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The virial expansion for a fermion system is employed to derive an expression for the high-
temperature entropy of electrons which interact according to the Hubbard Hamiltonian. The
results are applied to an itinerant electron ferromagnet at temperatures well above the Curie
temperature. In contrast with the results of the Stoner theory, a nonvanishing interaction con-
tribution to the entropy and specific heat is obtained above T~.

INTRODUCTION

In two previous reports, the virial expansion has
been considered for a system of electrons in a
solid' which interact with an effective short-range
repulsion (the Hubbard Hamiltonian ). The virial-
expansion technique is applicable to low-density
systems at high temperatures. While these are
not the usual conditions which prevail in solid-
state problems, it is possible to use this technique
to study an itinerant electron ferromagnet, for
example, at temperatures higher than the Curie
temperature. In some such systems it is possible
to satisfy this condition and still have the tempera-
ture quite small relative to other characteristic
parameters (e.g. , bandwidth).

In the usual treatments of itinerant electron fer-
romagnetism, it is found that the magnetic entropy
and specific heat vanish above the Curie tempera-
ture. 4 Such results are characteristic of molecular
field theories, and are at variance with nature. In
contrast, the virial expansion is an exact procedure
which will yield nonvanishing results for these
quantities. The specific heat of the ferromagnet
Sc,in(To =6.7 'K) has been measured by Isaacs

and Knapp. ' The present theory should be applic-
able to such a system.

Our previous calculations have yielded exact ex-
pressions for the second virial coefficient for a
system of electrons interacting according to the
Hubbard model. An exact expression has also
been obtained for the third virial coefficient, but
we are unable to evaluate it completely. The re-
sults presented here should be essentially exact in
regard to the first-order correction to the results
for a noninteracting system, but are only approxi-
mate in the next order.

THEORY

Let Z be the grand partition function for the sys-
tem, which has temperature T. The free energy
F and entropy S are given by

F= —k~T lnZ,

(in which V is the volume and p. is the chemical po-
tential of the system). The virial expansion for Z
is
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Z=1 +Z18 +Z28 +Z38 + ~ ~ ~

in which Z; refers to a cluster of j particles

Z, = Tr (e-"~" )

The trace is taken over j-particle states of proper
symmetry. H& is the Hamiltonian for j interact-
ing particles. The quantity v = p, /ke T is determined
by the condition that the number of particles in the
system is fixed. Let this number by denoted by

Equation (11) can be solved by iteration to deter-
mine 8". After some algebra, we obtain a fairly
lengthy expression for the entropy S. It is con-
venient to break this expression into two parts:

S= S~+ SI, (i2)

in which S~ pertains to a gas of noninteracting parti-
cles, and S~ involves the interaction explicitly:
That is, S, would vanish if the connected parts
(b,z2), and (&Z~), are set equal to zero;

n:

n = —lnZ (3)
PP& nma ) 2Pffg 2Pffq)= 1 —vo+ —-

2 +
ka $1 481 81 8 2

The virial coefficients b„are obtained by expand-
ing lnZ:

n Sq 3p5) 3pea n Sq
12831 $1 33 8841

lnZ= Z& (e"+ b2e "+ b&e 3"),

in which

b, = (z, ——,z', }/z, ,

b3 (Z3 Z/Za + 1/3Z, )/Z&

(4)

(6)

in which

vo = ln(n/2S, )

4 $1 4 $2
1 2

(14)

b, = [(~Z,}.- s,]/2S, ,

b, =[(~z,),,—,
' s,] /2s, .

(6)

(7)

In Ref. 2 we have shown that these expressions may
be simplified:

and

g B (k) e-Je(k) l&e&

k
(16)

The contribution from the electron interaction to
the entropy is

g ~ -gE( k)/Isgy T
y

—~ 8
k

(s)

In these expressions (d Z,), is the completely con-
nected part of the contribution from clusters of j
particles to the partition function. The second-
order term (&Za) can be expressed in terms of
phase shifts for two-particle scattering. ' We are
substantially ignorant of the nature of 4Z3, except
that it vanishes if the first-order approximation to
the Faddeev equations is valid inwhich the three-
body t matrix is expressed in terms of two-body
t matrices.

