc structure the frequency of the spin waves
goes to a constant value all over the zone boundary.
Points were thus chosen to cluster tightly near the
top of the band. However, the impurity Green's
functions do not show any such peak since the im-
purity is indifferent to this particular frequency.
Our calculation of integrals is therefore done some-
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shells are given the host value which has already
been calculated. The neighbor moments are given
by the following algorithm. The molecular field on
a neighbor and on a host spin are compared and the
difference field is supposed to produce a difference
in moment at the two sites through a molecular field
susceptibility. Knowing the neighbor moments and
assuming a value for that of the impurity we calcu-
late I"00 and thus a new value for the impurity mo-
ment. This procedure is then iterated, correcting
the neighbor moments in the same way at each
stage. The matrix dimensionality is 5&& 5 since
every site in each shell has the same moment. The
method generates only an impurity moment and de-
pends upon the unsatisfactory use of molecular field
theory. For these reasons it was not pursued. It
is of some interest to note that the values for the
impurity moment obtained with it agreed very well
with those found from the second method.

This second approach, upon which all the results
reported here are based, is in some ways less ac-
curate than the first but produces much more infor-
mation. Here we assume that all spins except the
impurity have the host thermal average value. The
perturbation matrix is 9&& 9 since it connects the
impurity to its eight neighbors. This matrix may
be inverted explicitly making use of its symmetries.
Thus the various I"; s may be found as a sum of
terms each arising from a different symmetry.
There is one term associated with two s symme-
tries, one associated with three degenerate p sym-
metries, one with three d symmetries, and one with

an f symmetry. The I"s may be used to calculate
the impurity moment and those of the first four
shells. In the operation of the program I'00 is first
found, assuming a value of So, the impurity mo-
ment, and is used to generate a corrected value.
The cycle is repeated until So converges. Then with
the final value of S the other I'«'s are found and
hence the corresponding S s. Clearly the useful-
ness of this method depends upon the moments in
neighboring shells being only slightly altered from
the host value. More precisely it requires that the
change in the properties of the medium as a result
of the actual changes in the neighboring shell spins
be small.

We now write out explicitly the expressions given
by this model for the various I",,'s of interest. For
a host spin we have noted earlier that I', which me

shall call I"„, is given by

The impurity Green's function I'oo may be written
usefully in several different ways. In the form

what inefficiently.
Outside the band, Green's functions are calculated

as a function of y = [& —(1+n) ] ~ . The number of
points required here is difficult to predict. To cal-
culate contributions to the various integrals from
the localized modes it is necessary first to know
where these lie, and second to know how fast I' is
changing at such energies. The modes lie at the
zeros of 1/I';;, so one needs to locate these and to
find the slope of I/I'«at the zeros. The procedure
is to use equally spaced points in y, look for a
change in sign of 1/1 ... then find the zero and the
slope using a four-point interpolation formula.

All the calculations rely heavily on the existence
of the sum rule (4. 28). This serves as a check
integral and has been evaluated simultaneously with
every integral used in finding the S's. A departure
from unity in the check integral of more than 1% is
indicative of trouble. Apart from program errors
there is one basic source of difficulty which is re-
vealed in this way. If a resonant mode lies deep in
the spin-wave band, it may become extraordinarily
sharp in energy; considerably less in half-width
than the separation between the Gaussian ordinates.
The integration routine may then fail suddenly by
15 or 20%. This has been allowed for by treating
such peaks as 6 functions; the error in the check
integral measures the strength of this 6 function.
Other integrals which contain this peak multiplied
by other factors are therefore corrected by the
product of these factors and the strength of the
peak. Fortunately, no cases have been encountered
where there exist two such peaks, for which the
above procedure would be useless.

In all the calculations the average value of the
impurity moment is a quantity which is determined
self-consistently by an iterative procedure. As-
suming some initial value for this quantity the ap-
propriate Green's functions are calculated within
whatever approximation is being used. From these
a new value of the moment is calculated and the
cycle is repeated. In all cases three cycles of
iteration are performed. The last tmo values, in
general, agree to a fern parts in a thousand. If the
departure is greater than 1%, another cycle is
made. Any failure to converge is indicative of
program errors.

Two approximation schemes were used for solving
the moment equations. The first of these will be
described only briefly, since it was not extensively
used. It is an extension of a method used earlier
in the ferromagnetic problem. We include inter- wl'„=- (1+ o.'+ &)U(000) .
actions between the impurity and its neighbors and
between these neighbors and the three other shells
to which they couple. The moments in these outer

I

j,S~I „—(1 —j,S,) [1+(~ —~)~1 „]
j, —(c —ap;)(I —j,S,)[1+(n —e)vri'„] —j,[(e —n) —(~ —o.'OSO)SO]~I'
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it is clear that I"pp reverts to I'„when the impurity is identical to the host or jp= Sp= 1 and a, p= a. Another
form is

where

This may be manipulated to read

I - ioSoQ I - joSoQ
jo——o'oSo —(~ —+oSo)joSo @

1+Q —6
V(111)-'+n-~ '

(5.8)

(5. 4)

