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Influence of Surface Anisotropy and Next-Nearest-Neighbor Coupling on Surface Spin Waves
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The spin-wave spectrum of a Heisenberg ferromagnet is derived in the framework of the
method of De Wames and Wolfram, with the next-nearest-neighbor coupling, the surface and bulk

exchange, and the surface anisotropy taken into account. The calculations are performed for
a (100) surface in a simpl. e-cubic structure. When the next-nearest-neighbor coupling is strong
enough, the character of the surface modes is shown to change from acoustical to optical (or
vice versa) as the components g„, & ) of the wave vector parallel to the surface vary. This
transition from acoustical to optical character occurs for a definite value g of the parameter
A&=1 —~(cosQ„a+cosQg), where a is the lattice parameter. For this value g, the effective
coupling between the spin deviation in different bulk layers is shown to vanish, so that each of
the bulk modes corresponds to vibrations of the spins of one single layer and to a surface spin
wave strictly localized on the first layer. Moreover, the equilibrium spin configuration near
the surface could be modified by the existence of the surface anisotropy.

I. INTRODUCTION

The dynamical properties of the surface spins
in ferromagnetic substances are involved in various
important phenomena such as ferromagnetic reso-
nance, ' magnetic scattering of low-energy electrons,
and magnetocatalytic effects. Thus there has been
a number of recent investigations concerning bulk

and surface spin waves in a Heisenberg ferromag-
net.

Using a continuous model, Kittel and Sparks'
have made a theoretical study of the spin wave. In

order to explain the pinning effects they introduce
surface-anisotropy fields. Eschbach and Damon'
have demonstrated that the dipolar interactions
act only on the long-wavelength spin waves. In the
exchange-domiriated part, Maradudin and Mills
and otherse have shown that the coupling between
next nearest neighbors (nnn) is sufficient to cause
the existence of surface spin waves. The change
of exchange integrals near the surface h3s been
taken into account by De Wames and Wolfram. '

However, the existence of the surface breaks the
symmetry, and therefore a new term appears in

the Hamiltonian, i. e. , the uniaxial surface anisot-
ropy, def ined as

where I~,&, is the surface-anisotropy integral be-
tween the two electronic spins located on sites f
and f', and the z axis is taken normal to the sur-
face. As shown by Ilisca and Motchane, " the sur-
face anisotropy affects the whole spectrum.

In this paper, it is assumed that the nnn coupling
the surface-induced exchange perturbation, and

the surface anisotropy are competitive. In other
words, the purpose of this work is to study, using
a simple model, how a slight electronic delocaliza-

tion, a perturbation of the exchange integrals at the
surface, and the surface anisotropy influence the
surface spin-wave spectrum. For simplicity, we
assume no bulk anisotropy. The calculations are
performed for a (100) surface of a simple-cubic
Heisenberg ferromagnet. In our model, in the
ground state, all spins are normal to the surface.
Moreover, the surface-anisotropy integrals I& &.

are supposed to be equal to 4A when the sites f
and f' are two nearest neighbors (nn) located on
the first layer and negligible elsewhere.

The resolvent-matrix method, used by De Wames
and Wolfram, ' gives in this case a simple equation
from which both the surface spin-wave energy and
the eigenvectors are easily deduced. For strong
nnn coupling, when the components (k„, k„) of the
wave vector parallel to the surface vary, the charac-
ter of the surface mode changes from acoustical,
where the spin deviations in two adjacent layers
are in phase, to optical, where the spin deviations
in two adjacent layers are 180 out of phase.
This transition occurs for a definite value &„of the
parameter &~= 1 —a (cos k„a+ cos k, a), where a
is the lattice parameter. For ~~= ~~, the bulk modes
are degenerate with respect to the z component
of the wave vector. Indeed, the effective coupling
between the spin deviations of adjacent bulk layers
then falls down to zero, and the spin motions in

different layers become unconnected. The surface
mode is strictly localized on the first layer and

its energy differs from that of the bulk modes.
This type of mode will be called a "two-dimensional
localized mode. "

When the surface-anisotropy integral I~,&. is neg-
ative, some surface spin wave would have a nega-
tive energy. This means that there is a spin re-
arrangement. The calculation of the free energy
shows that the spins near the surface are tilted. "
On the contrary, a positive value of the surface-
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anisotropy integral induces a stiffening of the sur-
face, i. e. , an increase of the exictation energy of
surface spin waves.

