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We have studied in the molecular-field approximation the statistical-mechanical properties
of the Hamiltonian

g{'.= —h Q Sf -Q j{gSgsg-Q K)y [(S{) —kS(S+1)] [(Sg) —kS(S+ 1)]
g, j

for S = 2s ions. We investigate the possibility of ordering in the independent parameters M = (S )
and Q = ((S )2 —s S(S+1)). The phase diagram is discussed for positive and negative biquadratic
interactions as a function of the ratio of bilinear to biquadratic interactions and as a function
of the magnetic field h. Successive phase transitions and triple, critical, and tricritical points
are found. We also show that the model gives a qualitative understanding of the phase transi-
tions observed in DyVO4.

I. INTRODUCTION

In molecular crystals, the existence of both

dipolar and quadrupolar interactions between the
molecules may lead to successive orientational
transitions, as shown by Krieger and James. '
Similar behavior is found in magnetic systems,
where it is possible to define two different order
parameters, the ordinary magnetization M= (S')
and the quadrupolar order parameter Q= ((S')
——,'S(S+1)). For instance, Blume and Hsieh have
considered a Heisenberg Hamiltonian for 8= 1 ions
with quadratic and biquadratic exchange interac-
tions and discussed the phase diagram as a func-
tion of the ratio of these two types of interactions.
S= 1 Ising models with quadrupolar interactions have
been investigated by other workers. ' '

In connection with recent experimental results
on successive phase transitions in DyVO4,

' '
we have studied the statistical-mechanical proper-
ties of the Ising-like Hamiltonian

~ = —hZ S', Zr J,, S;.S,'. -.Q—K„.[(S',) ——,'S(S + 1)j

x[(S',,)a ——,'S(S+ 1)]

for X (S=—,) ions on a lattice. This Hamiltonian
is not directly applicable to DyVO4 because the en-
ergy-level scheme is not that of an effective spin
—,
' nor are the interactions in that substance strictly
Ising-like. We expect the qualitative picture, how-
ever, to be correct. The interactions J,j and K,j

can arise from a number of different physical pro-
cesses. We refer to them as the "dipolar" and
"quadrupolar" interactions, respectively, but we
do not necessarily imply that they arise from mag-
netic dipole-dipole or electric quadrupole-quadru-
pole interactions. The names are convenient
because they suggest that the interactions can
produce dipolar or quadrupolar order, as defined
above. The quadrupolar interaction K,j could
arise, for example, from biquadratic exchange"'
due to the presence of the orbital moment, or from
bilinear exchange projected into the low-lying
levels of a multiplet, so that in a spin Hamiltonian
the form of the interaction becomes complex. "'
Alternately, it could result from phonon exchange
between ions, in which case one might refer to a
"cooperative Jahn-Teller effect. " The thermody-
namic properties of the system will, however, be
independent of the origin of the exchange interac-
tion and we therefore consider these properties
here. Separate experiments are required in order
to determine the physical origin of the parameters
J„and K;,-. A study of the elementary excitations
(e.g. , phonons, librons, and magnons) and their
interactions can distinguish between the various
possible mechanisms and can determine whether

lattice distortions, which accompany the phase
transitions, are essential to or incidental to their
occurrence.

We first derive self-consistent equations for the
order parameters M and Q in the molecular-field
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approximation. For spin 2 it is in general also
necessary to consider "octupolar" ordering with a
parameter which depends on ((S')P ). We do not
do so here because the Hamiltonian (1) does not con-
tain "cubic" exchange of the form (S f)p(S*,)', so
the octupole-order parameter is not driven directly
by the interactions.

In Sec. II, we discuss the phase diagram for
fixed positive quadrupolar interactions and varying
dipolar interactions in zero external field. We find
that for a range of the parameters J;& and K,&,

two separate second-order phase transitions occur.
At a higher temperature, there is a transition to
a state of nonzero quadrupolar order, but zero mag-
netic order. At a lower temperature, a second
transition occurs to a state of nonzero magnetic
order. As the parameters change, the two transi-
tions eventually are found to occur at the same
temperature and in another regime they become
first-order transitions. We also investigate the
influence of a magnetic field on the phase diagram,
and the case of negative quadrupolar interactions.
Finally, we discuss the suggestive similarities
between the behavior of our model and the observed
properties of DyVO4.