1 joSo(l + n —e) 1
e —noS —jo (E —noSo jo) -V(ill) + a —e —joSo(l + n —e)(e —o'oSo)/(e —noSo —jo)

(5. 5)

Since V(ill) is the only complex term in this ex-
pression, it is simple to derive a form for Im(wi'oo).
The nominal location of the s modes, localized or
resonant, is given by the vanishing of

[V(111) ]+ joSo(l + Q —6~(~ QOSo)

6 —txpSp —jp

(5.6)
(It is clear that by symmetry only s modes couple
to the impurity. ) If the mode is localized (outside
the continuum), then Im[V(ill) '] vanishes and the
above condition is exact. As remarked earlier, the
size of Im[V(ill) '] near an in-band resonance and
the rate of change of the expression of (5.6) with e
near its zero may shift the observed maximum in
Imrpp quite considerably. A table of values of
V(ill) clearly enables one to examine any particu-
lar impurity problem for the behavior of the s modes
before a detailed calculation is started. Figure 1
gives this information. The large number of param-
eters in the problem makes it impossible to reduce
the mode analysis to simple form, but if ~ is held
fixed, one can make a plot of Re[V(111) ']+ n —e/
(1+n —e) as a function of e. Figure 2 shows such
a plot for o. =0.0142 (close to that for MnF&). The
positions of the s modes are now given by the inter-
section of this curve with joSo[1+jo/(e —aoSo- jo)]
which is just a rectangular hyperbola, with a positive
asymptote jpSp and a pole at c = npS0+ jp. It is rather
easy now to see how the mode energies will vary
with changes in various parameters by sketching the
corresponding hyperbolae. It is worth repeating
that the vanishing of the real part of the denominator
of I' may lead to a very broad and scarcely observ-
able peak in ImI'. In commenting on the results
we shall refer only to in-band modes which give
substantial peaks in ImI'. In most cases which we
have considered there is an in-band s mode with
negative energy (easily deduced from Fig. 2), but
this is invariably barely perceptible in the spectral
weight function.

For the localized modes we can conveniently write

wl oo 1 —joSo(1+ n —&)/[V(111) + u —a]'

(5.7)

and draw two useful conclusions from this form. If
the mode lies well above the spin-wave band (q»1)
the corresponding V(ill) is small. V(ill), in fact,
behaves like I/(8&o) for large e. Thus one may
write

j 0+ +oSo joSo[V(III)]So+ &o(jo+ +oSO

(5.8)

a - 1 —joSo —[(1+ e —e)V(111)], , o
pp

(5.9)

The first relation says that q lies close to the mo-
lecular field energy (jo+ noSo) and the second rela-
tion says that the in-band contribution to —Iml pp is
close to unity. The sum rule for —ImI'pp now tells
us either that ImI'« is small for q &0 and for c &0,
or that these two contributions are substantial but
cancel. The former alternative is the one which
occurs in practice. Clearly, the validity of these
statements has to be checked in specific cases but
the general trend is clear. It follows that in cases
where a localized s mode exists well outside the
band the thermal demagnetization of the impurity
will proceed in two sta, ges. At low temperatures
the only excitations are into the low-lying contin-
uum, but since the spectral weight is low, the mag-
netization will fall very slowly. If thermal excita-
tion of the localized level becomes possible before
the Noel temperature is reached, the demagnetiza-
tion will be dominated rapidly by this process and
will follow roughly the law 5 (S) —e '""'~' .

The thresholds for the appearance of localized s
modes or conditions under which such modes just
begin to emerge from the continuum may readily be
deduced from the above expressions. Such relations
have been derived by other authorss and we do not
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C& ——(& —1 —o.) [U(000) + U(100) —U(110) —U(111)],

C 0
= (E —1 —o!)[U(000)—U(100) —U(110) + U(111)],

oaf

10o
0

I

10

-(& -&0 —o'0So)@
+

8 —(1 —joS0)Ci

+ '. , (5. 10)
8 —(1 —yoS0)Co 8 —(1 —goS0)Co

where the abbreviation & was introduced in Eq.
(5. 3) and

repeat them here.
We shall write I'» for the I' of a spin in the near

est-neighbor shell. It is given by

Cq = (e —1 —a) [U(000) —3U(100) + 3U(110) —U(ll 1)] .
(5. 11)

The first term represents the contribution of s-like
terms and has the same denominator as occurred in

Fpp The second, third, and fourth terms are the
p-, d-, and f-like contributions. The vanishing of
the real parts of their denominators give the nomi-
nal positions of the corresponding p, d, and f reso-
nances or local modes. These are usually referred
to as the shell modes. Conditions for the formation
of local modes have been given by Tonegawa and
Kanamori. o In Fig. 3, the real part of 8/C, is
shown for i =1, 2, 3. The reducibility of I'» to the
appropriate form for a down spin in the host when

jp = Sp = 1 and Qp = Q is readily demonstrated. It
should be noted that «0 for all shell modes; no
confusion should arise if we speak of them as
rising in energy when i Ej, increases.