Section II is devoted to the general theoretical
features of the model, in Sec. III we study the
occurrence and properties of the "two-dimensional
localized" spin waves, and we give several numeri-
cal applications. Section IV deals with specific
surface-anisotropy effects, and particularly with
surface rearrangements induced by a negative value
of the surface-anisotropy integral. Concluding re-
marks are given in Sec. V.

II. SURFACE SPIN-WAVE ENERGY SPECTRUM

Let us introduce the following Hamjltonian

8= ——~ Jf f SfSP ——~If f SfSfff'& f f

where the z axis is normal to the surface and S
(o.'=x, y, e) are the spin components. Iz z and 8& &.

are, respectively, the surface anisotropy and ex-
change integrals between electronic spins located
on sites f and f'. From symmetry considerations
it is obvious that If f. and Jf f. depend only on

l f—f' I and o'n f, and f,', the z components of the
vector t. In this paper, we assume that the cou-
pling integrals Jf,f. andI& f. differ from their value
in the bulk only when the two coupled spins belong
to the first layers. The nnn and the nn coupling
for the exchange integrals Jf,f. and only the nn

coupling for the anisotropy integrals If, f are taken
into account. From now on we shall restrict our-
selves to the consideration of a simple-cubic struc-
ture with lattice parameter a and its free surface
along a 1100}plane. Tables I and II give the values
of the different integrals If,f. and Jf f. in terms of

J, the value of the exchange in the bulk. Moreover,
we shall assume that the equilibrium magnetization
is parallel to the z axis everywhere and does not
depend on the location of the site (this assumption
will be relaxed in Sec. III).

Let us set

(2)

Then the equation of motion of S~= Sf+ iS& reads in
the random-phase approximation (RPA) ' '

z —S& ——Sg (dffc +If fc) Sf 'SHCTf gc Sf.

In order to take advantage of the translational in-
variance parallel to the surface and of the linearity
of Eq. (3) in the time derivative, we introduce the
Fourier transform

S~ (t) = f e '"'S~e '"'tu„(k, (u)d&u,

where k is a wave vector of the (k„, k, ) reciprocal
plane associated with the (x, y) surface plane, and

p& and f, are, respectively, the components of f
parallel and normal to the surface.

Equation (3) then gives

u» gpEclf fc cos (k .pfc) + u» + +~ If fc
ft S

+ +pep (1 —ccck pc. ) Y pcc, )fO f'„~f+

—u„g E Zg, g. cos(k pg. ) = 0 .
f'

+-1 n-1 +CO +n + Z1 n+1 ~

However, it should be noticed that, owing to the
presence of the surface anisotropy, this corre-
spondence is only a formal one, since the detailed
structure of the spectrum depends strongly on the
precise form of g 1, g0, and g1.

Let us define

JS(2+ 8a+ 4&»+ 4aA») —~
ZS(1+ 4a —4aX».)

(8)

and

where

4X» ( 6» 1) + 4A» (a(( a)yA 1 4a
1+4' —4crX„

&„=1 —» ( cos k, a+ cos k p),
A„= 1 —cos k, a cos k, a .

(8)

Equation (5) has two different forms, depending
on whether n represents the surface or not. At
the surface, it reads

ug (2cosH+d) —um
——0,

and for the nth bulk layer it reads

—u„y + u» (2 cos8) —u»cy = 0 .