II. MOLECVLAR-FIEI. D APPROXIMATION

- QXQ

PQ=tre-'~o ' (9)

((S')p —&4)p =—[2ep' cosh ,p(H+—h)
ZQ

—2e 'cosh —,'p(H+h)]= —. (12)
Q

We get then the following expression for Q/N:

1 A B A (B't—=--lnZp+H —+v —-Z ——~l —
I

~

P Q ZQ Q k Q)

0 and o are now determined from the conditions

We find immediately

(V)p = —NJ (S')p —NK((S') -+4)pP

+NH(S'), +¹((S')' —P4-), , (10)

with

(S')p =—[3eP' sinh —,
' P(H+ h)

0

+ e p'sinh —,'p(H+ j'g)]=-
Q

We first restrict ourselves to positive dipolar
and quadrupolar interactions and introduce their
Fourier transforms

J= J'(0) =Zq J;q

K—= K(0) =Z,. K,,

(2a)

(2b)

which are satisfied if, and only if,

H = 2JA/Zp =- uM,
v = 2K B/Zp =—2K@ .

(18)

Let H and 0 be the molecular fields associated with
the order parameters M= (S') and Q= ((S')P —+~).

In the molecular-field approximation, the one-ion
Hami ltonian pep is

X,= - (H+I )Z, S',. - ~Z, [(S;)'-~] . (3)

The corresponding partition function is ZQ

=tre o, where

Zp
—-28 'coshpp(H+h)+2e 'cosh —', p(H+h) (4)

and p = I/kT. In order to derive equations for H
and o, we use the variation principle for the free
energy"3 E,

F& P=Ep+ (V)p,

where

Finally, M and Q are determined from the
following self-consistent equations:

3e+"osinh(3pZM+ 2ph)+ e "o sinh(p JM+ 2ph)
2ePPro cosh(3PJM+2Ph)+2e +rocosh(PJM+ 2Ph)

(18)

2ePPro cosh(3PJM+ 2Ph) —2e P o-cosh(PZM+ —,'Ph)
2e P"o cosh(3PJ'M+ ,Ph)+2e —cosh(PJM+2Ph)

(i9)
and the free energy is given by

—= ——lnZ +JM +K@
F 1 2

p

III. PHASE DIAGRAM FOR J, E)0AND h=0

K=$CQ+ V, (8)

Before discussing the general situation, let us
consider three particular cases [Figs. 1(a)—l(c)]:

N+ =-—lnZQ
p

Q p

(a) J=O; Eqs. (18) and (19) give

M=0, Q =tanh2PKQ. (21)

(V)p=trppV, There is no dipolar ordering. Quadrupolar order-
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ing (Q&0) appears below Tz (kTz = 2K), the transi-
tion is second order (as for a dipolar ordering in
a spin--,' Ising model), and just below To,
Q- (To —T)'~2. The molecular field o splits the
S=—', quadruplet into two doublets: S'=s-,' (the
ground state), and S,= + —,'. We note here that for
J=0, we can make rigorous statements about the
system which go beyond the mean-field approxima-
tion. This is because the system in this case is
equivalent to a spin- —,

' Ising model. The exact par-
tition function Z is given by

Z = Z exp {pal K;,[(S;)'-~][(S',.)'- &]),
(~j) 5 i

where each S'; takes on the values + —,
' and + —', .

Defining o, = (S;)2 —+, we note that o, =+ 1 when

S; = + & and 0; = —1 when S'; = + —,'. Hence,

Z=2" Z exp(PZ K;,(r, o;). ,

where the factor of 2" accounts for the two possible
values of S', for each o;. This is just the partition
function for a spin-& Ising model, for which the
phase transition is second order.

