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A method is presented for deriving from an ionic spin Hamiltonian a classical equation of
motion of the magnetization which remains valid for materials in which the g factor is aniso-
tropic. The Hamiltonian invoked to illustrate the method includes the Zeeman term as well as
terms corresponding to the local field, anisotropic exchange, and "one-ion" anisotropy. This
new equation of motion is used first to calculate, in the magnetostatic limit, the small-signal
complex susceptibility of the Ising-like antiferromagnet Dy PO4 exposed to a saturating static mag-
netic field and then, in conjunction with Maxwell's equations, to treat the dimensional resonances"
arising from electromagnetic propagation effects. After introducing approximations appro-
priate to Ising-like systems, an explicit expression is obtained for the field-dependent trans-
mission through a monocrystalline DyPO4 slab whose thickness is comparable to the wave-
length. Propagation effects are shown to offer a possible explanation of the asymmetric line
shape observed in a recent far-infrared laser resonance experiment on DyPO4 and to consti-
tute a probably unique explanation of the experimental fact that the transmission at fields near
resonance can exceed that at fields far from resonance. More generally, propagation effects
are shown to be difficult to avoid at any wavelength in transversely excited, strongly Ising-
like systems.

I. INTRODUCTION

The high resolution obtained by the use of lasers
in recent magnetic resonance experiments has
made it possible to measure not only resonance fre-
quencies but also linewidths and even line shapes
at wavelengths in the far-infrared region of the
spectrum. ' 3 It seems worth remarking, there-
fore, that the effects of electromagnetic propaga-
tion on the linewidths and line shapes should be
considered because these effects may well cause
the observed resonance lines to be distorted. The
reason is that the wavelengths in the far infrared
are so short that it is difficult to avoid propagation
effects by preparing samples whose thickness is
small compared to the wavelength & inside the
sample. In the far-infrared magnetic resonance
experiments' ~ the sample thickness (0. 1-0.04
cm) is indeed comparable to the free-space wave-
length Xo (0.03-0.02 cm) and thus probably com-
parable to X. In magnetic resonance experiments
at microwave frequencies, on the other hand, Xp

is at least 50 times longer than in the far infrared
so that propagation effects can usually be avoided
by preparing samples whose linear dimensions are
small compared to X.

The crystals used in the magnetic resonance ex-
periments, holmium ethyl sulfate' and dysprosium
orthophosphate, ' have a spectroscopic splitting
factor g which is so strongly anisotropic that these
crystals are "Ising-like" systems. We wish to
remark, therefore, that attempts to avoid propaga-
tion effects in Ising-like systems by the use of suf-
ficiently thin samples may not be successful even

if such samples can be fabricated. This possibility
is due to the fact that the magnetic resonance ex-
periments' necessarily involve excitations trans-
verse to the Ising axis so that, as explained later
on, the observed resonance absorption may be too
weak at any wavelength to be observable with pres-
ently available apparatus.

The purpose of this paper' is to explore the
quantitative consequences of the above-mentioned
remarks by calculating magnetic resonance and
electromagnetic propagation effects in materials
having g-factor anisotropy. In Sec. II (which is
supplemented by the Appendix), we present a meth-
od for deriving from an ionic spin Hamiltonian a
classical equation of motion of the magnetization
which differs from the familiar Landau-Lifshitz
equation in that it remains valid for materials in
which the g factor is anisotropic. Previous at-
tempts to obtain such an equation of motion either
included only the Zeeman term' of the total Hamil-
tonian (and involved a g tensor which was assumed
to be symmetric) or consisted of postulating equa-
tions fulfilling specified conservation require-
ments. We illustrate the method with a Hamilto-
nian containing the Zeeman term (involving a g
tensor which need not be symmetric) as well as a
local field term, an anisotropic exchange term
(expressed in the molecular field approximation),
and a "one-ion" anisotropy term. In Sec. III, we
particularize the classical equation of motion de-
rived on the basis of the three former terms and
use it to calculate, in the magnetostatic limit, the
resonance frequency and the small-signal complex
susceptibility of the Ising-like antiferromagnet
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where () denotes the average value in a combined
quantum mechanical and statistical sense. To each
magnetic ion we assign the spin Hamiltonian K and
the spin magnetic moment