(9)

(10)

These reduced equations (9) and (10) are similar
to those which describe the vibrations of a semi-
infinite linear chain of classical oscillators, with
a perturbation at its free end. '

Equations (9) and (10) can be rewritten in matrix
form':

(D„+ ~)„u =0,

The summations are performed for a given site f
in the nth layer. This site f is chosen on the e axis.
+Df Hf and E~ mean summations over all the+' 0
nn and the nnn f' of the site f located, respectively,
in the (n+ 1)th, (n —1)th, and the nth layer.
means the complete summation over these three
neighboring layers. Equation (5) has the same form
as the equation of motion of Ref. 10:
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(AD)„=5„t5 td . (11a)

where D„corresponds to Eq. (10), i. e. , to the
bulk interactions, and &D is, in our case, a 1&&1

matrix:

TABLE II. When f and F' belong to the first layer, the
exchange and surface-anisotropy integrals J and I are
given as a function of the distance P- f'. A characterizes
the surface anisotropy. O„characterizes the nnn exchange
coupling for the spins on the surface layer.

A. Bulk Modes

To the lowest order, and following the procedure
used by De Wames and Wolfram, ' the bulk spin
waves are obtained from Eq. (11) by neglecting AD.

The first approximation will be improved in a
future publication.

Let us set

a&2

)a~2

z{f, t') I(t, f')

ihga

The Eq. (9) implies

cos8 = cos k, a .

(12)

(13)

2i (N+ 1 -r)e
(DN)n m

—— 2{{No1)e (2i sin8)
e —1

{In+m{8 {{n-mle) (16)

Here k, is a real number, and therefore 8 is also
real. This corresponds to a bulk-mode propaga-
tion along the z axis. The energy spectrum of
bulk spin waves deduced from Eq. (6) is

where N is the number of layers and ~ is equal to
the highest value of (n, m). When N- ~ and
le'

i ol, the limiting value of (D„')„ is given by
(see Ref. 10)

(D ')" = (2i sin8) ' (e'"' e"" " ') (16a)

= 2+ 8o+ 4)i„+4oA„—2cos8 (1+4o —4o&, ) .
(14)

The limiting values of cos8 are obtained for the
two modes near the edges of the Brillouin zone in
the k, direction: cos 8 = —1, then 8 = r, and u„,1
= —u„= ( —1)"u, . Spin deviations in adjacent layers
are 180' out of phase: cos8=+1, then 8= 0, and

u„„=u„=u1. Spin deviations in adjacent layers
are in phase.

B. Surface Modes

det ii„+ D„AD
i

= 0 (17)

1+8"d=0. (18)

Then, from Eqs. (6), (7), and (18) the energy
spectrum of the surface spin wave is

E = v/O'S= 1+ 4o+4vA„+ 4e„X~ +A'(An)

The assumption that le I &1 eliminates the bulk
solution; then Eq. (15) yields

A multiplication of Eq. (11) by the resolvent
matrix DN' yields

(I„+D„AD) u„= 0, (15)

(1+4o —4o&n)'
1+ 4o —4){.„(e„—1) -A'(An)

with A= 4in/tl and

where IN is the N &&N identity matrix.
As can be checked, the exact value of the matrix

elements (D„')„ is given by

A'(A „) =A+ 4A» (o„—o) . (19a)

In order to define the eigenvectors, one must solve
Eq. (13); i.e. ,

TABLE I. When f or i' (or 7 and f') does not belong
to the first layer, the exchange and surface-anisotropy
integrals J and I are given as functions of the distance
f —f'. cr characterizes the nnn exchange coupling in the
bulk. There is no anisotropy coupling between nnn in the
bulk or on the surface layer.

u„= ~n —(D„AD)n nun .

Let us set

(20)

x=e " (21)

where, according to Eq. (18), x is real. Equation
(20) takes the form

4(f, f') -(n -1)
Qq =X R1 (22)

&ay 2

Since the spin amplitude cannot grow indefinitely,
we must have

(23)
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Acoustical

AL

a

FIG. 1. Domain describing the inside of the Brillouin
zone is not shaded. vo

0 0
ln lx I ln td I

(24)

Two cases may occur which satisfy the inequality
(23): (i) x &1, Re8= 0, and the corresponding
modes are seen to be of acoustical character; (ii)
x& —1, Re&= &, u„and u„& have opposite signs,
and the modes are of optical character.

