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A new formalism, using standard-basis matrix operators, is presented for the study of the
collective excitations and the thermodynamic properties of an ensemble of identical interacting
quantum-mechanical systems subsequently called "ions, " each ion having discrete energy
levels. A model Hamiltonian is formulated in terms of these operators. The Hamiltonian
contains terms which express the interaction of the ion with the crystal field and the external
fields as well as terms which arise from the mutual interaction of ions. Using the double-
time temperature-dependent Green's-function technique, the equations of motion of the
Green's functions of standard-basis operators are developed in the random-phase decoupling
approximation. It is demonstrated that the temperature-dependent correlation functions of
standard-basis operators, which are obtained from associated spectral Green's functions,
lead to a set of equations that can be solved for the occupation probabilities of the single-
ion energy levels. Hence, one can calculate the thermal-average expectation value of any
quantum-mechanical operator representing a microscopic observable of a single ion, or a
pair of ions (correlations). An important feature of the standard-basis matrix-operator
formalism is that the single-ion terms, such as crystal field, molecular field, or external
fields, are always treated exactly in any Green's-function decoupling scheme. In contrast,
Green's-function methods which use angular momentum operators often necessarily treat
single-ion terms in a decoupling approximation. As an example, the general standard-basis
operator theory is applied to the Heisenberg ferromagnet in the presence of uniaxial single-
ion crystal-field anisotropy, which has received extensive theoretical attention previously,
with widely varying results.

I. INTRODUCTION: INTERACTING SYSTEMS IN SOLIDS

The physical properties of crystals may often be
explained by a model in which the crystal is con-
sidered an an ensemble of identical ions. Each ion, in
turn is considered Bs a system with a finite number of
energy levels. In general, these are energy levels
of electrons in unfilled shells, determined by the
Coulomb potential produced by the nucleus, the
inner electronic shells, and by an effective field
produced by the other ions. Such an effective field
is the crystal field or the Weiss molecular field.
Important physical effects arise from interactions
which cannot be represented by an effective field,
i.e. , correlations between ions. These broaden
the single-ion levels into bands, thus playing a
decisive role in determining the excitation spec-
trum of the crystal. Examples where this model is
successful are the crystals of the rare-earth and
actinide compounds.

An ensemble of identical systems, each having p
discrete energy levels, for which the above descrip-
tion is valid can be described by a model operator
Hamiltonian. This contains sums of two types of
operators, single-system and two-system opera-
tors. The single-system operators represent the
interaction of the individual system with the effective
field. A single-system operator may be written as
a matrix of dimension p when expressed in terms of

the complete set of p states of the system. The
two-system operators represent the interactions be-
tween the individual systems and are formed from
the product of two single-system matrices multiplied
by an appropriate interaction constant, e. g. , the
Coulomb exchange integral.

In the operator-equivalent method, which is often
used to interpret spin-resonance experiments, the
Hamiltonian is expressed as a sum of products of
powers of the components of a fictitious (or actual)
angular momentum operator. ' We propose an
alternate scheme, which has certain advantages over
the operator-equivalent method, as will be stated
in Sec. III.

In order to study the excitation spectrum and the
thermodynamic properties of an ensemble of inter-
acting systems at arbitrary temperature, it is com-
mon practice to employ double-time temperature-
dependent Green's functions. ' In these methods
where the Hamiltonian of the ensemble is written
in terms of the components of fictitious angular mo-
mentum operators, the single-system Green's func-
tions are usually formed from powers of these com-
ponents. The equation of motion of these Green's
functions leads to an infinite set of linear algebraci
equations which couple the single-system Green's
functions to the higher-order n-system Green's
functions.

At present, approximate solutions to this infinite
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set are found by truncation processes' '~ which de-
couple the equations to form a closed set that can
be solved for the single-system Green's functions.
The Fourier transforms of these Green's functions
are related, through equations found in the litera-
ture (see Refs. 6 and V), to corresponding tempera-
ture-dependent correlation functions, which deter-
mine many of the important thermodynamic proper-
ties of the ensemble. There are many problems
associated with the various Green's-function de-
coupling schemes. The main problem is that one
has as yet no exact knowledge of the error involved
in decoupling and must rely on physical intuition
and comparison with experiment to justify a partic-
ular decoupling. Subsidiary problems arise within
particular decoupling schemes in which angular
momentum operators are used because the Green's
functions are often formed from a set of powers of
angular momentum components, which is incomplete
in the sense that it is not closed under commuta-
tion. In this case even the single-ion terms have
to be decoupled, which could be treated exactly if
a complete set were used. However, when a com-
plete set of angular momentum operators is used
one may arrive at a redundant set of equations from
which some property of the ensemble is calculated,
arbitrarily omitting certain equations to overcome
the redundancy. It is the objective of this paper to
introduce standard-basis operators. For an en-
semble of systems having discrete energy levels,
a general Hamiltonian containing single- and two-
system operators can be written in a very simple
form using standard-basis operators, and the
Green's functions of these operators could enable
one to solve a large class of excitation problems
in solids in a well-defined and consistent manner.

In some cases, where a suitable expansion pa-
rameter can be identified, perturbation theory
represents an important alternative technique for
calculating the thermodynamic properties of an
ensemble of interacting systems at finite tempera-
ture. To clarify the differences between the per-
turbational approach and the decoupling method de-
veloped here, we note that each standard-basis
operator may be expressed as the product of an
annihilation and a creation operator. Either boson
or fermion operators may be used. Consequently,
diagram techniques which have been worked out for
bosons and fermions could be used to find perturba-
tional results for interacting n-level systems. The
isotropic Heisenberg ferromagnet" has been treated
perturbationally using the reciprocal interaction
volume as the expansion parameter.

II. STANDARD-BASIS OPERATOR FORMALISM

The definition and fundamental mathematical
properties of a particular set of linearly indepen-
dent matrix operators will be formulated in this

In&=(o ~, I.. . .. , o) wit &nl p)=~ a (2. 1)

where the label a denotes the only nonzero com-
ponent, constitutes the standard basis for 'U ~.
Physically, the vector I n) can be thought of as a
state vector describing a system in the state n.
The set of p linearly independent vectors 1 n) with
a=1, . . . , p forms a complete orthonormal set of
states of the system. Hence, the most general
state of the system is a linear combination of the
vectors I n), with complex coefficients.

Let 7~ represent the set of linear transformations
of V~ into itself. It is well known that v~ is an as-
sociative algebra and that 7~ is p dimensional over
the field of complex numbers. ' If A6 7~, one can
write

P

Alp&= ~&A.sin& for p=l, .. . , p. (2. 2)

The set of p' complex numbers A ~ completely
describes the linear transformation A.

Pa

The p -dimensional matrices L ~ C v'~, which will
be used in all subsequent calculations, are defined
by the form

0
~ 0

eg
*0

0
1 z

. .. forn p=l, .. . , p. (23)
~ ~ ~ 0

The subscripts n and p indicate that the only non-
zero element is in the n row, P column position.
In analogy with the labeling of I n) we shall refer to
the operators L z as standard-basisopexatoxs.