The three outer shells considered are those for
which a typical spin lies at (1, 0, 0), (1, 1, 0), and

(1, 1, 1), respectively. The corresponding I"s
are labelled I'gp I"33 and I'44 and the magnetiza-
tions are called S~, S„S4. It is more convenient
to write these l"'s as I'„plus a correction term.
We find

01+ ~ —6 —(6 —(x)Q~r„„=vr„—(~+ I+ a) U(n) [joS0(& -1 -o')(& —o'0SO) —(& f'0 ~OSO)]
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A.s
8 —(1 —j,S,)C, 8 —(1 —j,S,)C, 8 —(1 —joS,)Cq) '~ ~ (5. 12)

A2g =0,
A22 = 2 [V(111)—V(113)]

A23=0,

A, )
= —,

' [V(111)—2V(113)+ V(133)1

A~~= [V(ill) —V(133)]2, (5. 13)

where U(l) = U(100), U(2) = U(110), U(3) =U(ill), and
the A's are given by

A33=0,

A4g = —,
' [V(111)—V(113) —V(133) + V(333)1

A42= 8 [V(ll 1) + V(113)—V(133) —V(333)]

A4S= 8 [V(111) 3V(113)+ 3V(133) V(333))

No new modes appear in these expressions since
they are entirely dependent upon the inversion of
the coupling matrix between the impurity and the
nearest-neighbor shell in this approximate model.
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FIG. 4. —ImI' for the pure host. Band limits are in-
dicated by arrows. G.' = 0. 0142.

VI. IMPURITY AND NEIGHBOR MAGNETIZATIONS

Since the same localized modes (if there are any)
occur repeatedly in the calculation of the various
I"s, we calculate the zeros and derivatives with
respect to & of the denominators 6 and 8 —(1-jOSO)

& Cf 3 3 once and multiply the latter by appropriate
constants for the different I's.

Before starting this discussion we show in Fig. 4
ImI' for the uniform case (or Iml"„) with o. =0.0142.
Note that it has a singularity at the upper edge
(e = I +n) of the positive energy band, which arises
because the spin-wave frequency goes to the same
value over the whole zone boundary. This singu-
larity disappears for the impurity since the sym-
metry which the zone boundary reflects has now

disappeared.
It is useful to discuss first the introduction of an

impurity whose spin is the same as that of the host
and which also has the same anisotropy. The ex-
change coupling between the impurity and the host
is allowed to vary. Specifically, we let the host
and impurity have spin z and let the anisotropy
parameter a be 0.0142. The host, therefore, is
like Mn F2. We have considered the cases jp = 1.5,
1.25, 0.75, 0.50, 0.18, and 0.06 and we discuss
them in that order. Figure 5 shows the host mag-
netization and Fig. 6 shows the impurity magneti-
zation Sp as a function of temperature for all cases.
The temperature is normalized to the Neel tempera-
ture. Figure 7 shows the function ImI'pp as a func-
tion of E for all values of jp at a very low tempera-
ture (t = 0.0537).

When jp &1 a localized s mode exists above the
spin-wave band. The condition for this to happen,
in general, is simply that the molecular field en-
ergy jp+ epSp exceeds the energy 1+n at the zone
boundary. In the present cases of jp= 1.5 and j,
=1.25, the mode lies at &-1.4 and e-1.2. The
known condition for the shell modes to lie above the
continuum is jpSp & 1 and this is also fulfilled in

2.4—

2.0—

It has been pointed out earlier that since these
calculations consider only exchange between nearest
neighbors they are not primarily directed toward a
comparison with experiment. A certain amount of
information exists, in fact, concerning impurities
in MnF2, and we shall discuss these results in the
light of our analysis. Such a discussion is under-
stood to be illustrative only since we are simulating
the physical system with a one-exchange model.
Clearly, since we have a five-parameter (S, the
host spin; Z, the impurity spin; jo; a; and no)fam-
ily of possible problems, it is not feasible to make
an exhaustive survey of these. What we have done
is to consider a number of informative cases. We
shall describe the results of these calculations be-
low and discuss them in a rather discursive way,
pointing out anything which seems significant.
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I
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FIG. 5. Magnetization of pure host as a function of
the reduced temperature (t = T/Tz) for & = 0. 0142 and S = 52.
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jo= 1.5 case; for substantially lower temperatures
the magnetization is supported by the reduced pos-
sibility of continuum excitation. The motion of the
localized level with temperature is quite small (of
the order of 2%%uc over the temperature range cov-
ered). The shell modes move up by about 10%% as
So grows with temperature, reflecting the dominant
role of the factor 1 -joSO in their resonance condi-
tion. In Table I are shown the magnetizations of
the impurity and its four neighbor shells in terms
of the host magnetization at different temperatures.
It will be noted that the magnetizations of shells
2, 3, and 4 are altered by less than leuc over the
whole range. This turns out to be generally the
case and we shall only comment on those cases
where it fails to be true. That this result should
be obtained lends considerable support to the type
of approximation we have used.

The fact that the zero-point deviation of the im-
purity is greater than that of the host in this case
may be understood, and the magnitude of the effect

FIG. 6. Ratio of impurity-to-host magnetization So as
a function of reduced temperature (t=T/Ts) for various
values of the impurity-host exchange jo, S=Z = p, & =&0
= 0. 0142.