Equations (22) and (23) show that the surface modes
are exponentially damped, with a penetration depth
5 given by

FIG. 3. Dispersion curves and two-dimensional localized.
modes when 0 &@, o.=2, A&=5„=0.1 1

In Egs. (14) and (19) the energy E has been
written as a function of the two variables (&, , A, ).
Figure 1 shows the region of the ( &», A„) plane
described while the wave vector k(k„, k, ) is taken
in the whole Brillouin zone. As one restricts
this Brillouin zone to the k„&k, region, the corre-
spondence between the couples (k„,k, ) and (&», A»)
becomes a "one-to-one correspondence. " In
order to describe the spin-wave energy spectrum
E(&», A»), we draw the section of E(&», , A») by
a plane A&= const. Figure 1 shows that to every
value of A~. corresponds an interval of values for

For instance, for A„= 0 this interval reduces
to the two allowed values &~=0 and &&=2.

When A~ changes, for instance, from A', to A„,
the energy spectrum of the bulk modes E(&», A'„)
simply becomes E(&», , A', ) + 4uA'», while the
energy spectrum of the surface modes changes in
a more complicated way described by Eg. (19).
Figures 2 and 3, which represent the energy spec-
trum versus &~, are drawn for A„= 0. From the
above considerations, the curves representing
the energies of the bulk and the surface modes
versus &, for every value of A, can be easily de-
duced.

III. TYCHO-DIMENSIONAL LOCALIZED MODES

FIG. 2. Dispersion curves when 0 &0, o= —8, A&=6))
=0. When A' varies from 0 to 1, no surface spin wave
is allowed.

Let us now come back to Eq. (5) and (5'). A

glance at this equation of motion shows that a
very particular situation arises when the coeffi-
cients g, and g &

are both equal to zero; e. g. ,

g~ ——g &
——+~ alp yi cos( k pp )

f+
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= E elf, t~ cos(k pp) = 0 (25}

When the condition (25) is fulfilled, the propaga-
tion of a wave in the nth layer exerts no torque on
the e+ 1 and n —1 layers. There is then a complete
decoupling of the spin motions in different layers.
Therefore, the corresponding modes do not propa-
gate along the z direction, and in the RPA (which is
equivalent to the harmonic approximation for
phonons), the variation of their amplitude along Oz

is indeterminate. The same effect was shown to
occur in the phonon case. " Within our assumptions,
Eq. (25) may be rewritten

pi/J =g i/J = 1+ 4a —4g&»= 0. (26)

The two-dimensional localized modes occur for a
well-determined value ~& of &„, which is the solu-
tion of Eq. (26).

One can distinguish two cases:
(a} Weak nnn coupLing, lo I &» (Fig. 2). Equation

(26) has no solution which satisfies the condition
0 & &„&2 and no two-dimensional localized modes
can exist.

(b.) Strong nnn coupLing, la I & &. Equation (26)
has a physical solution. Two cases happen.

(i) o & —4. There is a strong negative nnn cou-
pling and we have 0&~, &1.. In the absence of an
external magnetic field, some of the bulk spin
waves have a negative energy. It is well known
that, in that case, the stable configuration is heli-
magnetic. ' ' However, when a high magnetic
field is applied along the z axis, the ferromagnetic
spin configuration may be stable.

(ii) a' & —, . There is a strong positive nnn coupling
and we have &„&I (Fig. 3). In that case, when
A'(A„) varies from —~ to+~, going through the
critical value A,'= (1+4a) fl —(e, —I)/o'1, the curve
representing the surface mode goes from below the
bulk spectrum region in the diagram E versus &,
to above the bulk spectrum region. For A'(A„)=A,'

there is no surface mode.
Several remarks must be made about these two-

dimensional localized modes:
(i) The existence of these localized modes is re-

lated to a delocalization of the electronic wave
function, which makes the coupling between nnn

important.
(ii) From Eqs. (5), (9), (10), and (25), it is seen

that, for a wave vector (k„, k, ) such as X»= &„, all
bulk magnons have the same excitation energy; only
the surface magnon has a different energy. This
means that, in the E-versus-&, diagram, for &&

the bulk spectrum is squeezed down to a single
point. An experimental test of this squeezing down
could be a ferromagnetic resonance experiment in
a geometry such as k= k, i. e. , where the sample
is not normal to the radio-frequency-field wave