It is clear from (2.3) that the p operators L„~
are linearly independent; hence the set (L 8} forms
a basis for 7'~. Any matrix operator A, E. v~ may
thus be written as a linear combination of the p
operators L z with the matrix elements of A as the
expansion coefficients as follows:

A=K A„gL g .
a,g

(2. 4)

Since any product of operators AB ~ ~ 8 is also
an element of 7'~, it may also be expanded as in
(2. 4).

In order to formulate the fundamental properties
of the standard-basis operators we apply L ~ to an
arbitrary standard-basis vector ] y). From the

section. The operators form a basis for the set of
linear transformations on a vector space V ~ of finite
dimension p over the field 5 of complex numbers.
A vector in the space g~ represents a state of a
physical system, which has p discrete energy lev-
els. (In the case of degenerate levels, p is the sum
of the multiplicities of the levels. )

The set I n) with n= 1, . . . , p of p unit column
vectors of the form
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definitions (2. 1) and (2. 3) we obtain the equation

(2. 5)

where 6~„ is the Kronecker delta symbol. The ad-
joint operator I. ~ is defined by the equation

A A
JL„s [Ln

(2. 5)
A.

Using the multiplication rule for L ~, which is

Lee ' Lgg' ~pe' Lug' (2.7)

it follows from (2. 6) that the adjoint operator is
A

g
A

L Of„a Lg'(M e (2. 8)

Since the operator L"z operates only on the state
vector of the nth system, it commutes with any
L„„m&n, and we may generalize (2.9) to

[L ~, Lss ~ ]= 5""(5s .L "s ~ —d s L s .) . (2. 11)

If the single systems are ions at fixed sites on a

It is evident from (2. 5) that relative to the basis
j a&, with n = 1, . .. , p, the nondiagonal operators
L„s are nilpotent (i. e. , L as = 0) and that they act as
raising or lowering operators when n & P or e& P,
respective ly. The inter leve l tr ansitions generated
by these operators are shown schematically in Fig.
1. Setting o. equal to P in (2. 5) yields an eigenvalue
equation for the diagonal operators Lz with eigen-
values 1 or 0. The diagonal operators also satisfy
all the requirements for projection operators. Using
the multiplication rule (2. 7) the commutator for
the standard-basis operators is given by the simple
relation

L» '~ Lss' ] = 5s~.L,s. 5~a.Ls~. .
To this point, the development in this section has

been concerned with the properties of the standard-
basis operators L,E. v~ applied to the state vectors

) n& in the subspace of dimension p of a single sys-
tem. In general we shall be dealing with an ensem-
ble of N identical interacting systems, each having

p energy levels. %hen the ensemble can be de-
scribed by a wave function, the latter can be ex-
panded in terms of a complete set of orthonormalized
wave functions of the noninteracting systems. Each
term of the ensemble wave function contains prod-
ucts of the wave functions for different noninteract-
ing systems in different states. Different systems
will be labeled by a superscript l, rn, or n, e. g. ,
the state vector for the nth system is given by

I o&"E'0~. The operator L "sC 7~ applied to a. product
of single-system state vectors has the following
meaning:

Ln l~ &t. ..l& &n. . . & &N

I'IG. 1. The schematic diagram shows the set of ener-
gy levels of a quantum-mechanical system having p dis-
crete energy levels. The standard-basis vector I o&

represents the quantum-mechanical state vector ) (x)

system in the energy state e. The arrows t and ) in-
dicate interlevel transitions generated by the standard-
basis operators L&~ and L«, respectively.

where the bracket symbol ( ~ ~ ) is defined by
A

(g& Try e-s /as'z/Tr 8 HIlbsT (2. 13)

The Boltzmann constant is denoted by k~, the ab-
solute temperature by T, and the Hamilton operator
of the ensemble by H. As easily verified, the quan-
tity D, represents the probability that the ion is in
the state a. From the definition (2. 3) it is evident
that the sum over all L is equal to the identity
operator „hence, the sum of the occupation prob-
abilities of all the levels is given by the normaliza-
tion condition

III. ADVANTAGE OF USING STANDARD-BASIS
OPERATORS

Standard-basis operators are naturally adapted
to systems having discrete energy levels. They
are represented by matrices whose elements are
zero except for a single one, in contrast to the more
complicated spin operators. They provide a clear
picture of. the interaction which causes interlevel
transitions, obscured by the use of "fictitious an-
gular momentum " operators. The diagonal, stan-
dard-basis operators play the role of occupation-
number operators for the individual levels, and the
nondiagonal standard-basis operators act as raising
or lowering operators which generate the interlevel
transitions. Terms of the Hamiltonian which appear
as single standard-basis operators, are, when ex-
pressed with help of operators of angular momentum
of magnitude S= —,

'
(p —1), sums of products of pow-

translationally invariant lattice, the nonzero thermal
averages of the diagonal operators are independent
of the ion site. In this case we introduce the nota-
tion
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ers. Thus in order to utilize familia. r angular mo-
mentum operators, one sacrifices simplicity and
must deal with a complicated Hamiltonian.

Standard-basis operators have particularly simple
commutation relations, making the calculation of
the equations of motion trivial. In contrast to the
case in which angular momentum operators are
used, powers of operators higher than the first
never appear in the equations of motion of standard-
basis operators. Since standard-basis operators
form a complete set, one can unambiguously apply
interpolation decoupling techniques such as the
random-phase approximation (RPA). ' In the RPA,
where the standard-basis operators are replaced
by their therma. l averages, a finite set of linear
algebraic equations for the single-system Green's
functions is derived from the general standard-
basis operator Hamiltonian. As an example, this
set has been solved for the S=1 Heisenberg ferro-
magnet in the presence of uniaxial crystal-field
anisotropy.

Analysis of all the correlation functions derived
from a given set of coupled Green's functions shows
that some of the correlation functions should be
identically zero, in order to satisfy the multiplica-
tion rule (2. '7) for the standard-basis operators.
This rule is a mathematical guarantee that the fol-
lowing physical restrictions are enforced: (i) The
system cannot be in different states at the same
time, and (ii) no excitation energy can exceed the
maximal eigenvalue of the Hamiltonian of the sys-
tem. These restrictions can be formulated as a
single equation with standard-basis operators as
follows:

unless (3.I)

One may also say that every transition has to origi-
nate in the state where the previous transition
ended. We shall call (3. I) the»nonotopic xestxic
tion, to emphasize that a system can occupy only
one state at a given time. A special case of this
restriction leads, in the case of spin waves, to the
Dyson kinematic interaction. '" This interaction
arises from the fact that the spin of an ion cannot
be flipped by more than 2S units.

