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The ferromagnetic transition temperatures of MnAsgb~ „solid solutions for 0 «x «1 have
been measured as a function of pressure up to 4. 5 kbar. Previous work has shown that for
the solid solutions in the concentration range 0. 9 & x «1 the magnetic transition is first order
and is accompanied by a hexagonal-to-orthorhombic structure transformation, while for 0 «x

0. 9 the magnetic transition is second order with no structural change. We have found that
the initial pressure derivative of the transition temperature (BT~/BP) changes discontinuously
in the narrow concentration range 0.87 & x~ 0. 90, further demarcating the first- and second-
order regions. We also find that substituting Sb for As in the first-order region increases the
critical pressure P, which stabilizes the orthorhombic phase to the lowest temperature. This
further supports Goodenough's observation of a critical molar-volume range in which the first-
order transformation occurs. The solid solutions which exhibit second-order behavior are
analyzed using an itinerant-electron ferromagnet model.

I. INTRODUCTION

The isomorphic metallic compounds MnAs and
MnSb have different magnetic properties which are
believed to be due to differences in the Mn-Mn
separation distance. For increasing temperature,
MnAs exhibits a first-order ferromagnetic (FM)
to paramagnetic (PM} transition at 313 'K which
is accompanied by a change in crystal symmetry
from the hexagonal NiAs structure (B8,) to the
orthorhombic MnP structure (B31). (Hereinafter
we use FM to denote ferromagnetic, ferromagnet,
or ferromagnetism, and similarly for PM. ) On
further heating, a second-order transition involv-
ing a change from a low-spin PM to a high-spin
PM phase and a change in crystal symmetry from
the orthorhombic (B31}to hexagonal structure'

(B8,) is observed at 398 'K. On the other hand,
MnSb has a second-order FM to PM transition at
572 'K with the crystal structure remaining hex-
agonal (B8,) through the transition. A complete
series of solid solutions is formed by MnAs and
MnSb in which the hexagonal lattice parameters
decrease monotonically from MnSb to MnAs.

The various magnetic transition temperatures
and crystal structures of the solid solutions,
MnAs„Sb& „as reported by Sirota and Vasilev and
Goodenough et al. ' are summarized in Fig. 1.
Here, for increasing temperature, T, denotes
the FM-to-PM transition temperature, T' denotes
the PM-to-PM transition temperature at which the
effective moment decreases, and T, is a PM-to-
PM transition temperature at which the effective
moment increases and the crystal structure changes
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FIG. 1. Magnetic transition temperatures of MnAs„Sb& „
solid solutions. Open circle, solid circle after Sirota and
Vasilev (Ref. 4) and x after Goodenough gt a). (Ref. 5).

from orthorhombic to hexagonal. For the solid
solutions in the concentration range 0. 9 &x & 1.0
the transition from the FM hexagonal phase to the
PM orthorhombic phase is first-order. All other
transitions are second order.

From Fig. 1 we see that over the concentration
range 0 &x &0.80 the FM-to-PM transition tem-
perature T, decreases with increasing As concen-
tration. In addition, the effect of substituting As
for Sb is to decrease the lattice parameters~ (de-
crease the Mn-Mn separation distance}; thus one
might expect T, to be quite sensitive to pressure
and to decrease with the application of pressure.
As we shall report in Sec. II, we have observed
a decrease in T, with increasing pressure for solid
solutions in this concentration range.