~.,=-31~.ls, (2)

where S is the ionic spin and y~ the (intrinsically
negative) Bohr magneton. In the simplest situation
we restrict X to the Zeeman Hamiltonian

3:.=I~.ls g H, (3)

where H is the magnetic field and g is the tensor
representing the g factor. By combining Eqs. (1)-
(3) with the commutation relations S&&S=iS, we
then obtain

ro d(~so) (- )„(,—H) (4)

where yo is defined by

DyPO4 when it is exposed to a saturating static
magnetic field. Also contained in this section is
the introduction of approximations appropriate to
Ising-like systems and a discussion of various ef-
fective fields in the magnetic resonance of ma-
terials having g-factor anisotropy. In Sec. IV,
we solve the particularized equation of motion in
conjunction with Maxwell's equations and treat the
"dimensional resonances" arising from electro-
magnetic propagation effects. Thus we obtain an
explicit expression for the magnetic-field-depen-
dent transmission through a monocrystalline DyPO4
slab whose thickness is comparable to X. We find
that propagation effects offer a possible explana-
tion of the observed asymmetry ' of the resonance
and that they offer a probably unique explanation
of the experimental fact ' that the transmission at
fields near resonance can exceed that at fields
far from resonance.

Since the present work was motivated largely
by the far-infrared DyPO4 experiments, '3 it is
unfortunate that the brittleness of the currently
available DyPO4 crystals prevents them from being
polished sufficiently well to allow a more critical
comparison between experiment and theory. It
should be noted, therefore, that the applicability
of our calculations is not confined to the "proto-
type" material DyPO4 but extends to the analysis
of magnetic resonance and electromagnetic propa-
gation experiments in other materials which are
highly anisotropic.

II. EQUATION OF MOTION

A. Zeeman Hamiltonian

We start with the equation of motion

Ncf (p y) ((» ))

ro = —~l u, l/&.

If we now introduce

M„=N (p., ),
where N is the number of magnetic ions per unit
volume, then Eq. (4) becomes

'dM0™=M &&(-' H)

(5)

(8)

(7)

the total magnetic moment per ion. Combining
M = N (p ) with Eqs. (6) and (8) gives M = M„~ -', g,
so that we obtain

M,~= 2M ~ g (9)

provided we assume that g ' exists. Substitution
of Eq. (9) into Eq. (7) yields

= (M g ')&&(-'g H) (10)

which is our desired equation of motion of M for
the situation %=X~. Unlike an earlier result due
to Pryce, ' Eq. (10) is independent of the coordinate
system and remains valid if g is not symmetric.
The latter generalization is particularly useful be-
cause g need not be symmetric in all crystals.

which is one form of the classical equation of motion
for the situation $C =K~. Equation (7) shows that in
this situationthe anisotropyof g can betakenintoac-
count, at least for some purposes, by proceeding
as if ro (which involves g= 3) were unchanged and
the magnetic field had the value —,'g ~ H. This re-
sult has long been known in antiferromagnetic reso-
nance' and also in paramagnetic resonance. ' What
has not always been made clear, however, is that
Eq. (7) contains the spin magnetization M„rather
than the total magnetization M. To replace M„by
M in Eq. (7) is definitely incorrect because the
anisotropy of g means that M„and M are not paral-
lel. In some special cases, of course, the calcu-
lated resonance frequency is unaffected by such a
replacement. If H is simply the externally applied
field, for example, then the kinematical interpreta-
tion of Eq. (7) shows that the circular precession
frequency ——,'yo I g ~ H I remains unaltered if M„
is replaced by M. It may be noted parenthetically
that this frequency is exactly the same as that ob-
tained quantum mechanically for magnetic dipole
transitions from Eqs. (3) and (5). However, cal-
culations of resonance frequencies in more com-
plicated cases (e.g. , in the presence of demag-
netizing effects) and calculations of susceptibilities
in all cases do require that M~ and M be distin-
guished carefully. We do this by noting that Eq.
(3) may be rewritten in the form 3Cz = —p„~ (-,'y ~ H),
which suggests Eq. (7), or in the form Xg ———p ~ H,
which contains
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B. Other Hamiltonians

y, 'd(M g ')
= (M ~ g XHeff (i2)

clearly contains Eq. (10) as that special case in
which H, « is given by —,

'
g ~ H. Also contained in

Eq. (12) is that special case in which H, «denotes
a (generally anisotropic or even antisymmetric)
molecular field and/or its spatial derivatives. It
should be noted that Eq. (12), as well as every
other equation of this paper, does remain valid if
S represents the fictitious spin —,