(b) K=O; Eq. (18) gives

3 sinh3P JM+ sinhP JM
2 cosh3P JM+ 2 coshP JM (22)

Dipolar ordering appears below T„o[kT„o=-;J
=-,' J'S(S+1)]; the transition is second order and the
the S= —,

' quadruplet is split into four singlets by
the molecular field H. Because of kinematical
coupling, MCO implies Q40 (although K=O) as
given by Eq. (19) and near T„z, M- (T„o—T)'~2

and Q-M - T„o—T.
(c) J«K; since the dipolar interactions are al-

most negligible, we expect that the quadrupolar
transition at T~, 4T = 2K will be unchanged. Near
O'K, because J40, dipolar ordering is now possi-
ble and M is given by Eq. (18) where Q = 1 and
2PKQ- ~: M = -', tanh3P JM. The transition appears
at T~ (kT~ =fJ) and is second order. It involves
only the ground-state doublet S' = + —,

' (effective
spin —,') but the moment is —,

' so that kT„=2J(-', ) =29 J.
In this case, we find two well-separated phase
transitions as shown in Fig. 1(c).

We now investigate the phase diagram for arbi-
trary values of JjK. Eliminating e ~"o between (18)
and (19), where we put k=0, we get

2M coshp JM(4cosh'p JM —3) —8 sinhp JM cosh'p JM+ 3 sinhp JM
4 sinhP JM cosh PJM (23)

Using (23), it is possible to determine the lines
in the J, T plane along which second-order phase
transitions may appear. We write PJM = x. For
x&& 1,

Q = tanh2pKQ,

so that kT~ = 2K and the transition is always second

Q= Qo+Rx +Sx', (24) Qo

where Qo, R, and S are some functions of J and
T. In particular,

—+I/2

'-3/2

Qo= ll2PJ (26)
kT

kTg =2K

so that if M- 0 for T- To, Q - Qo: The continuous
dipolar transition is also a continuous quadrupolar
transition if To = T„z= -', J (and Q- M2 just below

T„z); there will be a continuous transition from a
dipolar to a quadrupolar state at T„ if Qo(T~)
= tanh(2P„KQO), so that we must have

M,Q i

3/2-

(b)

kT

kTMg= 5/2 J

-3/2
-I/2
+I/2
+3/2

kT@ 5 K 5K
2J 4 J 2kT~

(26)

Otherwise the transition is first order. Equation
(26) may be solved numerically or graphically.
One finds always T„&2K. For very low tempera-
tures (26) gives the solutions k T„=2

J' and k T„=-,' J
(only in the first case, one has Qo&0).

Let us suppose now that a purely quadrupolar
transition is possible at To. From (23) with M=0,
we get (as when J=O)

I—
(c)

kT

kTM=9/2J kTg=2K

-I/2
+I/2
-3/2

+ 3/2

FIG. 1. Thermal variation of the order parametersI and Q and splitting of the quadruplet S = 2 in three
particular cases: (a) E&0, J=O; (b) J &0, X=O; and (c)
X»J &O.
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20K
9

T=-5J
2

—K
4
5

kTQ = 2K kT

FIG, 2. Possible second-order phase transitions in the
J-2' plane according to Eq. (23).

F = F0+A(T, Qo)M + B(T& Qo)M + ~ ~ ~ (27)

order. Finally, Fig. 2 shows the lines in the J,
T plane along which second-order phase transitions
may appear. The results agree with the above
discussion of the three particular cases, J= 0,
K=O, and K»J.

To see which parts of these lines correspond to
real second-order phase transitions, we perform
a Landau development of the free energy F along
these lines, using Eqs. (20) and (24). We write
then

tf Qp 4 0 B(T Qo) is positive for Z& 0.46.
Finally, the self-consistent equations (18) and

(19) have been solved numerically by substituting
(23) into (18), and we compared the free energy of
three solutions M= Q=O; M=O, Q=tanh28KQ:
MeO, Qo0. The phase diagram is shown in Fig.
3. Summarizing, we have found: (a) For J& l. 80,
a single second-order transition to a state where
M and @+0, driven mainly by the dipolar interac-
tions. (b) For l. 80& J& 0. 65, a single first-order
transition to a state where M and Q 4 0 (the ap-
pearance of a magnetic transition is well known in
systems like MnAs ' where biquadratic exchange
may be important). (c) For 0.65 &Z & 0.46, two

separate phase transitions; the quadrupolar one is
second order, the dipolar one first order. (d) for
0.46& J& 0, two separate second-order phase
transitions. As we shall see, a similar situation
appears in DyVO4. Figure 4 shows the thermal vari-
ation of M and Q for the four situations.