The quantity S& is given by

S n(~Z. )
1

2PP B na(~Z. ).
nkvd 48 1 31 881

3 P, 2, 4Z, , aZ, ,
81 484 28

in which

B= T 1n(hza),
8

~T
and

(16)

(i7)

in which E(k) is the single-particle energy. Spin
directions have been included explicitly in (6) and

(7). Note also that

Z, =28, .
The factor of 2 above takes account of spin direc-
tions. Thus (4) becomes

lnZ= 2S,e"+ [(&Za), —Sa]ea"+ [(AZs), + —,Ss]e " .
(10)

We may now proceed to compute the entropy. Ac-
cording to (2), (10) is to be differentiated for fixed
p (= ke Tv}. Afterwards, p, must be determined
from (3). Equation (3) becomes

n = 2s,e"+ 2[(&za), —S,]e "+3[(&z,},+ 3 s,]e'".
(11}

C= T ln(b, z~), .9
(is)

The virial expansion enables us to express both
contributions to the entropy as power series in the
particle density. Both expression (23) and (16) are
accurate through terms of second order in the den-
sity, The series for Sz is just that which would be
obtained for an assembly of free fermions. The
convergence of this series is governed by a dimen-
sionless parameter which is the number of parti-
cles in a volume which is the cube of a Debye wave-
length. This number is large for metals at or-
dinary temperatures. However, other parameters
must be evaluated to determine the convergence of
the series for S,. These depend on the interaction
strength as measured, for example, by the two-
body t matrix. This will appear more clearly
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below. We argue that the interaction-dependent
corrections Sz may still be meaningful at tempera-
tures at which the electrons are degenerate

, (k~T &a~, where a~ is the Fermi energy at 0 'K),
as is the case in ordinary metals. It is, however,
necessary that the temperature be large compared
to that at which magnetic ordering takes place.
These requirements can be satisfied in a material
with a small number of electrons in a nearly empty
band, or a small number of holes in a nearly full
band. In such systems, even the condition A~T& &~

may be obeyed. It wiQ always be assumed here
that A~T is much smaller than the bandwidth E„.

Itwas shown inRef. 1 [see Eq. (43) of thatpaper]
that (&Za), is given for the Hubbard Hamiltonian
exactly by

(~g ) Q -8 t I -5 (8)I2 c
R

( z (R)
6-(E) e ~~ dE . (19)

R
Ep(R)

In this expression K is the total wave vector of a
system of two interacting particles and (6 is I/R((T.
In terms of the single-particle energy-band function
E(k), it is useful to define

E(K, k) =E(gK+k)+E(2K —k) . (2O)

The quantities Eo(K} and E„(K) are the minimum
and maximum values of E(K, k). The repulsive
two-body interaction may cause a bound state to
appear above the band for some K at an energy
E~(K). The first sum extends over only those
values of K for which such a bound state exists.

The quantity 6(f(E) is the scattering phase shift
for two particles with fixed total wave vector. It
is shown in Ref. 1 that

n(~Z, ), 8S,'
T (23)

in which p= n/N is the ratio of the number of parti-
cles to the number of sites,

V()
p 1+ &Vp

and d is given by

()
J

in which G(E) is the density of single particl-e
states [in contrast with Eq. (22), which contains
the density of two-particle states].

We find with the use of (23) that B [Eq. (17}]is
given by

4ps,
g 2

Equations (23) and (26) are substituted into (16).
This becomes, with the neglect of (EZB), ,

Sg 8sa to pg(, 1 pPg
&&a ~j. &aT ~2

(26)

s88( 8 N8 (, 88& 388s]+P -2
k~T 3~ ] g~ 2 g 2

2

calculations are in progress and will be reported
subsequently.