It is found that the Green's functions which lead
to the physical quantities of interest can always be
written in a form which ensures that neither the
monotopic nor the kinematic restriction is violated.
In the three-level (S = I) ferromagnet, and in higher-
spin ferromagnets not presented here, certain ex-
traneous poles arise which do not occur in the
usual HPA, which uses spin operators. In the
isotropic case these extraneous poles have the form
of effective-field excitations in the spectral Green's

functions. These extraneous poles have no effect
on the calculation of thermodynamic properties of
the system if the monotopic restriction is observed.
Similar poles were found by Murao and Matsubara,
who formed their Green's functions from compo-
nents of both the angular momentum operator and
the quadrupole moment operator. However, they
did not take into account the monotopic restrictions
which were obscured by their operator formalism,
and they obtained entirely different thermodynamic
properties from the ones obtained in this paper in
Sec. IX.

IV. APPLICATION OF NEW FORMALISM TO AN
ENSEMBLE OF IDENTICAL INTERACTING IONS

IN A CRYSTAL

Assume Af and B~ are quantum-mechanical oper-
ators, which act in the p -dimensional subspace of
quantum-mechanical state vectors of the ion l with

p energy levels. If the levels are degenerate, p is
the sum of the multiplicities of all levels. These
state vectors form a complete set which represent
the states of an ion situated at the position x, on a.

translationally invariant lattice. The subscripts f
and g denote the elements of the set (Az, 8,')f,
e. g. , the set might consist of components of the
spin operator, which are given by (S,', (S,'); S,', S.',
S'). In terms of the operators A& and B', our model
Hamiltonian ean in general be written in the form

H = -H H o
—+w V»A» —— 8 Jy'» B» B» .

f'l f g'l m

(4. I)

The term H,' is the "free "-ion Hamiltonian, whose
eigenvalues are the energy levels e (o.'= I, . . . , p)
of the ion not interacting with any field or with other
lons. The scalars V& represent the strength of the
effective field associated with the operators Af.
For example, the numbers Vf might be the compo-
nents of the external magnetic field, intera, cting
through the inner product with the vector operator
representing the angular momentum of the ion at the
site x,. The scalars Jf, are the intera, ction con-
stants associated with the operator products Bfl B, ,
e. g. , the numbers Jf'~, for fixed l and rn, might
be the components of an anisotropic-exchange ten-
sor.

The expression of H 0 in terms of standard-basis
operators is

l lHo=~m ~~L~a ~

where the summation is over all p energy levels n
of the ion /. In accordance with (2. 4) one can a,l-
ways expand the operators Af' and B' in terms of
standard-basis matrix operators. The coefficients
in the expansions are the'matrix elements A, ~ (f )
and BNN (g) of the operators A& and B», respectively.
These matrix elements do not depend on the ion
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label / because all ions in the crystal are assumed
to be identical. Hence (4. 1) becomes

where D is defined by (2. 12) and the symbol ( ~ ~ ~ )
denotes the thermal average defined by (2. 13). Let
us introduce the set of numbers

C„„=KI„i „„D„=+I 4i' ~B,i (f) (B~) (4. 11)

ae ', 48/ ~ ea ~pig
au ', l ggi, m

(4. 2)

where h ~ and I ' ~ ~. are defined by

h...=&~f VgA... (f)

I '~' ssi= -J Jy'~" B ~ (f) Boa'(g) ~

f,r
(4. 4)

The coupling constant I' . has the properties
l, mI a'a ~ iig ' = I68 ' a a ' & I

x
&

x m l
) (4. 5)

l, CI ae ' l8' (4. 6)

The first relation (4. 5) expresses the translational
invariance of the interaction Hamiltonian, and it
shows that the interaction between identical ions in

an ordered lattice depends only on the relative dis-
tance between the ions. Equation (4. 6) expresses
the fact that no ion interacts with itself.

For calculations to be carried out in the wave-
vector representation, one defines the Fourier
trans for m

I i, m ~ lg
.
Iih fk'(*l *m&

na ', gg ' k ao; ', 88' e

and its inverse

y l, m -fk ' (xl -xm) (4. 8)

using

g lm ~ -1+ fA,' ~ (x ) -x~)ke (4. 9)

In the above and in subsequent calculations, the
letters k and q represent vectors of the first Bril-
louin zone of the reciprocal lattice. For conve-
nience the vector notation is surpressed.

Effective-Field Hamiltonian in Terms of Standard-Basis

Matrix Operators

In the spirit of the effective-field theory each ion
in the crystal is to be treated as if it were respond-
ing to a field which is partly external and partly
generated by the remaining ions. The interaction
part (second term) of the Hamiltonian (4. 1) can
formally be separated into an effective-field term
and a small interaction term by assuming that the
expectations values of the operators Bz deviate
very little from their thermal averages. %'e de-
fine the deviation operator b& by

Vfe shall denote

(4. 12)

the "effective-field Hamiltonian" in analogy to the
well-known effective-fieM expression of magnetism.
The distinguishing feature of the effective-field
Hamiltonian is that it is linear in the single-ion
operators instead of containing products of these
operators. The coefficients e„„are, of course,
dependent on the thermal averages &8, ). The term
5„,&„ arises from the Harniltonian of the noninter-
acting ion. With these definitions and using (4. 3),
(4. 4), and (4. 5), the Hamiltonian (4. 2) may be writ-
ten in the form

where I „&8is defined by (4.8). The last term in
(4. 12) is the small interaction term

(4. 14)

In cases where it is a reasonable assumption that
H f $ can be ne gle cted, at least as a first approxima-
tion, the problem of determining the ensemble en-
ergy spectrum is reduced to the diagonalization of
II,', given by (4. 12).

In formulating an approximation in which II'„, is
not neglected, it is often useful to start with the ef-
fective-field eigenstates. We note that (b&) =0, a
fact which is important in the development of the
random-phase decoupling method in Sec. V.

V. GREEN'S FUNCTIONS OF STANDARD-BASIS
OPERATORS

In this section we construct quantum-mechanicaL
double-time temperature-dependent Green's func-
tions from the standard-basis operators. The
equations of motion of the spectral components of
the two-operator Green's functions are formed using
the general Hamiltonian (4. 2). The three-operator
Green's functions are decoupled in the randorn-
phase approximation, yielding a general equation
representing a finite set of coupled two-operator
Green's functions.

The two-operator Green's function in the coordi-
nate representation is denoted by

0„".".„.(t -f ') =((1.."..(f) lI.,",.(I'))), (5.1)

where the double bracket ((~ --)) is defined by
Zubarev. ' This Green's function can be interpreted
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physically as the probability amplitude that at time
f the mth ion makes a transition from the level P'

to the level P followed at time f by a transition of
the nth ion from the level +' to the level a. The
spectral Green's function given by the Fourier
time transform

-«L".. IL"'»..„]f( ). '""".