Goodenough and co-workers have proposed a
band model to explain some of the magnetic prop-
erties of MnAs. ' ' The essential features of
their model are a filled s-p bonding (valence} band
and an empty s-p antibonding (conduction} band
where the Fermi energy lies between the bonding
and antibonding bands, and the Mn 3d states lie
near the Fermi energy. In the hexagonal FM phase
the crystalline field splits the Mn 3d states into
three distinct energy levels labeled tp, t, , and e~.
The tp orbital is directed toward the nearest-neigh-
bor (nn) Mn along the c axis, the two t, orbitals
are directed toward nn Mn in the basal plane, and the
two e, orbitals are directed toward nn As. It is
also argued that there is a critical Mn-Mn separa-
tion (R,- 3. 1-3.V A) such that an itinerant descrip-
tion is used if the Mn-Mn separation is less than
8, and a localized description is used if the Mn-Mn
separation is greater than R,. ' Since the Mn-Mn

separation is less than R, along the c axis, the tp

and e, levels broaden into narrow itinerant bands. '
However, in the basal plane the t, levels are transi-
tional since the Mn-Mn separation can be greater
or less than 8, depending upon the crystallographic
phase. Finally in their model, it is postulated that
there is an intra-atomic exchange splitting between
the up- and down-spin bands.

Over the entire concentration range of the solid
solutions, the Mn-Mn separation distance along the
c axis remains less than R„and thus the tp and

e, levels should be narrow itinerant bands. One
might then expect that an itinerant-electron model
may describe the pressure dependence of the FM-
to- PM transition. The weak itinerant-electron
theory as developed by Wohlfarth and Edwards
and Wohlfarth' has been used to study the magnetic
behavior of such materials as ZrZna ' and the Invar
alloys, Recently, Wohlfarth and Bartel' have
shown how to estimate electron-correlation effects
from pressure measurements for weak itinerant
FM's. In Sec. III, we extend the itinerant-electron
model to include the so-called strong itinerant
FM's and this model will be used to analyze the
experimental data presented in Sec. II for only those
solid solutions in the concentration range x &0. 9
where these materials exhibit a second-order be-
havior.

It has been established in MnAs that above a crit-
ical pressure of 4 kbars the orthorhombic phase
is stabilized. ' According to Goodenough and
Kafalas, the existence of this critical pressure is
related to a critical molar volume. Within this
critical molar volume there is a high- to low-spin
transition which they interpret as a "drastic"
change in the intra-atomic exchange energy at a
maximum critical bandwidth. Then as we substi-
tute Sb for As the lattice expands and the bandwidth
decreases so that a higher critical pressure should
result for stabilizing the orthorhombic phase.
Since the orthorhombic phase exists in the solid
solutions only over the concentration range 0. 90
& x & 1, we have measured the pertinent part of the
pressure-temperature magnetic-phase diagram of
the solid solution MnAsp 9p Sbp yp. The maximum
allowable Sb concentration was chosen to maximize
the increase in critical pressure. These results
will also be presented in Sec. II and discussed in
Sec. III.

II. EXPERIMENTAL RESULTS

For the preparation of the solid solutions, pow-
ders of 99. 9% pure Mn, As, and Sb were mixed
to the desired proportions, pressed into pellets,
sealed in an evacuated quartz tube, and heated to
1073 K for 2 days. The chemically reacted prod-
uct was then crushed, made into pellets, and
annealed at 1073 K for 1 day. There were no ob-



1066 L. R. EDWARDS AND L. C. BARTE L

1.0

0

0.9-
1

I
I

I

I

I

1

0. 8-

0. 7-

0.6-

0.5—

0.4- I
I
I03-
1

P=O

0. 2-—-- P = 1 kbar

I
I

O. l- 1

290 300 310

T ( K)

0 I. I I

250 260 270 280

I

320 330 340

FIG. 2. A typical self-inductance —vs-temperature plot
for the x=0.9 solid solution. L(T) is the temperature-
dependent inductance, Lm~x is the maximum value of L (T),
and Lo is the minimum value of L(T).

served differences in the magnetic transitions or
chemical composition if the samples were quenched
in air or were slowly furnace cooled. Chemical
analysis of these materials indicated they were
stoichiometric to within 4 at. /0 and the ratio of As
to Sb was within 1 at. % of the nominal value. Pow-
der x-ray-diffraction patterns indicated the pres-
ence of MnO in some of the solid solutions. The
presence of MnQ should not affect the magnetic
transition temperatures of these materials.