In this paper attention will be restricted to a
model in which analytic approximations are pos-
sible. A situation is considered in which k~T is
small compared with the bandwidth but large com-
pared to the Curie temperature of a possible ferro-
magnetic transition. A sequence of plausible ap-
proximations described in Ref. 1 leads to an ex-
plicit formula for (& Zz}, [see Eq. (83) of that paper]

( ), ((Vo Gg(E)
1+ Vo &a(E)

(21)
F2 Sg

In Eq. (21) Vo is the interaction strength which ap-
pears in the Hubbard Hamiltonian, Gg(E) is the
density of two-particle (noninteracting) states of
fixed K, and

s g (E) —Q (22)

Equations (16)- (22) make possible an exact cal-
culation of the leading high-temperature-inter-
action correction to the entropy of electrons in-
teracting according to the P'ubbard Hamiltonian.
The next term in S, (proportional to n~} can be ob-
tained in an approximation in which the third-order
connected part (4Z, ), is neglected.

Evaluation of the integrals required for this cal-
culation is a task requiring numerical integration
employing an actual or model band structure. Such

s, = v (k, T/4~y~)'~',

ps, /s, =3/2q, 8s;/s', =1.
(28)

The leading term in Sl vanishes, and the remainder
simplifies to

(27)

It remains to evaluate the quantities S,. and 5,,
and this requires specific assumptions about the
density of states. The values of S& and 5& depend
significantly on such assumptions. Even the sign
of the contribution can vary.

The simplest case is that of a parabolic band.
Suppose

E(k) = yk

In this case,
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Sl 2 tp tp 3N 2~
nk~ 8k~ T k~T V k~T . (29)

2

The interaction contribution to the entropy is pos-
itive and proportional to (ks 1") at high tempera-
tures. If a fourth-order term in E(k) is considered,
the leading term in Sl no longer vanishes, and an
entropy proportional to to/(ksT') at high tempera-
tures is obtained. The sign of this contribution is
the negative of the sign of the fourth-order term in
E(k).

The parabolic-band situation is not typical of
itinerant electron ferromagnetism, which is favored
by the presence of a sharp peak in the density of
states near the zero-temperature Fermi energy. '
A model density of states which can exhibit the de-
sired features and still be simple enough so that the
required integrals can be performed is

G (E)= aE~ (E —E)"+ bE'(Eo —E)' 8 (Eo —E),0 & E & E~

=0 otherwis e. (30)

,
In (30), 8 is a unit step function 8(x) = 1 for x & 0, 8 (x) = 0
for x& 0. The parameters of Eq. (30) can be chosen
so that the density of states has a peak at E,/2.
The sharpness of the peak is controlled by the param-
eter v'.

We will normalize G(E) so that

(s5)
In a situation particularly favorable to ferromag-
netism, we might expect p =-,'np so that the zero-
temperature Fermi energy would fall close to the
maximum of the peak in the density of states.

In this case, as in (29), we obta.'n an interaction
entropy proportional to I/Ts at high temperatures.

The specific heat can be obtained immediately:

C=T BS

Parabolic band:

fo . fo 15 N 2 rl~'
nk 44~T k~T 4 V A~T)

density of states with low energy -Peak:

(29')

2

(s5')

The interaction contribution to the electron specific
heat is then

fo G(E) dE=N, (sl)
DISCUSSION AND CONCLUSIONS

a fo E"(E„-E)~ dE= n,N,

gp
b o E'(Eo —E)' dE=n~N.

(32)

The basic integral required is
I

f, , e "'E'(E„-E)'-dE = (m)'"E'"" I'

x(if, +1)~/PE„) ~ 'f e f ~ I„,,fs (I/2j PE ), (33)

in which I is a modified Bessel function. The model
density of states will be considered in the limit in
which pE»1, pEO&1. This situation describes a
low-energy peak in an otherwise structureless den-
sity of states. After a straightforward but some-
what lengthy calculation we find that the dominant
contributions to the terms in (27) are

ps f/fl f 2 pEQp Ss/Sg (1 —pEp), NS2/S g I/np .
/

(34).

We then obtain from (27), correct to order I/(ks T)

in which N is, as before, the number of atomic
sites in the system. It is convenient to replace the
parameters a and b by the number of states in the
background n~N, and the number of states in the
peak, n~N. Thus, choose a and b so that

In contrast to the predictions of the Stoner theory
of collective electron ferromagnetism, we have
shown that a nonvanishing contribution to the en-
tropy and specific heat from the interaction that
produces magnetic order should exist at 'high tem-
peratures. A general expression for these quan-
tities has been obtained on the basis of a one-band
Hubbard Hamiltonian. These expressions are exact
in the high-temperature limit to first order in the
particle density.