IV. INFLUENCE OF MAGNETIC FIELD

%e first suppose that J=0 and study the influence
of a magnetic field h on the transition at T~. Even
at high temperature, &4 0 and, because of the
kinematical coupling, QC 0 so that the transition is
suppressed by h [Fig. 5(a)j. (We have checked
that the transition never becomes first order ).
As shown in Fig. 5(b), the magnetization presents
a bump near kT=2Kwhen h is small.

%e now come back to the general situation.

(no M term appears in the development). Qo is
the value of Q at the transition and is given by Qo
= tanh2PKQ, . In particular,

M, Q M, Q,

1 + e ~ oo(9+ 8RPK)
A(T, Q0) = 1+2' KJ(1+Qo) —PJ'

2( ~ro )
(28)

The transition temperature is given by A(T, Qo) =0,
and the transition is second order as long as
B(T, Qo) & 0. If Q, =0, we find kT = .Z; if Qo =1, -
kT=z~J. If @0=0, B(T, Qo) is positive for J&1.80;

kTMg kT
= 7.5

kTMg kT
= 2.7

M, Q, M, Q„

I .80

FERROMAGNETIC
ORDERING

0.65
0.46

PARAMAGNETISM
pl

QUADRUPOLAR
ORDERING

Q I I

2K kT

I IG. 3. Phase diagram for h=0, J and E&0. Dashed
lines indicate first-order transitions.

(c)

kTM kTg kT
=18 =2

kTM kTg kT
=158 = 2

FIG. 4. Thermal variation of M and Q: (a) a single
second-order transition (J=3K); (b) a single first-order
transition (J=X); (c) a second-order quadrupolar transi-
tion and a first-order dipolar transition {J= 0. 5E); and
(d) bvo second-order transitions (J = 0.4K).
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M, i V. PHASE DIAGRAM WHEN E&0

{a)

2K kT

II

2

{b)

2K

We introduce two sublattices A and B (2N atoms
on the lattice), and the molecular fields o„, ~e, H„,
and JIB. The one-ion Hamiltonian is

X,=-X(H„+I1)Z S;.„-X(H,+I)ZS;.

—le„Z [(S',„)'. ~]-iVe—,Z [(S,*,)'-&].
(29)

The partition function for A and B ions is

Z„=2e '& cosh-, P (H„+ 11) + 2e ~"cosh —,
'

P (H„+ f1)

(3O)
and a similar expression for ZB. ZAZB is the
partition function of the system and

I I I

K

{c)

I I

IiT 2.0
I

2.5 5.0 RT

—'= ——lnZ„- —lnZ, .

Consequently,

FIG. 5. Influence of h on the phase diagram: (a) and

(b) J=O Pg8=0. 1K and 1.0E (c) line of critical points
(dashed line); and (d) thermal variation of I and Q for
h&h, (Sh=0. 05; J=E).

When h is applied, the second-order lines j)P'
(quadrupolar transition), OP, and P"~ (dipolar
ferromagnetic transition) disappear, i.e. , paramag-
netic and quadrupolar regions disappear, so that
the system is always ferromagnetic. The first-
order transitions along PP" appear at higher tem-
peratures [Figs. 5(c) and 5(d)] and disappear when
Il is very large: the surface describing the first-
order transitions is limited by a line of critical
points, P and P" are tricritical points. ' The
character of P' could be made precise if the mag-
netic field were replaced by a crystalline field.

Let us comment briefly on the case where K&0
and J&0. The dipolar interactions favor an anti-
ferromagnetic ordering, so that we have to divide
the lattice into two sublattices A and B and introduce
four order parameters Q„, Q~, M„, and Me. Self-
consistent equations for these parameters may be
obtained as in Sec. II and, as long as h = 0, we get

QA = QB

so that the phase diagrams for J& 0 and J& 0 are
identical (we have not studied the influence of f1).
In the same manner when K& 0 and Il = 0 the phase
diagram for J& 0 and J& 0 are identical.

(S„' ) = [3e '" sinh —, P (H„+ h)
ZA.