TABLE I. Magnetizations of impurity and four neighbor
shells relative to that of the host as a function of reduced
temperature. S = Z = ~, = &0 ——0. 0142, t = T/Tz.

S() —S( Sp S4

these two cases. We note at this point the rather
obvious fact that, since the positions of the localized
modes and resonant peaks depend upon So which is
itself a function of temperature, these positions
themselves are temperature dependent. In partic-
ular, it is quite possible for a localized mode to
move into the continuum (or out of it) as the tem-
perature changes. Since such changes depend upon
the ratio of impurity-to-host magnetization they
are not, in general, very rapid. It should be re-
called that the absolute energy of a mode depends
linearly upon the bandwidth (or, in the RPA, to the
host magnetization) and this gives the dominant
temperature dependence.

It will be seen that for jo=1.5 and 1.25 the zero-
point deviation of the impurity magnetization is
greater than that of the host, but that the decline
with increasing temperature is less. It is slower
for j0=1.5 than for j0=1.25. To understand the
latter fact it is instructive to compare —flmf'„da
in various regions. For the host at low tempera-
tures this is -0.0538 from all negative e and
l.0538 from all positive e. For jo =1.5 we get
—0.0713from negative &, +0.0790 from positive &,

and 0.993 from the localized mode above the band;
for jo= 1.25 the corresponding numbers are
-0.0633, +0.1213, and +0.942. Thus the local-
ized mode plays a completely dominant role in con-
trolling the thermal behavior. The Boltzmann
factor for this mode is e ' at T/T„=O. 83 for the

1.50 0. 0537 0. 9928 0. 9998
0.2636 l.0014 1.0021
0.4830 1.0406 1.0117
0. 6801 1.0980 1.0287
0, 8826 1.1853 l. 0600

1.25 0. 0537 0, 9961 0. 9993
0, 2636 1, 0022 1.0111
0.4830 1.0265 1.0062
0. 6801 1.0598 l. 0150
0. 8826 1.1067 1.0312

0. 75 0. 0537 1.0047 1.0000
0.2636 0. 9891 0. 9986
0. 4830 0. 9483 0. 9930
0. 6801 0. 9026 0. 9838
0. 8826 0. 8519 0. 9688

0. 50 0. 0537 1, 0103 0. 9993
0.2636 0. 9510 l. 0015
0. 4830 0. 8379 0. 9778
0. 6801 0. 7349 0. 9726
0. 8826 0. 6426 0. 9514

0. 18 0. 0537 l. 0087 1, 0133
0. 2636 0. 6863 0. 9830
0.4830 0.4484 0. 9552
0. 6801 0. 3309 0. 9479
0. 8826 0.2602 0. 9280

1.0008
1, 0010
1.0016
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1.0044
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0. 9982
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0. 9969
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0. 9981
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1.0000
1.0005
1.0010
1.0017
1.0030

0. 9994
1.0002
1.0004
1.0007
l. 0012

0. 9999
0. 9997
0. 9993
0. 9986
0. 9973

0. 9997
0. 9995
0. 9987
0. 9975
0. 9954

0. 9995
0. 9989
0. 9983
0. 9965
0. 9937

0. 06 0. 0269 0. 9991 0. 9996 0. 9991 0. 9993
0. 0537 0. 8916 0. 9995 0. 9991 0. 9993
0, 2636 0, 2967 1, 0109 0. 9986 0. 9989
0.4830 0. 1629 0. 9952 0. 9970 0.9976
0. 6801 0. 1155 0. 9741 0. 9946 0. 9957
0. 8826 0. 0889 0. 9439 0. 9909 0. 9928

1, 0000
1.0001
1.0003
1.0008
1.0017

l. 0000
1.0000
1, 0002
1.0004
1.0008

0. 9999
0. 9998
0. 9996
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0. 9998
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0. 9985
0. 9972

0. 9997
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0.9981
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0.9997
0. 9994
0. 9986
0. 9974
0.9958
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predicted roughly, by a simple second-order per-
turbation calculation. If we treat the Neel state
as the ground state and the transverse exchange as
a perturbation, then in the absence of anisotropy,
we find for the ratio of impurity deviation (&~,) to
host deviation (&„,,„)

Z (16S —1)
S [(8+7/jo)S+ Z —1]

(6. 1)

where S is the host spin and Z is the spin of the
impurity. For Z = S= —,

' one has

78
43 + 35/j„)

(6. 2)

When Z =S the sign of &, , —&„„,reverses as jp
goes through unity. The deviation to this order is
proportional to the ratio of the square of the matrix
element for flipping the spin in question and one
of its neighbors to the square of the excitation en-
ergy for this process. The former is proportional
to jp but the latter is the sum of two positive terms,
only one of which is proportional to jp. As jp in-
creases the deviation also increases. Or, suc-
cinctly, to flip a weakly coupled spin one must also
turn over some normally coupled spins.