' of a Kramers
doublet rather than some arbitrary true spin. The
calculation presented in Sec. III is an example of
the use of Eq. (12) in a situation involving not only
H but also an anisotropic molecular field in conjunc-
tion with such a fictitious spin.

Next we consider the class of Hamiltonians which
. cannot be written in the form of Eq. (11). One
member of this class is the (generally anisotropic
or even antisymmetric) exchange Hamiltonian in a
situation in which the latter is not treated in the
molecular field approximation. Such a situation
will not be considered here. Other members of
this class are the various Hamiltonians represent-
ing single-ion anisotropy energies. These are not
relevant to the problem of Sec. III because in DyPO4
the fictitious spin is —, so that the single-ion anisot-
ropy energy vanishes. To avoid interrupting the
continuity of the presentation, therefore, we rele-
gate to the Appendix the derivation of the equation
of motion for a situation in which the Hamiltonian
represents single-ion anisotropy. The particular
example considered there involves replacing X
by 3CD = —DS„ the expression appropriate for uni-
axial symmetry. This example is not only illustra-
tive of the averaging processes encountered with
single-ion Hamiltonians but serves to introduce the
important distinction between the true anisotropy
energy, which depends on the orientation of M,
and an apparent anisotropy energy, which depends
on the orientation of M„.

III. MAGNETIC RESONANCE IN ISING-LIKE SYSTEM

A. Effective Fields

Below its Reel temperature T„of about 3.4'K,

Turning now to more general situations, we
first consider the class of Hamiltonians which can
be written in the form

eff I sp eff' & (ii)
where the effective field H,« is independent of S but
may depend on (S). We substitute 3C=3C„, into Eq.
(1) and proceed in a manner analogous to that used
in deriving Eq. (10). The resulting equation of
motion

dysprosium orthophosphate is an Ising-like two-
sublattice antiferromagnet "which exhibits a
metamagnetic transition ' and a linear magneto-
electric' effect. However, the calculations of
this paper are concerned with DyPO4 in its para-
magnetic region and are thus applicable to the
far-infrared magnetic resonance ' experiment~.
We choose a rectangular coordinate system with
axes x, y, z parallel, respectively, to thetetrag-
onal axes a, a, c of the DyPO4 crystal. In ac-
cordance with the experimental conditions, 2'3 we
assume that the crystal is exposed to a static mag-
netic field whose value H, inside the crystal is suf-
ficiently large to produce paramagnetic saturation
along the z direction. We further assume

Xeff X g +X+ +X@ p (is)

Hz=~g' H) (14)

where we now specify that H is the magnetic field
which occurs in Maxwell's equations. Thus H in-
cludes the demagnetizing field encountered in mag-
netostatic problems. The 42m symmetry at the
Dy

' sites leads to the expression

g gl. lg l~+gtlyly +gi)lzlz y (»)
where i„, i„and i, are unit vectors along x, y,
and z, respectively. We also note, for later refer-
ence, that Eq. (15) gives

~-1 -1 ~ ~ -1 ~ ~ -1 ~

g -g~ 41„+g, lyly+g)) lzlz ~ (16)

By substituting Eq. (15) into Eq. (14), we obtain

Hz a(gJ.Hxl~+gjH&ly+g()Hald)

2. Effective Local Field

One effect of the magnetic dipole-dipole interac-
tions is that they make a contribution (e. g. , the
demagnetizing field) to the magnetic field H defined
above. Another effect of these interactions is that
they produce a local field H "which exists even in
a uniformly magnetized region of an unbounded

where 3Ce is given by Eq. (S), 3C~ denotes the Zee-
man contribution arising from the local field H ",
and X~ represents the anisotropic exchange inter-
actions per ion. The fact that we neglect hyperfine
effects restricts the applicability of our results to
the magnetic resonance spectrum of the (approxi-
mately 56%%uo abundant) "even" Dy isotopes.