1+ 4(xx=
1+ 4o —4o&, (27)

E=4a A»+4K» (1+ 2a)— 16o'
1+4o (28)

The surface spin-wave energy curve is a truncated
parabola, since l xt &l.
(k) Anirotropic" surface. The nnn and nn cou-
plings are equal in the surface layer and in the
bulk (e„=1, a„=a), but the surface anisotropy is
nonzero:

1+4o'- Ax=
1+4o —4oX~ '

E=4a A»+4k. »(1+ 2a)—(A —4o X»)

(29)

(80)

The energy remains a parabolic function of X~.

(c.) GeneraL surface. The perturbation of the ex-
change integrals at the surface is taken into ac-
count (5„—'E~, 1 t

~

—a„—a).
Then we have

1+4 o-A —4x= 1+4o-4oX,

E= 1+4a'+A +4k.» ( 1+ 5»)+4a A.»

(1+4a —4A.»)
z

1+4a'- A
' —4A.» 6„' (32)

vector. In that case, all ferromagnetic resonance
lines reduce to a single line.

(iii) As X» varies continuously, Eqs. (5) and(25)
imply that the coupling constant g» between the
spin deviations in adjacent layers goes through
zero. g &

for the surface mode being a function
of &~ only, it changes continuously from a positive
to a negative value when ~A, goes through &~; on
the other hand, the sign of go does not change. If
the spin deviations in the first and second layers
are in phase before &„goes through &„, they be-
come 180 out of phase afterwards. In other words,
it is an acoustical to optical continuous transition.

(iv) It is worth noting that the spin deviations in
a layer are enhanced when the spin wave is localized
in this layer only. Therefore, it implies that in
low-energy electron diffraction there is a peak
when the electron beam meets the surface with the
correct angle. Thus, a scanning could provide a
test for the occurrence of such modes.

In order to illustrate the influence of the surface
parameters on the energy spectrum, we have com-
puted it in some simple cases of physical interest.

(a) "Free" surface (s„=1, a„=a, A=0). The
nnn and nn couplings are not changed by the pres-
ence of the surface and there is no surface anisot-
ropy. This case has already been studied in Ref.
9. From (18), (19), and (21) we obtain
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The surface spin-wave energy curve is then either
one or two arcs of a hyperbola.

IV. SURFACE-ANISOTROPY EFFECTS

When the surface-anisotropy coupling constant
A is negative, some surface spin waves have a
negative energy (whatever the values are of a,
and o„, as may be seen from Eqs. (31) and (32)
and from the condition i x I

& 1. Therefore, even
at T=Q'K, if A is negative, the ferromagnetic
configuration of the spins near the surface is un-
stable. The surface spin waves of negative energy
generally correspond to small values of k. For
these modes the dipolar interactions, which are
not a p~ioxz negligible before the surface-anisot-
ropy energy, have the effect of shifting the whole
energy spectrum slightly towards negative values,
thus contributing to the instability of the ferro-
magnetic configuration. We shall therefore neglect
them. In the absence of an external magnetic field,
there is a spin rearrangement. The equilibrium
spin configuration occurs for a non-negative min-
imum of the free energy.