For the cases jp=0. 75 and 0. 50, there is a quali-
tative change in the spectrum since no local modes
now exist. There is a resonant peak in ImI'pp at
E-0.75 for the first case and at c-0.48 for the
second. The resonance can be seen (Fig. 7) to get
higher and sharper as jp decreases. As was pre-
dicted by Eq. (6. 2) the impurity magnetization
starts above that of the host. It now falls more
rapidly with temperature than the latter, as the
resonant peak becomes lower in energy. When jp
=0.3 the resonance has fallen to &-0.184; it now

lies just above the bottom of the continuum which
occurs at e = (2o. + o.'2)'~2=0. 169. The resonance is
now exceedingly sharp and would be experimentally
no different from a localized level. The magneti-
zation of the impurity, of course, now falls even
more rapidly. Finally, for jp=0 06, the s mode
has become localized again, but is now in the spin-
wave gap. At this point the fall off in magnetization
is so rapid that the decrease in zero-point deviation
is already masked at the lowest temperature which
we use.

Throughout this sequence the position of the s-
mode level continues to be insensitive to tempera-
ture. The shell modes remain close together, quite
high up in the band ( —e -0. 8 —0. 95); they therefore
cause no drastic effects on the magnetization of
the neighbors. Table I shows the magnetization of
impurity and first-shell spins in terms of the host
for all the cases considered. Effects on the first-
shell spins are seen to be less tha, n 10/o in all
cases; the change in these spins is seen to follow

Sp. Or, an impurity which is "stiffer" than the
host holds up the nearest-neighbor magnetization.
The results quoted for near neighbors are probably
somewhat unreliable for small jp. This is caused
by the fact that the p, d, and f shell resonances
have now become quite sharp and lie close to one
another. This makes accurate integration difficult
without special provision. This problem will arise
again when the effect of a vacancy is considered.

Consider now a case in which the impurity-host
exchange equals the host-host value, but let the
impurity spin differ from that of the host. Specifi-
cally, we put X=1 and S= —', . Again ~= up=0. 0142.
The impurity magnetization and that of the host
are shown in Fig. 8 as a function of t and that of
the nearest neighbors in Table II. ImI"pp for
t=0. 0537 is shown in Fig. 9. The zero-point devia-
tion is predicted quite well by Eq. (6. 1); the mag-
netization then falls off more rapidly than that of
the host and is comparable with that for jp-0. 55 in
the first series. The drop in nearest-neighbor
magnetizations is, however, more nearly that of
jp-0. 18 in the earlier set. It may be remarked that
the ratio of the s-mode contribution to ImI'» and to
ImI'00 is given generally by (f o.'OSO jp) /joSO, In
the present case there are no localized modes in
the normal sense; there is a sharp s resonance
just below the top of the band and the three shell
modes are also high up. The s-mode resonance
lies very close to the molecular field energy jp
+ &pSp We note that this value for the resonance
energy and the decoupling of the s mode from its
surroundings imply one another. In the present
case the impurity resonance is occurring near the
band edge so that it is coupled to zone-boundary
spin waves which can accommodate a highly local
excitation.

Suppose now that in the last case jp is changed to
3, so that one has a small spin impurity tightly
coupled. The localized s mode now lies far above
the band at & - 2. 89. The approximate formula
(5. 8) gives 2. 88 for this case. There is actually a
fairly substantial absolute correction to the molec-
ular-field value of 3 here. It may be noted that as
jp tends to a very large value the s-mode position
is given from Eq. (5.8) by

E = jo(1 —So/8)+ 1-Sp
(6.3)

This indicates that a very tightly coupled spin is
"dressed" by its neighbors. If one uses the formula
given in the last paragraph it is easily shown that
the s mode contributes to ImI"„a fraction (6', So) of
its contribution to ImI'«as jp- ~, reflecting its ex-
treme localization.

Because of the height of the local s mode the
magnetization falls slowly (Fig. 8). The local s
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FIG. 8. Host magnetization S„and impurity magne-
tization Sp as a function of the reduced temperature (g

= T/TN) for two values of impurity-host exchange jp, S
= -'„Z =1, ~ = ~p = 0. 0142.

mode moves very little with temperature but the
three shell modes which are above the band climb
as So increases. The magnetizations of the nearest

neighbors (see Table II) remain unusually close to
the host value in this case. Figure 9 shows ImI"00
VS

Some cases will now be examined for which the
host spin is &. We take n = &0=0.02 and first con-
sider two examples with Z also equal to —,

' and j,
=0.5 and 1.5, respectively. The cases are per-
haps not judiciously chosen for comparison with
the earlier ones in which Z =S= —', because the an-
isotropy term has been altered. This change raises
the bottom of the band from e = 0.169 to 0.20, which
has some effect on the low-temperature response.
Otherwise we are dealing with two situations with
the same saturation value of So; departures in the
results arise from the relative sensitivity of small
and large spins to roughly the same spin-wave ex-
citations.

The results for these two cases are shown in
Table III and should be compared with those for
Z=S= —,

' in Table I. It is clear that the over-all be-
havior is much the same for both. The present
example shows that the impurity magnetization
falls more rapidly now for a weak exchange and
more slowly than before with strong exchange.
The position of the s, p, d, and f resonances turn
out to be very closely equal for both spin values,
hence the implied differences in ImI'00 for the two
cases must arise from the numerator or amplitude
factor alone. The zero-point deviations follow the
rule given earlier. They are 0.0268 for jo= 0. 5
and 0.0600 for jo =1.5; the host value is 0.04V2 and

jo= S.o
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Localized mode for jp
= l. 5 lies at ~ =2. 90
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TABLE II. Magnetizations of impurity and four neigh-
bor shells relative to that of the host as a function of re-
duced tempe rature. Z = 1, S = 2, & =&0 = 0.0142, t = T/T~.