The contributions to H„f arising from Xz, X~,
and X~ will be denoted by Hz, H~, and H~, respec-
tively. We now calculate these contributions and
then seek a phenomenological description of relaxa-
tion.

l. Effective Magnetic Field

The discussion following Eq. (12) shows that He
is given by
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which applies to a saturated medium possessing
42m symmetry at the sites of the magnetic ions.
The values of the coefficients v„and v, for a given
material (e.g. , DyPO4) may be obtained from cal-
culations of appropriate dipole sums. By using
Eq. (18) and treating H "analogously to H, we
easily obtain

j. I
Hz, = 2 (g) v) M))1~+g) v) Myly +g()v))Mgl~) (19)

3. Effective Field L)ue to Anisotropic Exchange

medium. It is well known that H'" may be divided
into two parts, to be denoted by H "' and H'",
which arise, respectively, from the dipoles inside
and outside the usual Lorentz sphere, and that
H'"' is just the Lorentz field (, n)M. In the litera-
ture, the term "local field" often refers to H
+H "rather than to H ".

Most analyses of magnetic resonance proceed
by incorporating the field H "' into a phenomeno-
logical "anisotropy field. " The field H "', on the
other hand, is invariably neglected on the grounds
thatthe torque density M&&%~M is identically zero.
We wish to point out, however, that in materials
having g-factor anisotropy the neglect of H~" 2 is
unjustified. This may be seen by substituting
+37)M for H in Eq. (10) and noting that the cross
product —,m(M g ')&&(g ~ M) does not generally van-
ish. (In the particular case of a magnetostatic
problem involving a spherical sample, H " is
obviously canceled out by the demagnetizing field
—~~M. )

stead of decomposing 8 "into H "' and 8
we now introduce the expression

(16)

82
(S ) (S ), 8(S,), s& (S, )

8$ 8$

where —,'a is the separation between neighboring
Dy3' ions along the y axis and the spatial deriva-
tives are to be evaluated at the ith ion. By com-
bining Eqs. (20) and (21) and then writing (S, ) as
(S ), we obtain

2

Xr = ——,NS K 4(S)+&a&g) ) ' i 2s(S)
8$

(22)

X~ = —,NR~ = —2N p,,y H~,tN) I r (26)

which may be combined with Eqs. (23) and (6) to
yield

which contains the notation K„=K for each near-
est-neighbor Dy3' pair and the assumption K„=Q
for all other pairs. Also used in obtaining Eq.
(22) was the fact that any given Dy" ion has four
nearest neighbors which are related to each other
by the 42m symmetry of the Dy~' sites, and that
only two of these nearest neighbors have a nonzero
separation from the given ion along the y axis.
Substitution of Eq. (2) into Eq. (22) gives

l ~
l

' l&~, )+)l )' '", ),
(23)

which we shall compare with an equivalent expres-
sion containing H~. To do this, we proceed in
analogy with Eq. (11)and define H» by

&z= ~sy' Hz ~

so that avoidance of double counting of the interac-
tions leads to

We assume that the anisotropic exchange interac-
tions between the N ions contained in a unit volume
are represented by the Hamiltonian

(20)

where the tensor K,&
describes the interaction be-

tween Dy
' ions i and j, the "prime" indicates

that the summation over i and j excludes terms
involving i =j, and the factor —,

' ensures that the
interaction between ions i and j is not counted
twice. Although we refer to K~"' as "anisotropic
exchange, " it should be noted that X~~"' may contain
contributions from other interactions which have
the form of Eq. (20). Isotropic exchange, of
course, is included in X„'"'.