Let us consider the problem from the semi-
classical point of view of Hefs. 12 and 13. The
spin S„of an atom belonging to the nth layer is
then considered as a classical vector of constant
length. Then one looks for the spin configuration
which minimizes the semiclassical energy 8 at
T = 0 'K. 8 is obtained by replacing the spin op-
erators in the Hamiltonian of the system by the
classical vectors S„. The energy extrema are
given by the N equations

S"„=0 and all the spins are parallel to the (x, z)
plane. Let e„be the angle between S„and the z
axis. Equation (34) and (34a) give

o.„=n, + (n —1) e —2I m,

where l is an integer for the bulk layers, and

(35)

2sln6
Sll12&g =

1

2sln6
sin2Qg =—

N

(35a)

[I —(4 sin e)]'i /A„]
A,

(36)

When the film is nearly symmetrical, i. e. , when

A, =A„, one obtains

2l m

N- 1+ 2 (I/A~ —1/A, )

In ferromagnetic materials where the spins in the
bulk are aligned along the z direction, this heli-
coidallike spin configuration still exists near the

for the two surface layers, where the angle e be-
tween the directions of the spins in two adjacent
layers is a constant given by the resolution of the
system (35) and (35a) in which one replaces n by
N. It gives

[1 —(4 sin e)'i~/Aq]

AN

eS
~ =a„S, n=1 ~ ~ ~ N, Q=x, y, z
n

(33)

where N is the number of the layers and a„are the
Lagrange multipliers. Equation (33) means that
no resulting torque is exerted on the spin S„by
the other spins in the equilibrium configuration.

We assume first that there is no bulk anisotropy
and no nnn coupling, i. e. , 0 =0.=0. We assume
also that all spins in one layer are parallel to each
other. For n) 1, using Eq. (1) and Tables I and

II, the explicit form of Eq. (33) is for the spins in
the bulk

X

S„,+8„„=—2 (a„+2)8„. (34)

Let the x axis be in the plane of (S, , z). For the
spins at the surfaces Eq. (33) gives

Sa S3=Ai+ ~, S~ ——0,

(34a)
x g

E-1 yAg+ Sg y S~ f Oe
N

Here A, and A~ are the surface-anisotropy coupling
constants of the two surfaces. From Eq. (34),

Is

y6

PIG. 4. Pseudohelieoidal array near the surface j layers
1 to 5.
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surface, but is destroyed far from the surface by
the bulk anisotropy which would tend to align the
spins along the z direction. In that case E would
not be a constant any longer, but would be n de-
pendent. This case is represented in Fig. 4. This
is what we call a pseudohelicoidal spin configura-
tion.

On the contrary, when the surface-anisotropy
coupling constant is positive, the surface spin
pattern is stiffer than in the absence of surface
effects. Namely, the minimum energy required
to set up a surface spin wave is nonzero. This
energy gap for the excitation of the surface spin
waves occurs at the "cutoff" value 4, where jx t

= 1,
as shown in Fig. 3. The equilibrium configura-
tion is then ferromagnetic at the surface as well as
in the bulk.

V. CONCLUDING REMARKS

In conclusion, within the framework of the above
simple model, we have analyzed the effects of the
surface anisotropy, the nnn coupling, and the non-
uniform value of the exchange constants. Three
properties have been shown. (i) The surface modes
go through a transition from acoustical to optical
character when the wave-vector parameter X~

varies, going through X~. This transition is re-
lated to the existence of a nnn exchange coupling.

(ii) For X, = X~0, there are new types of modes for
both bulk and surface spin waves. These modes
are localized in one surface layer. (iii) Some re-
arrangements of the spins can occur near the
surface, owing to the surface anisotropy.

The rearrangements of the surface spins occur
when the surface-anisotropy constant A is negative.
Then a special spin configuration is expected which
is helicoidallike if there is no bulk anisotropy
and pseudohelicoidal in the opposite case. This
result extends the assumption of an antiferromag-
netic first layer already used by Pincus, ' Meikle-
john and Bean, ' and Sparks. ' As shown in
Ref. 12, the spin-wave spectrum is changed when
the equilibrium spin configuration is pseudoheli-
coidal. Moreover, the pinning conditions are mod-
ified because the propagation of the l,ong-wavelength
bulk modes is perturbed near the surface. On the
other hand, when the surface-anisotropy coupling
constant A is positive, the spin pattern is stiffened,
since a large excitation energy is needed to create
a surface spin wave. No rearrangement of the

spins is expected in that case.
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