The factor f(&o) is the Bose function defined by

(ea&/aar 1)-1

(5.8)

(5.4)

G"",
, aa. (E) = (&L", ' ILaa'))a

The spectral components of the Green's function
(5. 1) satisfy the equation of motion

/ff Gg, ~ (t t &) ja(t a')-
2r

E G '
~, aa (E) =(I/27/) &[L ~ Laa']&

(5. 2) + «[L"..., 0] i"»,», . (5. 5)

is related to the two-operator time correlation
function through the equation

&Laa (f')L.". (f )&= . [&«" ~ ILaa » -«
~00

The equation of motion of L" ~ appearing in the last
term of (5. 5) is to be calculated from the Hamil-.
tonian (4. 2). Using the commutator relation (2. 11)
and the symmetries of the interaction coupling con-
stant gives

EG"', aa, (E) = —
&[LN + & Laa ]& + (Ez —E+ ) G+'+ aa (E) +Q (k&+ G&'+e aa (E) k+ &G+'& aalu(E)}

V

+ Q (I"„'„„,«L„".L„'„.
I
jaa.»a —I""„„„.«L"„L„'„

I
Laa. »s], (5. 6)

var'l

with the Greek subscripts ranging over the level in-
dices from 1 to P, and the Latin superscripts rang-
ing over the ion indices from 1 to N. Equation (5. 6)
shows explicitely that in general each two-operator
Green's function is coupled to (2P —2) different two-
operator Green's functions and also to (2P —1)P N
three-operator Green's functions. Fortunately, in
most problems the interlevel coupling is greatly
reduced, as will be manifested by the absence of
many of the interaction coupling constants in the
Hamiltonian. The inter -ion coupling will be handled
within the RPA by transforming the two-operator
Green's functions to k space.

Application of RPA

The RPA is a well-defined linear operation in
which thermal averages of products of operators
are replaced by the product of their thermal aver-
ages. In accordance with this approximation, the
three-operator Green's functions are reduced to
two-operator Green's functions by the equation

«L". L,', ILaa » =5 &&" &G.".",aa «)
+ 5„„,&L„'„&G"..", ».(E)+ 5"'[5„., G".„". », (E)

—5 „,G"„".aa, (E)]. (5. 7)

The last term in (5. 7) arises from the commutation
of L" ~ with I.~.. This term will not contribute to

—(k .„+c~.„)G"'"aa, (E)]

~ Z I",",„,G„',", .(E), (5. 8)

where c„~ was defined by (4. 11) and D a is defined
in terms of D and Da in (2. 13) by

D~8 ——D~ —D~. (5.9)

The Green's functions for different ion sites are
decoupled by defining the Fourier transform

G, (E) ~1g ~ a (x~-x ) Ga ~ (E) (5. 10)

and making use of the transforms (4. V) and (4. 9).
In k representation, Eq. (5. 8) has the form

1
(E —E +e ~ )G, aa. (E) =—5Ia. 5a~. D ~,

the equation of motion (5. 6) because the multiplying
factor &"' generates interaction coupling constants
referring to the same ion site, and these are zero.

Substituting (5. V) into (5. 6) and expanding the
commutator in the inhomogeneous term leads to the
equation

(E ~(g + E~I) G~(g ~ aalu(E) — 5NaN 5a(gID(g~ ~

gnm

2'

+Z [(k„,+c, )G"„'", aa, (E)
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+Q [(I„.+c„.)G'„., „,(Z) alization process is unnecessary; the eigenvalues
are

—(I „,„+c„,„)G'.„„,(z) j Eat = &0, + ha. at + c a,at (5. iS)

—D „.5 I"...„„G,~ gp(z). (5. 11)

In (5. 11) the Green's function G", , ~8.(E) is ex-
pressed in terms of three different kinds of quanti-
ties. The last term on the right-hand side takes
into account that part of the interaction between the
ions which cannot be expressed in terms of an ef-
fective field. Dropping this last term would give
N-fold-degenerate energy levels of the system with-
out any dispersion, since I~.~ » is the only 0-de-
pendent coefficient in the equation. This is the ef-
fective- (or molecular-) field approximation of Sec.
IV. Keeping this term will give rise to collective
excitations, whose energies form bands, into which
the X-fold-degenerate levels broaden. The second
term on the right-hand side is the effective-field
term. If the tensor A,„~+c„is diagonal the eigen-
states in the effective field coincide with the states
of the ensemble of free ions. In general the effec-
tive-field tensor is not diagonal, and diagonalization
will precede the treatment of the interaction term.
It serves to establish the temperature-dependent
set of energy levels of each ion. The term on the
left-hand side of (5. 11) is always present, ensuring
that the poles of the free-ion Green's function

.,z~. lie at E=c
The diagonalization aimed at establishing the ef-

fective-field levels of the ions can be carried out

by dropping the last term in (5. 11) and solving the
resulting set of linear equations. These equations
will have solutions only for certain eigenvalues E
of the secular equation. We will call the eigen-
states of this truncated Hamiltonian (4. 12) the ef-
fective-field eigenstates associated with the eigen-
values E . In the effective-field eigenstates, Eq.
(5. 11) takes the simple form

[z-z.+E„,jG'... „,(E)+D...Z M'. ..„G"„,„,(E)

1
5 g 5g~. D~~., (5. 12)

2r

where M ~ „„are the coupling constants in the new
states. Equation (5. 12) represents a set of a maxi-
mum of P coupled linear algebraic equations for the
bvo-operator Green's functions, for every pair of
values of the subscripts P and P'. Consider the
special case when the original single-ion Hamil-
tonian is diagonal and when there is no multiplica-
tion in the interaction Hamiltonian of diagonal mat-
rix elements of single-ion operators of one site with
nondiagonal matrix elements of single-ion operators
on another site. In this case the foregoing diagon-

M&& ~ gals M++ ~ gBg(k)&

G'... »,(E)-G'„.'. ~,(z, a)

(5. 14)

(5. 15)

gP (f os/)

c'„„=5 M'„'„' ~(0)D',.

(5. 16)

(5. iv)

In terms of the new definitions, the generalization
of (5. 12) to the case of multiple sublattices, each
containing N ions, is given by

[E—Em+E', i] G~'~t ggt(E, k)+D ~ ~ Q~M~';~ »(k)
Vgyf'

gfyp

x G,"q8, (E, k) = — 5 q, 5q, .D~, . (5. 18)
27t

It should be emphasized that (5. 12) and (5. 18)
were obtained by the random-phase decoupling ap-
proximation applied only to the two-ion interaction
terms in (5. 6). The single-ion terms, such as the
crystal field, molecular field, and external electric
or magnetic fields, were treated exactly regardless
of their magnitude relative to the two-ion terms.
In contrast, an exact treatment of single-ion terms
is not always possible using angular momentum op-
erators. (See Sec. VII. )

VI. OCCUPATION PROBABILITIES OF SINGLE-ION LEVELS
AND CALCULATION OF OBSERVABLES

An important feature of the standard-basis opera-
tor formalism is that the occupation probabilities
D of the single-ion levels can be calculated direct-
ly from the spatial correlation functions corre-
sponding to the equal-time Green's functions of the
type G & &

. To demonstrate this point, we note,
that the solution of the coupled set of equations
(5. 12) can be written as

and the coupling constants in (5. 11) and (5. 12) are
the same. An example is the Heisenberg exchange
Hamiltonian expressed in terms of the eigenfunc-
tions of 8",.