The self-inductance technique' ' was used to
determined the FM-to-PM transition as a function
of pressure and temperature. Hydrostatic pressure

was applied with a 4. 5-kbar helium-gas system"
on the solid solutions which had transition tempera-
tures less than 323 K and with a Harwood 30-kbar
liquid-pentane apparatus on the solid solutions which
had transition temperatures greater than 323 'K.
A typical reduced self-inductance-temperature plot
as obtained for the MnAs0 &Sb0 & solid solution is
shown in Fig. 2. The transition temperature was
arbitrarily taken as the half-transition point.

The experimental results are summarized in
Figs. 3-5. In Fig. 3, the FM-to-PM transition
temperature T, is plotted as a function of concen-
tration. The double curve in the concentration
range 0. 9 &x ~ 1.0 is due to the thermal hysteresis
associated with the first-order, hexagonal-FM-to-
orthorhombic-PM, transition. No hysteresis is
observed for the solid solutions in the concentration
range 0 &x &0. 90 which is indicative of a second-
order FM-to-PM transition. Hereinafter we will
refer to 0. 9 &x & 1.0 as the first-order region and
to 0 &x &0. 9 as the second-order region.

In Fig. 4, the initial pressure derivative of the
FM-to-PM transition temperature (8 T, /BP) is
plotted as a function of concentration. The pressure
derivatives were determined to within +0. 15 'K/kbar.
For MnSb, our measured pressure derivative of
—3. 0 'K/kbar is in good agreement with the value
—3. 2 'K/kbar as reported by Hirone et al. ' It is
observed that &T, /BP changes almost precipitously
in a very narrow concentration range (-3%) de-
marcating the first- and second-order regions. It
should be remarked that the x = 0. 88 material ex-
hibited no thermal hysteresis at 4. 5 kbar —indicat-
ing that the transition remained second order up

590
-2-

550

510

470

430

390

350

310

2?0

-10-

-12-

-14—

-16-

-18-

B8 = B31
1

B31

230 I I I I I I I I

0 0. 1 0. 2 0. 3 0.4 0. 5 0. 6 0. 7 0. 8 0. 9 1.0

Mn Sb X MnAs

FIG. 3. Concentration dependence of the FM-to-PM
transition temperature, in MnAs„Sb& „solid solutions.
Solid circle, present study; open circle, after Sirota and
Vasilev (Ref. 4).

-22 I I I

0. 0 0. 1 0. 2 0. 3

MnSb

I I I

0. 8 0. 9 l. 0

MnAs

0.4 0. 5 0. 6 0. 7

X

FIG. 4. Concentration dependence of the initial pres-
sure derivative of the FM-to-PM transition temperature
in MnAs„Sb& „solid solutions.



E F FE CT OF PRESSURE ON THE FERROMAGNETIC ~ ~ ~ 1067

320

3OO'

280

C B31

260

240

220

200

140

120

P (kbar}

FIG. 5. Temperature-vs-pressure magnetic-phase diagram
for MnAs and MnAso 98bo &.

In Sec. IIIA, we discuss the solid solutions
which exhibit second-order behavior. The results
on these materials will be analyzed in terms of
an itinerant-electron FM model. In Sec. IIIB, the
alloys which exhibit a first-order behavior will be
discussed in terms of the model proposed by
Goodenough and Kafalas. In addition, some com-
ments will also be made on the Bean-Rodbell model'
prediction of pressure-induced second-order to
first-order behavior and on the equivalence of the
itinerant-electron FM and the Bean-Rodbell models.

A. Second-Order Behavior

1. Itinerant-Electron FM Model

It is our purpose here to present an elementary

to this pressure limit. (According to the Bean-
Rodbell model, ' it is possible that a second-order
transition can be forced into a first-order transi-
tion under sufficient pressure; we shall comment
more on this in Sec. III.