+e ""s1nh-,'p(H„+r)], (3l)

~7 QB J A B g QAQB

ZA ZB ZA ZB ZA ZB

The conditions

(33)

ay sy sy sy---= ——=0
8IIA 8HB,. 80'A BVB

give

HA = 2J -= 2JMB,
ZB

HB = 2J = 2JMA,
ZA

a'~ = 2K—= 2K@~,
ZB

(34)

ee = 2K~= 2K@~ .
ZA

Finally, we obtain four self-consistent equations

( (S„')'—,) = [2e'& cosh-', p(H„+ h)
ZA

"cosh-,' P(H„+ h)], (32)

and similar expressions for (Se ) and ((Se)~ —+~).
We note (S'„)= rn„/Z„and ( Q„' ) = q„/Z„, so that

l l mA PlBinz~ — in' + H~ + HB
ZB

3e2~"oe sinh(3pZM~ + —,ph) + e + e sinh(p&M~ + 2 PING)

2e2~"oe cosh(3P JMe + ,'Ph) + 2e ~"e co—sh(PZMe + ,Ph) '— (35)

2e 8 oe cosh(3PJM~+ &PA) —2e e cosh(PZMe+ ~PA)
2e28r J1 cosh(3p ZMe + 2ph)+ 2e " 11 cosh(pZM, + 2ph)- (35)
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Se'~ o~ sinh(3P JM„+-,Ph)+ e ~"o& sinh(P JM„+-,'Ph)
2e~~ o" cosh(3pJM„+ —,'ph)+2e + o& cosh(pJM„+ —,'ph)

2e+r & cosh(3 pJM„+ -', ph) —2e & cosh(p JM„+ -,ph)
2e2~~o& cosh(SpJM„+~ pk)+2e + o& cosh(pJM„+2ph)

(37)

(38)

and the free energy F/N is given by

1 1
N p p
—=-—»~~ ——»~a+ JM~Me+KQ~Qe ~

We first discuss some particular cases (Fig. 6)
for A=0.

(a) J'=0. Equations (35)-(38) give

M~ =M~ =0,

Q~ = —Qe = tanh2p
l
Kl Qx .

There is no dipolar ordering; "antiquadrupolar"
ordering appears at kT= 2I KI and the transition
is second order.

(b) J& 0, K=0. Dipolar ordering (ferromagnetic
state) appears at T„o=—,J (see Sec. III).

(c) J«1KI. Well below To, the dipolar forces
impose a dipolar ordering. From (35) to (38) with
Q„=—Qe= 1 we get

M„= 2 tanhSp JMe,

Me= 2tanhpJM~ .
When T- 0, M„=—,

' and M~ =-,' so that we have now
a ferrimagnetic ordering; the transition is second
order; it appears at kT~ = —,

' J (= 2Jx-', x-,').
In order to solve numerically Eqs. (35)-(38),

we eliminate e+rQs between (35) and (36) and
e+"Q~ between (SV) and (38), from which Q~
=f(M„, Ms) and Qe =g(M„, Me). We then substitute
into (35) and (37) so that we are left with two
equations.

The phase diagram is shown in Fig. 7, which is
divided into several regions:

(a) J& l. 53. A single second-order phase tran-
sition appears to a state where M„=- Me 40, Q„
= Qa «i ~TM g

=
2 J.

(b) l. 53 & J'&0. 81. A second transition appears
to a state where M~AMe, Q„WQe; it is second
order (it corresponds to a lowering of symmetry
since two sublattices appear).

(c) 0. 80 & J'&0. 30. Two separate phase transi-
tions: the antiquadrupolar one (ATo=2!KI) is sec-
ond order, the dipolar one is first order.

(d) 0. 30& J&0. Two separate second-order
phase transitions. Finally, for J&~ IKI, the
ground state is ferromagnetic, while for J& 3 IKI
it is ferrimagnetic. For 0. 81& J&0.80, there are
four transitions: two second-order transitions to
a ferromagnetic state then a ferrimagnetic state,
and two first-order transitions limiting the exis-
tence of an intermediate purely antiquadrupolar

state. Thermal variations of the order parameters
are shown in Fig. 8.