All equations derived from the Hamiltonian (4. 2)
were developed for a crystal having one translation-
ally invariant lattice of N ions. These results can
be easily generalized to the case of multiple sub-
lattices, each containing N ions, by making the
transformations l-ol, m-pm, etc. , in all ion site
superscripts. The Greek letters o and p identify
a given sublattice, and the letters l and m identify
the ion sites within each sublattice. To accommo-
date the notational complications we make the fol-
lowing changes and definitions:
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G&& ~ kkr(E) = g a& (E ~&)2r ~
(6. 1)

under the assumption that all roots co„are simple.
%e have suppressed the subscripts n, n', g, and
P' of the coefficients ak, which are independent of

By Fourier transforming (6. 1) back to coordinate
representation and making use of (5. 8) with t = t',
we obtain the equal-time spatial correlation func-
tion associated with G"'

~ ~~. . It is given by

(Lm Lk ) ~-1 g kg( k) 8 k 6„-x~) (6. 2)

D ~1 Q gk y(~k) (6. 8)

Examination of (5. 12) shows that the right-hand side
of (6. 3) depends on the unknown probabilities D„of
the levels other then P. Hence, in general, one
must solve a. set of Q —1) coupled self-consistent
equations in conjunction with the use of the normal-
ization condition (2. 14) to obtain each Dk.

Once the set D, , D2, . . . , D~ has been calculated,
the problem of obtaining many of the thermodynamic
properties of the ensemble has essentially been
solved. Assume A is a quantum-mechanical opera-
tor whose thermal average (4) represents some
microscopic observable attributed to a single ion.
If A are the diagonal matrix elements of A in
some representation, then we have that

(A)=RA D (6.4)

An example of such a thermal average is the single-
ion magnetization determined by (S,), where S, is
the component of the spin operator parallel to the
direction of the bulk magnetization. Fortunately,
in many problems the calculation of certain thermal
averages can be accomplished by solving only one or
two self-consistent equations for linear combina-
tions of the occupation probabilities Dz.

where f(x) is the Bose function (5. 4). The corre-
lation function (Lkk. L", ,) represents the probability
that when the nth ion makes a transition from the
level n' to the level n, the mth ion simultaneously
makes a transition from the level P' to the level P.
This correlation function is a measure of the
strength of interaction between ions. If the interac-
tion terms in (5. 8) containing I"",„„were neglected
(this is the effective-field approximation), the
Green's function Gn™would not have been coupled
to the Green's functions G' for /=1, . . . , ¹ In
this case the correlation functions for m 4n would
all vanish.

The occupation probabilities D~ are obtained from
the single-site correlation functions (L", L,"k)
= (Lkk) = Dk. Explicitly, from (6. 2) we have that

As support for the effectiveness of the RPA
Green's-function method of standard-basis opera-
tors, we consider the S=1 Heisenberg ferromagnet
with uniaxial crystal-fieM anisotropy.

VII. SPIN = 1 HEISENBERG FERROMAGNET WITH
UNIAXIAL SINGLE-ION ANISOTROPY

Summary of Previous Work; Goal of Secs. VII, VIII, and IX

The thermodynamic properties of simple ferro-
magnets and antiferromagnets in the presence of
single-ion uniaxial anisotropy have repeatedly been
investigated using the Green's-function method.
The results derived from different decoupling
schemes vary widely, as shown below.

In the approaches which use Green's functions
formed from the components S„S, and S, of the
spin angular momentum operator, the Green's
functions associated with the single-ion crystal-
field terms are decoupled. ' The RPA Green's
function decoupling for S = 1 implies that correlation
functions of the form (S,"S"S,'S",) are replaced by
(S,) (S,"S"S",). Here the superscripts label lattice
sites. As explained by Lines, for the case m 4n
0 I, this approximation represents the neglect of
certain correlations between S,' and the spins on
other lattice sites. However, in the exceptional
case m=n=l, the above approximation is a state-
ment concerning the thermal averages of the spin
at a single site.

For the Green's functions arising from the
Heisenberg exchange Hamiltonian, the coefficient
of the terms with l =n is zero; hence the decoupling
approximation for these Green's functions concerns
the neglect of certain interspin correlations only.
Inclusion of single-ion crystal-field terms in the
Hamiltonian, however, changes the situation and
raises the problem of decoupling terms for which
l =n. Lines devised a decoupling scheme for the

single-ion terms which is essentially consistent
with the decoupling of the exchange terms, i.e. , the
same amount of information is thought to have been
retained in each case. However, in order to solve
the resultant equations for the magnetization,
Lines made use of a theorem of Callen and Shtrik-
man which is only valid in the limit of small
single-ion anisotropy.

Recently, Murao and Matsubara developed an
approach in which the Green's functions are formu-
lated in terms of the components S„S, and S, of
the spin operator and five components of the quad-
rupole moment tensor operator (The latte. r are
constructed from linear combinations of various
products of the form S Sk, where n, p =+, —, or z. )
For S=1 these operators form a complete set which
is closed under commutation; hence they were able
to apply their approach to the S = 1 ferromagnet with
uniaxial crystal-field anisotropy. Since the un'-
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axial crystal-field term for S=1 can be expressed
in terms of the single component —,'S, —1 of the quad-
rupole moment tensor operator, Ref. 18 obtained a
random-phase decoupling approximation in which
the crystal-field term was treated exactly, inde-
pendent of the magnitude of the crystal field. How-
ever, the correlation functions needed to calculate
the magnetization, susceptibility, etc. , were over-
determined by a redundant set of equations. To
obtain the pertinent correlation functions, they
chose the "most interesting and physically appealing
combination" of coupled Green's functions.

In the absence of crystal-field anisotropy, this
combination leads to the Tahir-Kheli and ter Haar'
RPA expression for (S,) at low temperatures, with
some additional terms containing an exponential
temperature-dependent factor. In contrast, this
same combination yields the Curie temperature
that is predicted by the Weiss molecular-field
model. Reference 18 states that Weiss-Curie tem-
perature obtained from the "interesting combina-
tion" of Green's functions "seems to be a natural
consequence of the RPA, " and yet they point out
that if they had chosen a different combination of
Green's functions they would have obtained entirely
different results.