In Fig. 5, a portion of the temperature-pressure
magnetic-phase diagram for MnAs and MnAsp 9Sbp ~ i
is shown. Our results for MnAs are in good agree-
ment with the result of Menyuk et al. ' It is observ-
ed, as speculated in Sec. I, that the substitution of
10/g Sb for As does indeed increase the critical
pressure required to stabilize the orthorhombic
phase. The increase in critical pressure is approx-
imately 0. 75-1 kbar.

III. DISCUSSION

I=IN(e~) .

Here N( &z) is the density of states per atom per
spin at the paramagnetic Fermi level, and T~ is
the effective degeneracy temperature. ' In order
for the system to be FM, we have from Eq. (1)
the Stoner criterion I ~ 1. In the following discus-
sion we shall make some assumptions as to the
nature of I and N(&~).

In general, we assume that the effective intra-
atomic exchange between the itinerant electrons
I is a compositionally averaged constant in the case
of the FM behavior of alloys. For the MnAs„Sbi „
solid solutions considered in this paper, I is the
effective exchange appropriate for the Mn atoms.
The particular form we shall use for I has been
discussed by previous authorsi2, is, ao, si and is given
here as

I= I» ( 1+ yl» /W)

where Ib is the bare interaction, W is the bandwidth,
and y is a constant. In addition, we assume that
the number of magnetic electrons n remains con-
stant, consequently N( &z) can be written as 2' »

N( e~) = P/W (4)

where P is another constant and is related to y. It
is implied that W and thus N( &„) scale uniformly
(uniform-scaling assumption) under volume changes.

theory, unifying several existing theories, of a
single-band itinerant-electron FM. In particular,
we shall develop a theory, appropriate for 3d elec-
trons, for the Curie temperature T, and its
pressure derivative &T,/&I'; and we shall show how

estimates of the effective exchange I times the den-
sity of states at Fermi level N(cz) can be made
from the measurements of ST, /&I'. The theory
presented here follows quite closely the earlier
work of Wohlfarth, Edwards and Wohlfarth, '

Shiga, and Wohlfarth and Bartel, ' but includes
details which have not been discussed in these
earlier works.

For our model we assume that the exchange
splitting is given by nI&, where I is the effective
intra-atomic exchange (accounting for the electron
correlations) between the itinerant electrons, n is
the number of d electrons per atom, and g is the
relative magnetization per electron arising from
single-particle excitations. In the Stoner theory,
the exchange splitting is 2k~ 8'f, where k~8' is the
molecular-field-approximation interaction; thus
k~8' = &nI. The single-particle excitations are
described by the Stoner equations, ' and in the
limit of f 0 for T T, we have, using a Sommer-
feld expansion, that T, is given by"

T, = TJ,(I —1)/I

where
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Finally, we assume the volume dependence of 8'
is given by Heine's results

&lnW 5
&lnV 3

Using the above results, Eqs. (3)-(5), the volume
dependence of I, Eq. (2), is

~ lnI 5 I
~lnV 3 I, (6)

which is independent of 0 and y and where here I,
is assumed independent of volume. For the density
of states of the form given by Eq. (4), it can be
shown that Tz - W, and hence from Eq. (5), & InTz/
81nV= —»». Using Eqs. (1), (2), (5), and (6) the
volume dependence of T, becomes

~lnT,
&ln V

= —s+ s (I 1) (I/—I»).

In terms of pressure, Eq. (7) can be written as

(7)

T, ~ 5 I T~
3 c 6 II~ Tc

(8)

where w is the volume compressibility and we have
used Eg. (1).

We shall now show how pressure measurements
of T, can be used to determine a maximum value
for I and a minimum value for T+. The maximum
value that I can have is the bare exchange value I, ;
thus, the maximum value for the ratio I/I, is one.
Hence, the experimental value of I' can be used to
determine the maximum values of J. From Eq.
( 7) we have

I »x=1+6(F+ s) (9)

Then using values for I obtained from Eq. (9) we
can obtain a minimum value for T» using Eq. (1).