Let us take J= 0 and study the influence of a
magnetic field on the antiquadrupolar transition.
At high temperatures, the system is ferromagnetic;
below To, it becomes ferrimagnetic [Fig. 9(a)].
The transition temperature is first slightly in-
creased by h, then decreased, and the transition
disappears for h& h, [Fig. 9(b)]. When J&0, as
shown in Fig. 10, a surface in the J—h —T space
separates a ferromagnetic state from a ferrimag-
netic state, since a purely antiquadrupolar state
is no longer found. Consequently, the second-order
lines OI' and I"~ disappear; the first-order transi-
tion between two ferrimagnetic states appears at a
higher temperature and disappears (line of critical
points) so that P and P' may be considered as tri-
critical points. The surface Z intersects the three
coordinate planes along the lines CQ, QP' and
P'P", P"C. Finally, at T=O K, the straight
line h+3J=4K separates a ferrimagnetic from a
ferromagnetic ground state.

, QA Qe
I

2K
kT

+I~A- p

2

P, ,QA. QB, MA, MEI

2
I

I

2
(b)

—I

+2

+ 2

+2-j.
+ 2

FIG. 6. (a) Pure antiquadrupolar ordering (J=0, K& 0)
and (b) well-separated ferrimagnetic and antiquadrupolar
transitions ( I K f »J & 0).

VI. APPLICATION TO DyVO4

Two phase transitions are observed in DyVO4:
a crystallographic transition at 14 'K, which has
been considered as a Jahn-Teller transition, and a
second one at 3 'K, which is an antiferromagnetic
transition. '7 Both of them are second order, as
shown by specific-heat measurements' and the
thermal variation of the crystal distortion b/a. '0

Optical studies' show that only a ground-state
quadruplet (effective spin S' =-,') is involved in the
two transitions: This quadruplet is split into two
doublets at 14 'K, and then at 3 'K into four singlets,
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DIPOLAR AND QUADRUPOLAR ORDERING. . .

p II

quadrupoles of the two Dy
' ions in the unit cell

according to the representations of G. We find that
a "ferromagnetic" arrangement of quadrupoles
transforms according to the Bj representation,
whose kernel is Imrna. Consequently, such an
ordering leads to an orthorhombic symmetry, and
it may be second order since 8„is a real one-
dimensional representation. Then the dipolar order-
ing corresponds to a real one-dimensional repre-
sentation of the group Imma with k =0; it is de-
scribed by a magnetic group isomorphic to Irma.

VII. CONCLUSIONS

C
4.8
Sh

FIG. 10. Influence of h on the phase diagram (K& 0).

of the parameters J and K of the true spin Hamil-
tonian, since we are dealing with an effectiue
spin 2.

With a change of interpretation, the Ising model
can be made to correspond somewhat more closely
to the situation in DyVO4. We assume that there
is no relation between the quantization axis of the
Ising system and the z axis of the crystal. A

I
a-', ) state (Q=+ I) represents a quadrupole elongated

along the x axis and a I + —,
'

) state (Q = —I) a quad-
rupole flattened along x or a quadrupole elongated
along y. This choice is more adapted to the de-
scription of DyVO4 because of the two possible do-
mains which appear below Tz. The introduction
of dipolar interactions selects the domain with Q
=+1 preferentially.

The possibility of two successive second-order
phase transitions is confirmed by symmetry con-
siderations. ' The high-temperature group is
G = I(4,/a)md. Since the transition leaves the unit
cell unchanged, we may consider only the point
grouP Gp = (4/m)mm. Now, following Landau and
Lifschitz, we may classify the coordinates of the

Our model Hamiltonian (I) may describe quali-
tatively some systems where two-order parameters
may be defined: crystals with crystallographic and
magnetic ordering, for instance. We have shown
that it describes qualitatively the magnetic prop-
erties of DyVO4. It would be interesting to com-
pare our results with the results for a similar
Heisenberg Hamiltonian where new elementary
excitations appear which may be called magnetic
librons. Even the simple model considered here
shows the great complexity which is possible when

two or more kinematically coupled order param-
eters contribute to the internal energy. We have
found first- and second-order phase transitions to
"tates of quadrupolar and antiquadrupolar order;
erro-, antiferro-, and ferrimagnetism, and two
:ombinations of these. The critical indices of the
~uadrupolar order depend, even in the mean-field
approximation, on the nature of the interactions.