In this section the standard-basis operator form-
alism developed in the RPA in Sec. V is applied to
the problem considered also by Ref. 18. It is
demonstrated that in the present formalism the
pertinent correlation functions are not overdeter-
mined, and that by satisfying the monotopic re-
strictions (3. 1) the results of Tahir-Kheli ' are
reproduced in the isotropic case for the entire
temperature range. Thus we are able to select the
approximation from among the different published
results which is consistent with the monotopic re-
strictions. Hence the main result of this section
will be the establishment of a "credibility criter-
ion" for different results obtained from the RPA.

Spin Hamiltonian for S= 1

For 8=1 the Hamiltonian for the Heisenberg fer-
romagnet in the presence of uniaxial single-ion
crystal-field anisotropy is given by

culated here, constant terms were not included in
the Hamiltonian (V. 1).

Written relative to the complete set of states
~ n) defined in Sec. II, the spin operator compo-

nents of the ion / for S = 1 are given in terms of the
standard-basis operators by

Sg ——L„-Lss, S,= v 2 (L,2+Lss),

S = v 2 (Lst+Lss). (V. 2)

Using (V. 2) to rewrite the Hamiltonian (V. 1) in
terms of the standard-basis operators and compar-
ing the new form with the general Hamiltonian
(4. 2), one obtains the quantities It ~ and I'," ss. .
They are given by

hll= V+hg, h22=0, h33= V-hg, hv„=0

for v 4 p (7. 3)

and

l m l m

lorn

lcmI ll ll I fi 33 I 33 33 I 2l 12

rl, m l~m l, m l, m= '2l, 2 =I 2, l2=~ 2, 3 =~ '

(7 4)

prom the definition (4. 11) and (V. 4) we find that

C l l = —C33 = + Dl3 p

0
c22 0

& cvp, —0

for vx p, (V. 5)

gk ~ Tl, m -3 k ~ (xg-xm)
e/ = .+le e (7.6)

Effective-Field Results

For a preview of the physical properties of the
system we begin with the effective-field model.
Substituting the quantities in (V. 3) and (7. 5) into the
effective-field Hamiltonian (4. 12) yields

E„

where D„=(L'„)—(L,', ) and 8 is the k= 0 component

of the Fourier transform J" defined by

H = -Q [v(s,')'+ I,s,']

——'Z J" [S,'S, + —'(S,'S +S'S, )]. (7. 1)
l, m

Here V is the crystal-field anisotropy constant, Il,
is the external magnetic field times the Bohr mag-
neton, and J' = J(lx, —x I) is the isotropic ex-
change constant. The summation is over all ions
in the crystal. Because S= 1, the anisotropy term
cannot contain higher than quadratic terms of S,'.
Since the thermal average energy will not be cal-

0 h, + g&S,)
FIG. 2. The effective-field energy levels El f E22,

and E33 are plotted vs the strength of the effective field
kg+ a (Sg for the S=l Heisenberg ferrornsgnet with un-
iaxial crystal-field anisotropy V. The integers M =-1,
0, and j. are the eigenvalues of the z component S» of the
spin operator.
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H'=5 E L (V. V) Ess= —(V -hk —J (Sk)) . (V. 8)

where

Ell= -(V+h, +J (S,)),

The effective-field energy levels E are shown
diagrammatically in Fig. 2.

The thermal averages of S,'=L', 1 -Lss and (S',)'
=L11+L», whose eigenvalues are 1, 0, —1, and

1, 0, 1, respectively, are given by

(s, )I exp[2(e. +J'(s, ))e ')el
exp[2(h, +Z'(8, ) ) 8 ']+exp[( —V+h, +Z'(8, ))8 ]+1

Sa)
(7.9)

The negative sign holds for (S,), the positive sign
for (S,). We use the notation 8=haT. For arbi-
trary temperatures, the equation for (S,) requires
a self-consistent solution. However, the Curie
temperature 8& can be determined from the condi-
tion that (S,) -0 at 8&. Setting the external field
h, = 0 we obtain from (V. 9) the equations

(Sa)s 2 =8 /Za=(1+ac ~ &) (V. 10)

The Curie temperature can be obtained analytically
for V/8e «1 with the further restriction that V/Js
«1, we find, from (7. 10), to order V/Ja, the de-
pendence

(Sk)2=2, = 8c/~'= 3 (I+ 2 V/~') ~ (V. 11)

It is interesting to note from (7. 10) that (Sa)2 2

has the same dependence on the crystal-field an-
isotropy constant V as 8c/J (see Ref. 22. ) Taking
the limit V- ~ in (V. 10) and on the other hand the
limit V- 0 in (V. 11), one finds that the values of
(S,) = 8c/8 lie in the interval (-', , 1) for all V.

+J"D23 G12 23 = D23/'2m, (V. 14)

J D12 G2

+ [E —(V+ hk+ cT Dls —cT Dla)] Gla 23= 0

(7. iS)

[E —2(hk+~ D13)] Gla, sl=D13/2& . (V. 16)

Comparison of (7. 16) with (7. 8) shows that the pole
G13 31 is at E = E33 —E11, independent of k. This

shows that the excitations between levels 1 and 3
are effective-field excitations in the RPA because
the interaction part of the Hamiltonian ('7. 1) con-
tains no matrix elements between these levels.
A higher-order decoupling scheme, which takes
into account the interaction between collective ex-
citations is needed to produce dispersion in the
pole of G13,31.

The coupled equations (V. 12)-(V. 15) have unique
solutions which can be written in the following form:

Calculation of the RPA Green's Functions of Standard-Basis
Operators

The effective-field results do not depend on the
details of the crystal lattice structure. This de-
ficiency is remedied by using the RPA Green's-
function approach which leads to structure-depen-
dent collective excitations.

Substitution of the quantities in (V. 3), (7. 4), and
(V. 5) into the RPA equation of motion (5. 12) using
(5. 13) yields the following sets of coupled equations
for the spectral Green's functions:

IE (V+ hk+cT D13 ~ D12)] Gla, al

(V. 1V)

A' B
Gk (E) 23 k k + k+ k, Gk (E)

a
(V. 18)

Gas, al(E) = Gla 32(E)

12 23 P-1 [(E e)-1 (E -)-1]
2m

(7. 18)

D23 G12 21

+cT D12 G23, 21 Dla/2& e ('7. 12) Here the following abbreviations are used:

Ak ——2 (I + Dl 3 pk ), Bk ———2 pk

+ [E —( —V+ hk+8 Dls —4"Das)] Gas, sl= 0 e and

[E ( V+ h + T Dk13cccT Das)] Gms

('7. 13) 2 V V &/2

Pk= Dls+4 k k+3D2 —1—— (V. 20)
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The roots co~ of the collective excitation spectrum
are given by

A

Ds = Das O —(Lsa L1a & (8. 8)

&3=&,+2(2j' j-")D»+2j"Ps.