TABLE III. Magnetizations of impurity and four neigh-
bor shells relative to that of the host as a function of re-
duced temperature. Z=S=2, &=0'p=0. 02, t=T/Tg.

t Sp —$( S2 $4 So -Sg Sg $3 S4

3. 0 0. 0537
0.2636
0.4830
0. 6801
0. 8826

1, 0 0. 0537
0. 2636
0. 4830
0. 6801
0. 8826

0.3925
0. 3965
0. 4207
0.4620
0, 5277

0. 3997
0.3953
0.3660
0.3283
0.2908

1.0006
1.0012
1.0057
1.0173
1, 0459

0. 9942
0. 9910
0. 9885
0. 9760
0. 9262

1.0000
1.0002
l. 0006
1.0013
l. 0029

0. 9994
0. 9992
0. 9982
0. 9966
0. 9940

1.0000
1.0000
1.0003
0. 9984
1, 0020

0. 9996
0. 9994
0. 9986
0. 9973
0. 9952

1.0000
1.0000
1.0001
1.0004
1, 0011

0. 9998
0. 9996
0. 9992
0. 9983
0. 9969

1, 5 0. 1139 0. 9717 0, 9991 l. 0034
0. 5305 1.0047 1.0082 1.0042
0. 7975 1.1124 1.0395 1.0054
0, 9140 1.1847 1, 0669 1.0058
0, 9774 1, 2343 l. 0770 l. 0059

0. 5 0. 1139 1.0452 0. 9881 0. 9985
0. 5305 0.8447 0. 9647 0. 9972
0. 7975 0. 6854 0. 9815 0. 9952
0. 9140 0. 6301 0. 9436 0. 9940
0. 9774 0. 6033 0. 9192 0. 9930

1, 0015
l. 0021
1.0032
1.0038
1, 0040

0. 9988
0. 9977
0. 9961
0. 9951
0. 9944

0. 9999
1.0003
l. 0011
1, 0017
1.0022

0. 9993
0. 9984
0. 9975
0. 9968
0. 9964

the simple perturbation-calculation algorithm given
above yields 0.021 and 0.068. Figure 10 shows
ImI pp vs 6.

As a final model system a spin of 1 is put into a
spin-& host. Again a= up=0. 02. Vfe consider
again jp=0. 5 and jp=1.5. Table III shows the re-
sults and Fig. 11 shows Iml"pp vs E. For jp = 0. 5
there is nothing unusual; the impurity magnetization
again falls more rapidly than the host. The s reso-
nance lies at c-0.470 which compares with a value
of &-0.483 at which it occurred in the jp=0. 5, Z
= —, case above. This again shows the insensitivity
of the s level to the value of Sp under certain con-
ditions. In this case the p, d, and f levels are

Z=l, S=-,', ~=~,=0.02

1.5 0. 1139 1.9320 0. 9951 1.0107
0. 5305 1, 9931 1.0233 1.0119
0. 7975 2. 2204 1.1201 1.0146
0. 9140 2. 3873 1.1970 1.0160
0. 9774 2. 5041 l. 2601 1, 0166

0. 5 0. 1139 2. 0960 0, 9996 1.0017
0. 5305 1.8430 l. 0004 1.0003
0. 7975 1.6207 0. 9893 0. 9991
0. 9140 1.5370 0. 9809 0. 9982
0. 9774 1,4994 0. 9751 0„9974

1.0051
1.0065
1.0094
1, 0112
1.0122

1.0007
l. 0000
0. 9991
0. 9984
0. 9978

1, 0011
1.0023
1.0048
1.0065
1.0076

1, 0000
1.0000
0. 9995
0. 9992
0. 9989

right at the band edge, which is to be expected
since jpSp- 1. The zero-point deviation is 0.051
which is not in particularly good agreement with

jp = 1.5

j =05p
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perturbation theory which gives 0.038. The near-
est-neighbor magnetization suffers little change at
any temperature. For jo = 1.5 most of the features
already noted appear in an emphasized way. The

zero-point deviation is 0. 125 and the algorithm
gives 0. 115. The impurity is particularly stiff in
this instance; the nearest neighbors are shifted by
as much as 25% at high temperatures; the outer
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FIG. 12. Contri-
butions to —ImF&& for
a nonmagnetic im-
purity. S = 2,
= 0. 0142. Four curves
labeled hostp, d, and

f correspond to the
four terms of Eq.
(5. 10).
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shells have a maximum shift of 1.5%%up
—this being

the only model to give anything over 1/p. The
spectrum here shows a new feature. In addition to
the expected localized s mode above the band there
is a second localized s mode at negative energies
lying just above & = —1 —~. The three shell modes
lie within the band but their position is unusually
temperature dependent. This is presumably be-
cause with a stiff impurity Sp changes considerably
with temperature and hence 1 —jpSp also changes,
pulling the shell modes with it. The condition that
an s mode shall emerge below & = —1 —n is that

modes and, in fact, accounts for their weak con-
tribution to the impurity magnetizations.