The general expressions were evaluated for two
models. One surprising result emerges. For a
particularly simple band of parabolic form, the
interaction contribution to the entropy is positive.
This result is also obtained for any system with aden-
sity of states which is a power of the energy, or in
which a negative fourth-order term (in k) is added
to the k dependence of the single-particle energy.
This means that the system is, in effect, more
disordered than is the case for free fermions under
the same conditions. Since this results from the
term of order n in the virial expansion, it remains
possible that inclusion of the neglected (Z,), could
alter this conclusion. In the case of a model. in
which the density of states has a peak at low energy,
the expected negative sign is obtained for the lead-
ing term in the entropy (with respect to the particle
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density). The predictions of the entropy and spe-
cific heat remain to be determined for realistic
band models. Calculations of this type are in pro-
gress.
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Cu-Mn alloys with a Mn content ranging from 5 to 30 at. % were sputtered at temperatures
ranging from 77 to 1070 'K. The films deposited at 77 'K showed an antiferromagnetic spin
ordering. On the other hand, films deposited at 1070 K: had the mixed antiferromagnetic-
ferromagnetic behavior of the bulk which can be explained by an exchange-anisotropy mecha-
nism. Films deposited at 170 or 300'K displayed a ferromagnetism similar to that observed
with superparamagnetic particles with a Curie temperature proportional to the Mn content.
These magnetic properties are consistent with the idea that the low-temperature-deposited
films (77'K) have a random distribution of Mn atoms and that the degree of clustering of Mn
atoms increases with increasing deposition temperature. Cup g9Fep p& films sputtered at 800 C
show a large amount of clustering, while films deposited at room temperature do not. The
susceptibility of the Cup gsFep p~ films deposited at room temperature follows a Curie-Weiss
law from which one can extract a Kondo temperature (TE) very close to 0 'K. One can deduce
from the slope of X versus T and from the fact that TE -—0'K that most, if not all, of the Fe
atoms in such a film are paired.

I. INTRODUCTION

Cu-Mn alloys have been the subject of many in-
vestigations. Most experiments have shown an
antiferromagnetic behavior at low temperature with
a Neel temperature depending on the method of mea-
surement. ' ' Kouvel ' made the most extensive
study on Cu-Mn alloys annealed at 800 'C and
quenched in water and concluded that they consisted
of a mixture of ferromagnetic and antiferromagnetic
regions coupled by exchange-anisotropy interac-
tions. If such an alloy is cooled in a field, one ob-
serves a unidirectional anisotropy as evidenced by
the shifted hysteresis loop and a torque curve pro-
portional to sin8 and not sin28 as in materials with
uniaxial anisotropy. Furthermore, the remanence
which is very low at 1 'K increases with tempera-
ture, passes through a maximum and then de-
creases; the maximum remanence occurs around
12 at. /o Mn and corresponds to about 5/o of the Mn
atoms being ferromagnetically aligned. Scheil and
Wachtel found short-range atomic order in Cu-Mn

alloys (20-25 at. /, Mn) annealed between 100 and
450 'C. On the other hand, Kornv quench evaporated
at 14 'K a Cup»Mnp p, film and reported a pure
antiferromagnetic behavior. Recently, ' a. proxim-
ity-effect study of such alloys showed that a Cup»
Mnp p5 film sputtered at —100 C became ferromag-
netic at 5. 5 K. In view of the wide variety of re-
sults, it would be interesting to find out the materi-
al properties which lead to the various magnetic
properties.

Tholence and Tournier have recently studied the
magnetization of very dilute Cu-Fe alloys (up to
600 ppm of Fe). They showed that the magnetization
could be split up in two terms: one proportional to
the concentration c of Fe impurities and one pro-
portional to c which can be attributed to Fe pairs.
The Kondo temperature which was 29 K for isolated
impurities decreased to a value between 0 and 5 'K
for the pairs. An extrapolation of their analysis
predicts that all the Fe atoms should be paired up
when the concentration reaches 2 x10-' at. %. As
it was shown in the proximity-effect study that such