VIII. ISOTROPIC CASE

(7. 21)
A

(L21L23) (L32 L12) [@-f (Eo)] ~ (8 9)
Dja

where 4 is defined by

G12,21 (E) 2
(E &3) ~23&21(E) y (8. 1)

Gl, , (E)=,"(E-~.) '-Gl. ,~(E), (8. 2)

G23, 21( E) G12, 32(E)

= " " [(E- ) '-(E -E ) '] (8 3)
2p Dg3

The excitation spectrum consists of a branch

(us= hs+ (j —j ) D13 (8. 4)

For reasons of clarity and comparison with well-
known results we shall first consider the isotropic
special case of the more general problem exposed
in Sec. VII. Setting U= 0 in (7. 17)-(7.21) yields the
simpler equations

(8. 10)

Use of the multiplication rule (2. 7) shows that

A A A A

( L21 L23) ( 32 L12) (8. 11)

Physically, this result is a manifestation of the
monotopic restriction (3. 1), which in this problem
proscribes simultaneous occupation of more than
one spin projection state. For example, if (L,",Las)
were nonzero, it would imply that the nth spin could
make simultaneous transitions from the states 1

and 3 to the state 2.
Contrary to the monotopic restriction is the fact

that the right-hand side of (8. 9) is not identically
zero for an arbitrary choice of physical variables
involved. Thus, it is evident that if the second
term in (8. 7) is replaced by the right side of (8. 9),
a different value is obtained for Dz than is obtained
by enforcing the monotopic restriction, i. e., setting

and a single excitation of energy A A

(L,",L,",) =0. (8. 12)

Eo ——h +J Dg3. (8. 6)

The excitation (d~ is the usual RPA spin-wave mode
normalized by the temperature-dependent thermal
average (S,) =D», and E,=E22-E11 E33 Eaa is a
single-ion effective-field excitation as given by
(7. 8) with V=O.

In order to calculate the thermodynamic proper-
ties of the system we need to obtain the quantities
D for a= 1, 2, and 3, which are the occupation
probabilities of the three states corresponding to
the projections M=-1, 0, and 1, respectively, of
the spin onto the axis of quantization (a axis). Two
equations relating these unknown quantities can be
found from the spatial single-site correlation func-
tions associated with the Green's functions appear-
ing on the left side of Eqs. (8. 1) and (8. 2). The
third equation needed to determine each D is given
from (2. 14) by the normalization condition

1+24
(Rg) = D1 —Ds =

1
—

3C,
(8. 13)

where C is defined by (8. 10).
The Curie temperature, found using (8. 13), is

gc/j =-, F with E=Ã ' Qs(l —js/j )
' .

[The enforcement is actually automatic when the
Green's function (8. 1) is used to obtain Da. ] One
of the main merits of our method is that one can
clearly recognize and fulfill the monotopic restric-
tions. With the monotopic restriction (8. 12) en-
forced, Eqs. (8. 6), (8. 7) and (8. 8) comprise a set
of coupled linear algebraic equations which can be
solved for the occupation probabilities of the spin
projection states. Solving for Dj and D3 we recover
the RPA results first derived by Tahir-Kheli and
ter Haar, "

Dj+Dg+D3 ——1 . (8. 6) (8. 14)

A A

D2 D12 4' (L21 L23)

Similarly from (8. 2) and (8. 3) we obtain

(8. 7)

The spatial correlation function associated with
A A,

G12 21 is (L21L12). Setting n= m and using the mul-

tiplication rule (2. 7) we obtain the occupation
probability Da=(L22) of the state M =0. Similarly,
the correlation function associated with G&3 &z is
(has Las). Since (8. 1) has the form (6. 1), we make
use of (6. 3) to obtain

It should be noted that the Curie temperatures
(8. 14) calculated by the HPA are in remarkable
agreement with the results of perturbation Qeory
by Brown and Luttinger and Domb and Sykes '
(see Ref. 9). In contrast, molecular-field theory
overestimates the ferromagnetic ordering and
yields Curie temperatures that are as much as 33/z
higher than the results of perturbation theory.

We now apply the method of standard-basis oper-
ators to the anisotropic case, where no general re-
sults were available in the RPA.
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IX. ANISOTROPIC CASE

D, = D„N-'Q, [(A; -a,) f (&d',)+ (A', +a,)f (&d„)] .

(9.2)

Using (7. 20), (7. 21), (9.1), and (9.2), we obtain

D~ D3 Dg ~D+ =Q ~

D12 D23 D12 D23

The quantities P and Q are given by

(9. 3)

P= —1+N Q» [sinha»+ J» D&2 (26 t)») sinhb»]

&& (cosha» —cosht)») (9.4)

For the anisotropic case, let us return to Sec.
VII. We enforce the monotopic restrictions, and
obtain from (7. 17) and (7. 18), respectively, the
relations

2=D» ~» [(»++»)f (~t)+(+» —+»)f("»)]
(9. 1)

P = N Q (1+D» p» )f (&d»),

Q= -N +» P» f(&»)
2V

(9. 11)

Expansion of (S,) from (9. 8) in terms of P«1 and
Q«1 yields to order linear in P and Q the relation

(S,) = i ——,'(P+ Q) . (9. 12)

Substituting for P and Q from (9. 11) gives

(S,) = 1 —N ' Q —,
' 1+ D&2 — » 6» f(&d») .

(9. ia)
Since the right side of Eq. (9. 13) contains both

(S,) = D&2 and Z= 1 —3D2, both of which approach 1

in the low-temperature limit, ( g, ) can be found

iteratively using (9. 10).
As a first iterative approximation for (S,) we set

D2 = D2 = 0 in (9. 13) and find that

Q = —(HN) V g» b»' sinhb» (cosha» —coshb»)

(9. 5)

(S,) =1-N Q„f(,),
with (d„given by

(9. 14)

where a~ and b„are defined by

ea» = h»+ 2 (2 J —J ) D22, Ob» =
2 Z P» . (9.6)

D2 —2 D12 (P+ Q) y D3 2 D22(P Q) (9.7)

Using the equations in (9. 7) together with the nor-
malization condition (8. 6) to solve for D& and D2
we find that (S,) = D& —D2 and (S,) = D~+ D2 are given
by

(S,) = 4(1+P) [1+3(1+P) + (2 —3Q)Q] (9.8)

Note, that (7. 21) gives &d» = 8(a» a b») .
Adding and subtracting the equations in (9. 3) yield

the following relations for the occupation probabil-
ities:

e~= U+h, +J —J (9. 15)

This is the spin-wave result obtained previously.
(For a complete mathematical and physical descrip-
tion of spin waves see Ref. 26.) The dispersion
relation (9. 15) shows that in the low-temperature
spin-wave region the anisotropy acts like an ex-
ternal field and increases the k = 0 mode spin-wave
energy gap.