For weak itinerant-electron FM's I &1. 0 and for
weak electron-correlation effects I/I, =—1.0, the
second term in Eq. (7) is dominant, and from Eq.
(8) we have &g/&P- —1/T, . Examples of weak
itinerant-electron FM's are the Fe-Ni, Fe-Pt, and
Fe-Pd Invar alloys where it has been experimentally
observed that &T,/&P= —const/T, . F—or strong
itinerant-electron FM's»1 and for strong corre-
lation effects I/I» & 1 such that the first term in Eq.
(7) is dominant, and from Etl. (8) we have &T,/&P

An example of a strong itinerant-electron FM
is Ni, where it is found that &T, /&P=j~g—= 0. 68 K/
kbar in good agreement with experimental values
of 0. 32-0. 42 K/kbar. ' It is noteworthy that in the
limit of weak itinerant-electron FM and for large
I" such that l~ I » 3 and neglecting the volume de-
pendence of I~, the results of this paper reduce to
the results given previouly by Wohlfarth and Bartel.

The localized and the itinerant, or collective,

descriptions of magnetic electrons have been in-
vestigated by Goodenough. He considered the
case of one d electron per relevant d orbital which
correponds to a half-filled band or to a half-filled
localized orbital, and the magnetic order is anti-
ferromagnetic (AFM). In the absence of competing
exchange interactions, the Neel temperature T„ for
localized-electron AFM increases with the transfer
integral b since the exchange interaction is propor-
tional to b; whereas, it has been shown that T~
for a band AFM decreases with increasing band-
width ' where the bandwidth is proportional to b.
Goodenough concludes that the magnetic moment
and T& should vary continuously in going from a
localized to a band description. We expect b to
increase with increasing pressure; hence, we ex-
pect that for the localized electron description T~
should increase with increasing pressure, and for
the itinerant description TN should decrease with
increasing pressure. Furthermore, we expect
that the general arguments for an AFM apply to
the FM case of interest here. The observed de-
crease in the FM-to-PM transition temperature
in the MnAs, Sb1 „compounds suggests that the
itinerant-electron description is the appropriate
one. Although these compounds are anisotropic,
the isotropic model discussed in this paper de-
scribes the pressure effects quite well.

2. Analysis of Experimental Results

In Fig. 6, &T, /&P is plotted as a function of T,
for the MnAs„Sb1 „solid solutions in the concen-
tration range 0 ~x ~ 0. 8. For comparison, the
Fe-Ni, Fe-Pd, and Fe-Pt Invar alloy data of
Wayne and Bartel are included. Similar to the
Invar alloys, we observe a T,' type of behavior as
predicted by Eq. (8) when the second term in Eq.
(8) dominates.

The volume derivative of T, is calculated from
BT, /&P where the compressibility for the solid
solutions was obtained by a linear extrapolation
between the values of (2. 5 +0. 5) &&10 3 kbar for
MnSb '~ and 4. 55x10 ' kbar for MnAs. The values
for 1 are given in Table I. We observe that the
values of I' increase with increasing As concentra-
tion and that the magnitude of 1 is of the same
order of magnitude as the first term in Eq. (7). In

previous works on the Invar alloysl1, 12 and ZrZn2, 9-12

it was observed that I'»-
3 and so the first term of

Eq. (7) could be neglected. In the case of tQe

MnAs„Sb1 „solid solutions, this factor of 3 must be
included in any calculation of band parameters.