Next we replace S& by (S~ ), thus adopting the
molecular field approximation, and assume that
the spatial dependence of (S, ) is sufficiently
gradual to justify expanding (S~ ) about (S, ) to
second order. If this spatial dependence is on y
only, as in the experimental situation ' and in the
propagation problem of Sec. IV, then (S~ ) becomes

(26)

By using Eqs. (9) and (16) in conjunction with the
expression

K= Kjl i„+Kjl 1 +Kiil i (2'7)

which is appropriate for 42m site symmetry, Eq.
(26) may be written in the form

HE = Hrco+ Hza

where H«and HE2 are given by

(26)

2 E~M„. E~M, . K))Mg . (29)

8NI /~ I g, ep " g,
Kil 8 M2

+ 2iz ~

gll
(30)

We note that if the interactions of a given Dy
'

ion with its next-nearest (or more distant) neigh-
bors are nonzero, then Hst) is still given by Eq.
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(sl)H fr =Hz+HL +Hzo

where Hz, H~, and H„o are given by Eqs. (1V),
(19), and (29), respectively. Substitution of Eqs.
(16) and (31) into Eq. (12) then yields a particular-
ized equation of motion which we immediately
linearize. To do this, we write

M= M»i»+m, H = H»i»+h, (32)

where m and h are assumed to be proportional to
e'"' and to satisfy the approximations

lml/~. «1, lhl/H. «1. (33)

Upon use of these inequalities and the at'breviation

H, =4(K„—K, )M,/Ng„l gs l~, (s4)

which denotes an effective anisotropy field, the
particularized equation of motion gives

mr+ H» + H» + pIIM» pj.M» + i

I

my

= M» —Pg, 35

(29) provided K is regarded as an appropriate aver-
age over the various interactions. As to H~a, it
is clear that this field does not vanish if the prob-
lem under consideration involves spin waves or
other spatial variations of M ~ Throughout the
remainder of this paper, however, we shalluse
H~ =H~o because in the relevant experiments '

IH~I is negligible compared to IH«l. The rea-
son is that under the linear conditions prevailing
in these experiments, each term of Eq. (30) is
smaller than the corresponding term of Eq. (29)
by a factor of the order of (va/2X), where X is the
electromagnetic wavelength inside the sample.
Since the roughness of the sample surfaces may
well lead to the excitation of spin waves whose
wavelength is small compared to X, our use of
H~=H~O involves the assumption that the effect of
these particular spin waves is implicitly included
in the phenomenological description of relaxation
introduced below. Another point of interest is the
absence in H~ of first derivatives of M. If the
direction of propagation used in the experiments2'3
had been z rather than y (or ~), then the 42m site
symmetry would have allowed the presence in H~
of a term proportional to aM/ez and leading (in
conjunction with Maxwell's equations) to a nondis-
sipative kind of attenuation of electromagnetic
waves.

Collecting the various contributions to H,«, we
have

m»=0, (sv)

We consider a DyPO4 sample in the form of a
disk whose faces are parallel to the xz plane. The
diameter of the disk is assumed to be very large
compared to its thickness but very small compared
to the wavelength X inside the sample. In this mag-
netostatic limit, the fields h„and H, appearing in
Eqs. (35) and (36) are simply the corresponding
applied fields. The field h„on the other hand, is
given by

h, = —4am, , (s8)

because along the y direction the applied magnetic
field is assumed to be zero. After substituting
Eq. (38) into Eq. (35) and noting that the value of
p, is surely within the range

0& p, &4~, (s9)

we take advantage of the Ising-like nature of DyPO4
by introducing the approximation

lt'4vm, (gJg„)'
(40)

IH +H» +PII~,

which makes it possible to simplify Eqs. (35) and
(36) by neglecting the terms involving (gJg„) m„
and (gjg„) m, . The simplified equations (35) and
(36) then yield the transverse susceptibility

H, + H, + v, M, + (iud/ I y, I )
(2~/g„ I yo I)' —[H, +H, + v, M, + (io.'&u/I y, I )]' '

(41)
Thus the static value of y is given by

where the terms containing a constitute a newly
introduced phenomenological description of relaxa-
tion. Our underlying assumption is that the relaxa-
tion produces an effective magnetic field which acts
on M„and is given by some negative number times
dM, gdf. This assumption is somewhat analogous
to that of Gilbert' who described the relaxation in
materials lacking g-factor anisotropy by introduc-
ing an effective magnetic field which acts on M and
is given by a negative number times dM/dt. We
note that Eqs. (35) and (36) contain the same n and
that this is a consequence of the tetragonal symme-
try. On the other hand, the factor lyoI

' in the o'.

terms of Eqs. (35) and (36) was inserted solely for
the convenience of having the unknown parameter
n be positive and dimensionless.