Murao and Matsubara, ' who obtained the same
low-temperature result, point out that (9. 14) is not
valid if V/Z2& 1 because in this case &u2»is not the
lowest excitation. One can see from Fig. 2 that
when V/J2& 1 the lowest excitation is between the
M= +1 levels. In RPA this excitation is of the
single-ion type given by the pole of G$3 3$ in (7. 16).
In this case we find using (7. 16) that in the low-
temperature limit (S,) is given by

(9.9)
2&»»+ J &e- (9. 16)

It is also convenient to calculate the quantity &= 1
—3D2= 3 (8,) —2, which appears implicitly in both
P and Q through b» and P» [Eq. (7. 20)]. From (9. 9)
we have that

Z= 1 —3D2 —— (S,) .1+P (9. 10)

For arbitrary temperatures, (S,) can be computed
by solving the coupled equations (9. 8) and (9. 10)
self-consistently using appropriate numerical tech-
niques.

For low temperatures P and Q are approximately
given by

P= —1+ (S,) X, (9. i7)

with X defined by

The calculation of the Curie temperature ~& in the
anisotropic case V4 0 is complicated by the pres-
ence in (S,) of the nonzero unknown factor Z= 1
—3D&. From the level scheme in Fig. 2 it is evident
that when the external field is zero (h, = 0) the oc-
cupation probability D~ has the value —,

' at 8~ only
in the limit V- 0; thus, in general, Z 4 0 at 0,.

In the limit (S,)- 0, (9. 4) and (9. 5) become
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X=(2ec N) 'g„(2go-g~+Z'b, 'sinhb„) (1 —coshb, )
'

with y~=Z /4 (9. 26)

Q = —(ec N) ~ V + b~~ sinhb~ (1 —coshb~) ~,

where

b, = e-,'[V(V-Z'Z)]"'.

(9. 18)

(9. 19)

(9. 20)

For nearest-neighbor exchange in sc, bcc, and fcc
lattices, the sum over k transforms into integrals
of the extended Watson type which have been tab-
ulated. ' However, for an analytical comparison
of the linear dependence of the Curie temperature
on V/J 0, we expand (9. 26) in terms of R, giving
the result

With the use of (9. 8), (9. 10), and (9. 17) we obtain
the equations

(9. 21)

e & ~-&
~ (1+ G/F—) V

)go

with G=N Q„y~(1 —y~)
2 (9. 27)

q= 3(4Z —1) . (9. 22)

@=28 NcQ~(V-Z~Z) (9.24)

Eliminating X and Q from (9.21), (9.22), and (9.23)
and solving for Z gives to order R~

Z=R(1-~R) .
Equation (9. 22) with (9. 24) and using (9.25) yields
the desired dependence of the Curie temperature
on the ratio R= V/J'o«1:

In finding the relation (9. 21), a constant root was
rejected because Q becomes infinite as V- 0, as
can be verified from (9. 19).

The Curie temperature 0~ is obtained by elimi-
nating Q and X from (9. 21) and (9.22) using the
definitions (9. 18) and (9. 19). The resulting equa-
tions must be solved self-consistently for the un-
knowns 8~ and &.

If the crystal-field anisotropy constant V is much
less than 8~, the problem of obtaining the Curie
temperature becomes considerably simplified. In
this case b, «1 and an expansion of (9. 18) and
(9. 19) in terms of b„shows that

X= —QR
' where R= V/J (9. 23)

with Q given by

and Ii is defined in (8. 14).
In the absence of crystal-field anisotropy (9.27)

becomes identical with the usual RPA result (8.14).
Comparison of (9. 27) with (7. 11) shows that the
leading dependence on V/Zo is the same as that ob-
tained from the effective-field analysis. Using the
relation Z= 3(S~) —2 and (9. 26) we find that (S,)
in the limit V/Z «1 is given by

(9. 28)

This relation is identical with the effective-field
result (7. 11), in agreement with the result obtained
by Lines for 8= l.

This completes the analysis of the S= 1 Heisen-
berg ferromagnet with uniaxial crystal-field an-
isotropy. In order to calculate the magnetization,
Curie temperature, etc., for large values of the
crystal-field energy, extensive self -consistent
numerical calculations must be carried out.
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Scandium-base alloys of between 0.02 and 5.0 at. % cerium, gadolinium, and dysprosium
have been studied using transient nuclear-magnetic-resonance techniques. The effect of the
rare-earth solutes on the 45Sc linewidth and spin-lattice relaxation rate indicates that there
are localized magnetic moments associated with gadolinium and dysprosium but not associated
with cerium. For gadolinium and dysprosium concentrations less than 0.1 at. %, the linewidth
is linear in the magnetization and described by the Ruderman-Kittle-Kasuya- Yosida predic-
tions. For these alloys, the spin-lattice relaxation rate is described by 1/T& = (1/T&)8, [1
+KBJ(X)/H], where (1/Tl) s, is the pure-scandium relaxation rate, K is a constant, and BJ(X)
is the Brillouin function of X=gJp&H/~zT). The T, results are explained in terms of enhanced
nuclear relaxation due to virtual excitation of the rare-earth moments. The linewidth, relaxa-
tion rate, and paramagnetic-moment enhancement for the dilute ScGd and ScDy alloys are con-
sistent with a ratio for the effective s-f interaction constants of (J&)cd/(J,&)»=0.6+0.2. By
comparison with the 45Sc results for the quadrivalent solutes titanium and thorium, it is found
that cerium behaves as a quadrivalent solute in scandium.

I. INTRODUCTION

Although the effect of magnetic impurities on the
static response function of metals has been the sub-
ject of numerous investigations over the years, it
has only been in the last few years that intense
work on the dynamic response has taken place.
Much of this work has delved into the difficult Kon-
do-effect problem in simple host metals. However,
a clear study of the dynamic effects far removed
from any Kondo regime is still necessary. For
this reason, the present nuclear-magnetic -reso-
nance (NMR) study of the effects of 4f electron mo-
ments on metals was initiated.

The effects of dilute localized magnetic moments
on the spin-lattice relaxation rate i/T, of the host
nuclear spins have been the subject of a number of
experimental and theoretical investigations. Ex-
periments performed at sufficiently low field on
CuMn' and CdMn yield results essentially in agree-
ment with the theory proposed by Benoit, de Gennes,

and Silhouette (BGS).' This relaxation mechanism
involves a simultaneous nuclear-spin-electron-
spin flip, i. e. , a zeal excitation of the impurity
moment with energy conservation satisfied by the
finite response of the electronic Zeeman transition
at the NMR frequency. Experiments performed
at high fields, where no significant overlap of the
nuclear- resonance and electron-resonance re-
sponse occurs on CuMn and CdMn yield results
that have qualitative features in agreement with

the theory proposed by Giovannini and Heeger
(GH). 5'6 The GH mechanism involves a virtual ex-
citation of the magnetic moment, which is then de-
excited by the scattering of a conduction electron;
this second-order process can interfere with the
pure-metal Korringa~ relaxation of the nuclear
spins. However, the quantitative comparison '

of the high-field relaxation data indicates an im-
purity contribution to the spin-lattice relaxation
rate three orders of magnitude larger than that
predicted by the GH theory.