In Table I, we give the results of the calculation
of I from Eq. (9) for the solid solutions 0 ~x ~ 0. 80.
The quoted error in the compressibility for MnSb
will introduce an uncertainty of +0. 03 in the value
for I„.We observe that I decreases with in-
creasing As concentration. According to Wohl-
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farth's ' classification, these values of I ~ indi-
cate that MnSb is approaching a strong itinerant
FM, and the solid solutions are becoming weaker
itinerant FM's with increasing As concentration.
These values of I for the MnAs„Sb&, solid so-
lutions are comparable with the values for the Invar
alloys. ~9

From Eq. (1), and using the value of I and T,
for MnSb from Table I, we calculate T~= 1380'K.
Thus for MnSb we see that T,=—0. 4T& which indi-
cates the Sommerfeld expansion is converging;
however, the convergence is slower than one would

desire. For the materials with x &0, the conver-
gence is more rapid than for x = 0.

Using Eqs. (1)-(4), we can express T, as a func-
tion of the bandwidth 8'where we assume TI; - W.

Then using the value of T, = 572 'K and the value of
I from Table I for MnSb, we can calculate T, as
a function of W. The results of these calculations
are shown in Fig. 7. These results are indepen-
dent of the value of I/I, , but do not include effects
of any volume dependence of Ib. Note the critical
bandwidth such that for W/Wo ) 1.206 we do not

have FM order, and note the quadratic dependence
of T, on W for W/Wo-1. 206. Using the available
x-ray data ' to estimate W/Wo and using the ex-
perimental values for T, we show, in Fig. 7, the
experimental results of T, as a function of W/Wo.
For x=O. 25 we calculate T,=474'K and I =1.110
in fair agreement with the experimental values.
For the solid solutions x &0. 25 the agreement is
only qualitative. This disagreement is not too
surprising because of the large differences in unit-
cell volumes for the various compositions. For
these large volume differences one might expect

TABLE I. Curie temperature T„ I'—= BlnT, /B lnV, and

I~, as calculated from Eq. (9), for various solid solu-
tions of MnAsgsbf g in the second-order region.

0.00
0.25
0.50
0.75
0.80

Tc

572
458
375
292
247

2. 38
2. 97
3.63
5.18
6.20

1.206
1.180
1.157
1.122
1.106

significant changes in the crystal-field splittings,
and consequently significant changes in the elec-
tronic wave functions. Any volume dependence of

I& would modify the results shown in Fig. 7. Lack-
ing specific-heat, susceptibiLity, and magnetostric-
tion data for these materials, we cannot determine
N(e~), I, I, , and any volume dependence of I,
individually. In addition, as we shall point out be-
low, we expect rather large electron-lattice and

exchange-striction interactions for these materials,
particularly for the solid solutions x &0. 80. Elec-
tron-lattice and exchange-striction effects have not

been included in the calculations displayed in Fig. 7.
Sirota and Vasilev have observed a Curie-gneiss

type of behavior in the PM region for MnSb, with a
Curie constant, C„=1.3 emumole 'Oe ' 'K '.
According to the itinerant FM model of Wohlfarth
the susceptibility in the temperature region
T~» T &T, and for T- T, can be written as X =XOT,
x ( T —T,) which is a Curie-Weiss type of behavior
where the Curie constant C~ is given by C„=Xo T, .
The quantity yo is proportional to N( &„)(I 1) '. —
For MnSb, yo can be calculated to give XO=0. 227
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x10 emu mol. e 'pe ' as compared to pp= ], .38x10-'
emumole 'Oe ' for ZrZn&. ' This difference in Xp

between MnSb and ZrZn2 is consistent with the values
of I for these materials, For ZrZn, , I =1.0042
and from this work for MnSb, I = 1.206; thus y p

for MnSb should be smaller. A detailed compari-
son, however, can only be made if N(&~) for MnSb
mere known. For x &0 gp cannot be reliably ex-
tracted from the experimental data because the
susceptibility has a complicated temperature de-
pendence which is thought to be due to exchange-
striction effects.