We now consider some cases which are related
to experiment. The first case is that in which the
impurity is nonmagnetic. Suppose Sp-0, then 6
in Eq. (5.8) becomes e —jo and pI'pp= ('E jp) '.
This simply implies that a very small Sp would pre-
cess in the molecular field jp without any modifica-
tion resulting from a reaction of the rest of the
spin system. I'gg now becomes

or

(joSo 1)(1+n + noSo) &jo (6.4)

2
—

3

S, &1/j, +1/(1+ n+n, S,) . (6. 5)

0.99

0.98

p 0
X
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T K

FIG. 13. Magnetization of Mn ions in MnF2 which are
far away from or nearest neighbors of Zn impurities.
Experimental points are those of Butler et al. (Ref. 4).
Solid and dashed curves are computed with the Mn-Mn

exchange taken to be 1.320 cm

Thus, for modest values of n and np this occurs
when we have an impurity with a nominal spin sub-
stantially greater than that of the host which is
tightly (jo &1) coupled. Such an s mode has its in-
tensity mainly on the nearest-neighbor atoms. We
have already seen that the relative contributions of
the s mode to the near neighbors and to the im-
purity is (c noSo jo) /jason at e= 1 —n we can
transform this with the aid of the threshold condi-
tion into So(l+ n+ noSo) which is indeed &1. To
some extent this is true of all negative energy s

The positions of the s mode for the case where
~=0.0142, which is relevant to MnF„are
c = —0.704 and e =0.971, as found from e —n
= Re[V(111) ']. The former shows up very weakly
because 1m[V(111) '] is large and Re[V(111) ']
varies slowly with energy near the critical value of

The latter is somewhat sharper but very weak
because e —1 —~ is small. The main structure of
I'&& arises from the shell modes which are found to
lie at —&=0.878, 0.865, and 0. 820. The first (f)
resonance is very sharp and it has to be estimated
in strength by looking at the deficiency in the sum
rule (see Fig. 12). The various shell mode con-
tributions to ImI"» are shown in Fig. 12. In Fig.
13, calculated values of -S&, the first neighbor
magnetization and S„, that of the host are shown.
We also show the values found for S„ in MnF2 by
Jaccarino ' and for the magnetization of the nearest
neighbor to a Zn impurity in MnF2 by Butler et al. '
The value of J has been chosen to optimize the fit.
The agreement is quite satisfactory. The single
value of J so obtained is 1.320 cm '; the best ex-
perimental values for Jz and J2, the interactions
between nearest neighbors (on the same sublattice
along the c axis) and between next-nearest neighbors
are —0. 226 cm ' and 1.225 cm ', respectively. 9

The effective J for long wavelengths wouM then be
essentially 1.225+~o (0. 226) or 1.281 cm '. With the
value of n =0.0142 which was used in our calcula-
tion the antiferromagnetic resonance frequency
using J=1.320 cm ' is about 2. 4% (higher than
the measured value). ' The predicted Neel tem-
perature is 69 'K as compared to the experimental
value of 67. 34 'K. Thus, the one-exchange-param-
eter theory gives a fairly adequate description of
the system.

The deviations from the host value of the neigh-
bors of the vacancy beyond the first shell are
small. Typical values are from 0. 1 to 0. 2/p in
the second shell and 0.05 to 0. 1% in the fourth
shell.

Butler et al. have also measured the magnetiza-



1162 WAI. KE R, CHAMBE RS, HONE, AND C ALLEN

tion of Ni impurities and their neighbors in MnF2.
Attempts to fit this data making use of the known

position of the localized level of Ni in MnF&, which
lies far above the band" and of the crystal field
parameters which have also been found, were not
at all successful. It has been shown by Butler
et al. that the observed magnetizations of neighbor
spins strongly suggest that there is a large nearest-
neighbor exchange between Ni and Mn. If this is
the case then the present analysis is certainly not
applicable.

There is some information available on Fe im-
purities in MnF2. Weber ' has found a sharp local
level at 94. 8 cm at 1.2'K. This lies substan-
tially above the spin-wave band. Wertheim, Gug-
genheim, and Buchanan" have measured the hyper-
fine splitting of the Mossbauer line of Fe in MnF2
as a function of temperature up to 0. 7TN. If it is
assumed that the hyperfine constant is temperature
independent (which may not be valid for an ion with

large hyperfine orbital contributions), then the
data measure the Fe magnetization.