It should also be mentioned that quadrupolar or-
ier can be detected experimentally by x-ray dif-
raction, even if the lattice remains undistorted.
1'his is because the anisotropic part of the x-ray
iorm factor is altered by the alignment of the elec-
tronic quadrupole s.

Quantitative calculation for specific substances
requires a more detailed knowledge of the exchange
parameters and of the form of the exchange interac-
tion than we have at present. The Ising system
treated here illustrates, however, the qualitatively
new effects which are to be anticipated.

Work performed under the auspices of the U. S. Atomic
Energy Commission.
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Magnetic-susceptibility measurements between 4 and 800'K and specific-heat measurements
between 1.5 and 4. 2'K are reported for a series of dilute Rh-Mn, Mo-Fe, Mo-Co, and Au-Fe
alloys in the concentration range 0.02—0.7 at. %. The solute susceptibility Dx of all alloys shows
local-moment behavior and scales with the concentration over a wide concentration range, but
large deviations from simple Curie-Weiss behavior, qualitatively the same for all alloys, are
observed. This deviation consists of a rapid increase of Dx at low temperatures. A pro-
nounced field dependence of Ax and large specific-heat anomalies at these temperatures strongly
suggest that this rapid increase in Ax arises from solute-solute interactions. This anomalous
part of Qx can readily be separated from the part due to isolated solute atoms. The conclusion
is drawn that scaling of the solute susceptibility with concentration does not necessarily signify
that the alloys are "dilute" in the conventional sense.

I. INTRODUCTION

In recent publications'~ we reported that dilute
alloys of Mn in Rh exhibit a local moment but that
the magnetic susceptibility does not show simple
Curie-Weiss behavior. It was found that the solute
susceptibility contains a very substantial tempera-
ture-independent term and at low temperatures in-
creases much faster than predicted by the Curie-
Weiss equation. Since these deviations from Curie-
Weiss behavior scale with the Mn concentration,
they were attributed to single-impurity effects.
Large temperature-independent terms in the solute
magnetic susceptibility of alloys exhibiting local
moments have also been reported for dilute alloys
of Mn in Mo, Co in Mo, ' and V in Au. As in the
Bh-Mn alloys, the magnetic susceptibility of Bk-
Fe alloys increases at low temperatures much fast-
er than a simple Curie-Weiss equation would pre-
dict. ' Generally, deviations from Curie- Weiss
behavior of the magnetic susceptibility are observed
for almost all dilute alloys exhibiting local mo-
ments. This is not surprising since the Curie-
Weiss equation can only be considered as a conve-
nient interpolation formula between a high-tempera-
ture Curie law and a finite zero-temperature solute
susceptibility as predicted by both Kondo-type and
fluctuation theories for the single-impurity limit. ' "
In the absence of general theoretical predictions
for the detailed temperature dependence of the mag-
netic susceptibility for dilute magnetic alloys,

the observed systematic deviation from Curie-Weiss
behavior should give valuable information about the
electronic structure of a single magnetic impurity.

Quite recently, it has been demonstrated that
even in very dilute alloys, interactions between
solute atoms can contribute significantly to the mag-
netic susceptibility. ' The question then arises
as to whether the deviations from Curie-Weiss be-
havior observed earlier do indeed reflect proper-
ties of noninteracting impurity states. To investi-
gate this question, we have made a magnetic study
of a variety of dilute alloy systems over a wide
temperature range. In addition, low-temperature
specific-heat measurements were performed on
the same alloys.

II. EXPERIMENTAL DETAILS

A. Alloy preparation

The following new alloys were prepared: Mo with
0. 02-, 0. 1-, 0. 2-, 0. 5-, and 0. V-at. % Fe, Mo with
0. 1- and 0. 4-at.% Co, Rh with 0. 1- and 0. 6-at.%
Mn, and Au with 0.02- and 0. 1-at. /0 Fe. The sol-
vent materials Mo, Rh, and Au were 99. 999/o pure
as quoted by the supplier. The solute materials
were 99. 99% pure. Before alloying, the magnetic
susceptibility and the low-temperature specific heat
of the solvent materials were determined. No sig-
nificant amounts of magnetic impurities could be
detected. For each of the four alloy systems in-
vestigated, a master alloy with about 3-at.% solute