B. First-Order Region

Previous experimental studies on MnAs and

MnAs„P& „have established that a first-order,
hexagonal -FM-to-orthorhombic-PM, transition occurs
only if the molar volume at T, lies within a narrom
critical range V, —& V & V& V, , where hV/V=0. 025.
This narrow molar-volume range is related through
the thermal expansion to the temperature range
T, —125 'K & T & T, , where T& is the second-order,
orthorhombic -PM-to -hexagonal- PM, transition
temperature. This, coupled mith the fact that there
is a low-spin = high-spin transition in this tempera-
ture interval, led Goodenough and Kafalas to postu-
late the existence of a maximum critical bandwidth
that would support spontaneous FM and the existence
of a volume-dependent intra-atomic exchange inter-
action. This model predicts the existence of a
critical pressure I', above which the PM orthor-
hombic phase is stabilized to absolute zero; a I',
=4 kbar has been found for MnAs. ' If I' is sub-
stituted for As, than one expects P, to decrease
since the substitution of P decreases the lattice
parameters (the molar volume), and thus the band-

width increases. Furthermore, if sufficient P is
substituted for As, I', -0. These effects have been
observed. ' However, if Sb is substituted for As,
the lattice parameters (molar volume) increase
and the bandwidth decreases. Therefore, the
substitution of Sb should cause I', to increase, which
is in accord with our- experimental results.

Now if more than 10% Sb is substituted for As,
then the molar volume will be larger than the
critical volume required for a first-order transi-
tion, and the resulting solid solutions exhibit
second-order transitions. If this model is correct,
then at sufficiently high pressure one might expect
to induce a first-order phase change in the materi-
als with concentration x-0. 9. At the time this
work was done, the pressures available to us (- 4kbar)
were insufficient to check conclusively this pre-
diction on the x = 0. 88 solid solution. Estimations
based on the isotropic Bean-Rodbell model indi-
cate a second- to first-order transition pressure
of approximatly 16 kbar for this material. This
number must be taken lightly, however, since
there have been objections to using the Bean-Rodbell
model in its isotropic form for MnAs. Vfe are
planning to continue the search for a second- to
first-order transition pressure at higher pressure
in the solid solutions with concentrations x~ 0. 9.

The Bean-Rodbell model, ' which is based on a
localized spin picture, has been used to describe
qualitatively the first-order nature of the transition
in MnAs. A similar situation arises in the itineran)
electron model when the exchange and electron-
lattice forces are balanced against the
elastic forces. The result of this balance is that
the bandwidth and exchange interaction become
temperature dependent; then, depending on the
parameters, the transition may tend to sharpen and

may become first-order as in the Bean-Rodbell
model. This type of procedure has been used to
explain thermal expansion effects in an itinerant-
electron AFM ' where only the electron-lattice in-
teraction was considered. In this case it was
demonstrated that the balance set up between the
elastic and electron-lattice forces is important in
explaining the anomalous behavior of the thermal
expansion for temperatures near T&. However, for
the parameters used in the theory, no first-order
nature was observed in the phase transition. It
is anticipated that inclusion of exchange-striction
effects could precipitate a first-order phase transi-
tion for the itinerant-electron AFM.

Unpublished x-ray data by Goodenough on

MnAsp «Sbp 0& show that the unit-cell volume is quite
temperature dependentfor temperatures near T,
where the volume decreases continously from a value
of 70. 81 A at a temperature of approximately 100
'K below T, toavalue of approximately 70. 19A at
T, . This represents approximately 0. 9/o decrease
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in the volume. For MnAs there is approximately
a l. 8%%d discontinuous volume decrease at T, for
increasing temperature. It is therefore apparent
that for x ~ 0. 80 there are large interactions of the
lattice with the exchange energy and/or the elec-
tronic energy. The volume changes associated
with these interactions depend on the magnetization.
Because of the coupling, a discontinuous change in

the unit-cell volume is reflected in a discontinuous
change in the magnetization, and vice versa.