A fit was made to this data essentially by trial
and error. An estimate was made of the anisotropy
field from data on Fe in a diamagnetic host' and
of the Fe-Mn exchange by comparison with the
known Mn-Mn and Fe-Fe exchanges. These esti-
mates served as starting values which were ad-
justed to improve the fit to the magnetization. The
position of the local level was not used in this fitting
but was afterwards predicted using our estimated
value for the host J. The agreement between these
calculations and experiment is shown in Fig. 14.
It does not represent the very best that could be
achieved but is satisfactory. The parameters used
were &p=0 4 and jp=1 5. With the value of J for
the host which was estimated earlier this implies
a JM„F, of 1.971 cm . This is rather close to the
best molecular field estimate of Wertheim et al.
of 1.87 cm . This is not surprising. The posi-
tion of the local mode at the lowest temperatures
is &=1.425 or 91.7 cm . The value found by
Weber' was 94. 8 cm . Since this local mode
contains most of the spectral density, as soon as
it becomes appreciably populated thermally it dom-
inates the behavior of the system. At very low
temperatures where only spin waves may be ex-
cited, the spectral density is very low and the fall-
off of the magnetization is correspondingly slow.
It is possible to estimate that at -,'-T„ the spin waves
and the local mode are contributing about equally
to the deficit in the magnetization.

Because the magnetization of the impurity falls
off a good deal more slowly than that of the host,
Sp changes considerably with temperature and this
shifts the resonances, both localized and in-band. It
appears from this calculation that a second s mode
which is rising steadily in the band as T decreases

1.0

09—

0.8—

0.7—

I

0.2
l

0 4
I

0.6
1

0.8 1.0

FIG. 14. Magnetization of Fe impurities in MnF2. Ex-
perimental points are Mossbauer hyperfine splittings
from Wertheim et al. (Ref. 13).

may emerge from the latter just below the Neel
temperature.

VII. CONCLUDING REMARKS

Probably the most valuable conclusion which can
be drawn from these calculations is that the effect
of impurities upon the magnetization of their neigh-
bors is essentially significant only for nearest
neighbors. The greatest shortcoming is undoubted-

ly the use of the RPA. This can be seen clearly
from the results of the Chalk River group on a
localized mode on Co in MnF2. " Cobalt is a more
comylicated ion than those we have treated here,
but this is probably not important. It was found
that the position of the local level which lies well
above the host spin-wave band (at 119 cm ' for
4. 6 '

K) falls only by 15%%uq at T/T„= 0. 8, while the
host band has narrowed by 40%%uo. Since in the pres-
ent analysis the position of such isolated modes
remains essentially fixed in terms of the band-
width, the RPA is clearly giving the wrong result.

The reason for this is rather clear. The work
of Dyson and its physical interpretation by Keffer
and Loudon showed that the renormalization of
spin-wave frequencies proceeds more nearly with
the average angle between neighbor spins than with
the angle made by a spin with the direction of over-
all magnetization. It is reasonable to suppose that
an impurity tightly coupled to its neighbors will
have its local-mode frequency determined largely



THE RMODYNAMIC PROPERTIES OF IMPURE HEISENBERG. . .

by the angle which it makes with them. At low
temperatures the effect of long-wavelength magnons
will be to cause motions in which the impurity and

its neighbors move substantially as a unit preserv-
ing their mutual orientation. An improved theory
would take this effect into account.
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M. -A. Mitchell and J. F. Goff
Naval Ordnance Laboratory, WAQe Oak, Silver Spring, Maryland 20910

(Received 30 August 1971)

Existing data are used to show that Mo and Fe impurities cause the Noel temperature Tz
of Cr to decrease at almost exactly the same rate up to 10 at. %. Elements with a higher
valence than Cr generally increase Tz. It is suggested that two Fe electrons are localized
and produce a localized magnetic moment, for which experimental evidence already exists.
The effective valence of Fe would then be similar to that of Mo. In order to investigate the
similarities and differences of Cr-Fe and Cr-Mo, electrics-resistivity measurements have
been made on two Cr alloys with 9.35-at. % Mo and 9.35-at. % Fe, respectively, from 2 to
300'K. For Cr-Mo, T&=197 K, and for Cr-Fe, T&=181'K. At 0 and 200'K the resistivity
of Cr-Fe is 12.6 and 3.2 times higher, respectively, than that of Cr-Mo. We suggest that
localized magnetic moments at Fe sites combined with atomic disorder produce a large,
nearly temperature-independent spin-disorder scattering in Cr-Fe. A simple model of elec-
trical conduction is employed to explain the temperature dependence of the electrical resis-
tivity. Below Tz an energy gap with a BCS temperature dependence opens up over a part of
the Fermi surface, and conduction takes place in two bands. As a result of the gap, electrons
in the magnetic band are thermally frozen out with decreasing temperature, which leads to the
rise in resistivity just below Tz. The 0 K gap is estimated to be 0.14 eV for Cr-Mo and
0.072 eV for Cr-Fe. Pure Cr and Cr-Mo have nearly the same balance of conduction between
the magnetic and nonmagnetic bands. In Cr-Fe the balance is shifted toward conduction in
the magnetic band.

I. INTRODUCTION

The purpose of this paper is twofold. First we
would like to point out that Mo and Fe impurities
lower the weel temperature T„of chromium at al-
most exactly the same rate up to concentrations
of the order of 10 at. %. This likeness does not

seem to have been noted before, although Suzuki
has commented that there is an order-of-magnitude
similarity. Iron is anomalous since most other
elements of higher valence than Cr cause T„ to
increase.

Second, we report an analysis of the electrical
resistivity of two Cr alloys containing 9.35 at. %