The physical picture we have for the results of
the coupling of the magnetization and the lattice is
as follows. At low temperature the magnetization
takes on its saturation value, and the magnetic
characteristics are determined by the bandwidth

W, density of states N(e~), and the exchange in-
teraction I. As the temperature is increased the
lattice expands, and because of electron-lattice
coupling and exchange striction, W decreases and
1 can either increase or decrease depending on the
sign of & 1nI/O lnV. For the material under consid-
eration here, as 8' decreases, T, will increase
and the magnetization for T «T, will increase over
the value it would have had if Wand I did not depend
on the volume. However, because of the electron-
lattice and exchange-striction effects, the lattice
contracts for T T, and thus W increases and T,
decreases. Hence depending upon the amount of
coupling, the rate at which W increases (or the
apparent T, decreases) determines whether the
transition will be second or first order. For the
first-order transition, in the words of Bean and

Rodbell, ' "
~ . . this situation is like that of a man

who has run beyond the brink of a cliff; there is no

gentle way down. " The critical volume discussed
by Goodenough and Kafalas appears to be intimately
related to the electron-lattice and exchange-stric-
tion effects as a detailed theory should show.

Finally, the rather large changes in T, with
pressure for the first-order region are noteworthy.
As shown in Fig. 4, there is a discontinuous change
in ST, /&P at the composition which demarcates the
boundary between the first- and second-order re-
gions. In addition, there are strong hysteresis
effects in the first-order region. At this time, we
can offer no concrete explanation of the rather
large (&T,/&P)'s for the first-order region except
to say that the large pressure effects appear to be
connected to a "critical volume" and consequently
to the electron-lattice and exchange-striction effects.

We conclude that for the first-order region elec-
tron-lattice and exchange-striction effects are im-
portant, and that inclusion of these effects in an
itinerant-electron FM model (which is in a similar
spirit to the Bean-Rodbell model) will be able to
explain in some detail the magnetic and structural
behavior. We also conclude that although the itiner-
ant model used to discuss the second-order region
is rather simple, it contains in it the essential
features of a more elaborate treatment.
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Careful measurements have been made for triglycine sulfate (TGS), in the vicinity of the
critical point T, , on the temperature dependence of the spontaneous polarization and the field
dependence of the polarization at T,. It is found that deviations from the mean-field theory occur
only within T~ —T & AT~ = 5 x 10 'C and E &E~ = 0.5 V/cm. The coherence length $0 at 0 oK is
calculated on the basis of Menyhard's theory, which gives a condition for the breakdown of
the mean-field theory. The minimum values of $o obtained by hT, and E, are 7 aud 6 A,
respectively, which are very close to the average distance, 6. 8 A, between statistical units
of TGS.

The behavior of ferroelectric crystals near the
critical temperature is of much interest, because
it is typical of the cooperative phenomena in which
the long-range electrostatic interaction plays an

important role. Recent studies on triglycine sul-
fate (TGS) have shown that the experimental results
are well explained by the Weiss-type mean-field
theory (classical theory) in the range of IT —T, I

~ 3 &&10 a 'C and E ~30 V/cm, where E is an applied
electric field. '~ Furthermore, Blinc suggested
that inside these regions the value of critical
exponents obtained by hysteresis measurements
were very ciose to those predicted by the three-
dimensional Ising model. ~ The careful mea-
surement of the dielectric constant3 shows, how-
ever, that the critical exponent has the classical
value even at T —T,= 10 C and —5&&10 'C. The
aim of this note is to report the results of careful
measurements of the dielectric hysteresis and to
examine the range of validity of the mean-field
theory in the vicinity of the critical point.

The samples used in the present measurements
were gold evaporated on both b surfaces. The 50-
Hz hysteresis loops were displayed on the oscillo-
scope screen through a Sawyer-Tower circuit with
phase compensation. The values of spontaneous
polarization I', were determined by photographs

enlarged about four times. The experimental setup
was almost the same as that previously reported.
Measurements were made in the cooling process
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FIG. 1. Square of the spontaneous polarization vs
temperature in TGS in the very vicinity of the Curie
point.