B. Small-Signal Susceptibility

g& in~

= M» —h„, 36

M, (gJg„)
H+H + M

which shows that the approximation (40) may be
expressed in the alternative form

(42)
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(4v4tat) & MiK (g1/gI I ) (51)
Next we note that if the undamped resonance fre-
quency (i.e. , the resonance frequency for a =0) is
to have the value ~, then H, must have that value
8',"which satisfies

~= —,g„I yo I
(H,"'+H, +v, M, ) . (44)

The resonance condition (44) is inapplicable, of
course, unless &u exceeds —,'g„I@0 I (H, +v,M, ). With
the use of Eqs. (34), (9), (6), (2), (15), and (5),
Eq. (44) may be written as

n~= g„I q, (H,"'+~,
,M, )-4(K„-K„)(s.), (45)

where M, is given by

M. =-ivg I~ I &s, ) (46)

hv =g„I Ps I (8,"'+v,M, )+2(K„—K,), (4v)

which agrees (for K, =O) with the resonance condi-
tion proposed and used in conjunction with the ex-
periments. '3

To simplify Eq. (41) for the susceptibility, we
define 6H, by

/I ~.l, (48)

which will turn out to be [see Eq. (51)] the half-
width of the resonance at half-maximum absorption.
After substituting Eqs. (44) and (48) as well as the
identity H, =H,"'+(H, —H, ') into Eq. (41), we in-
troduce the approximations

In the case of DyPO4, the lowest-lying energy
levels are known to constitute an exchange- and
dipole-split Kramers doublet' whose separation
from the nearest excited level is rather large'
(= VO cm '), being about ten times the doublet split-
ting. Even at a temperature as high as the 4. 2 K
used in the far-infrared magnetic resonance ' ex-
periments, therefore, DyPO4 may be described ac-
curately by a fictitious spin S of —,. If H, is suffi-
ciently large to cause paramagnetic saturation, then
only the lower level of the ground doublet is oc-
cupied. Thus we have (S, ) = ——,', because it is
known from the observed linearity of the Zeeman
splitting that even at the large values of H used in
the resonance experiments ' the description based
on S= —,

' does remain valid. Equation (45) now be-
comes

4aM. (g,/g„)'
(52)

The quantity of interest in the propagation prob-
lem to be treated in Sec. IV is not the susceptibility
y but the permeability

p~ =1+ay, (53)

where the purpose of the subscript p is to prevent
the permeability from being confused with the ionic
magnetic moment. By using the approximation
(52) in conjunction with Eqs. (53) and (51), we see
that the 6H, -free term of Eq. (51) is negligible
when used in p,~ rather than in g.

Thus we obtain

pp = pg —~pp = 1+ (py —1) —~pp y

2vM, (gJg„)' (H. —H,"')/5H,
6H, 1+[(H, —H,"')/5H, P

'

2~M, (gJg„)'
5H, 1+ [(H, —H,"')/5H, ]2

(54)

(55a)

(55b)

Since the quantity required in Sec. IV is actually
p~1 ~2, it is useful to introduce our final and most
stringent approximation

2&Mg(g Jail)' ((1
5H~

(56)

whose meaning is that the Ising-like aspect of the
material under consideration is more pronounced
than the smallness of its linewidth. Because of
the inequality (56), the I p, —11 and I &~ I of Eqs.
(55) are now small quantities so that Eq. (54) yields

The validity of the result (51) is clearly limited to
frequencies which are sufficiently high to make
Eq. (44) applicable.

As to the approximations (49) and (50), their
meaning is that both the "excursion" from the actual
resonance field and the half-width of the resonance
are small compared to the effective resonance field.
We also note that the inequality (40) is the most
stringent approximation made so far. By combin-
ing the inequalities (49) and (40), the latter may be
expressed in the more useful form

lH, —B,"'l
(49) /lp = 1+2(pg —1 —f/') .1/2 (5v)

H"'+H +v M

and find that Eq. (41) may now be replaced by

—,'M. (gJg„)' [(H,. —H, ')/5H, ] —f

5H, 1+ [(H, —H,")/5H, ]

(50)

Instead of the magnetostatic approximation of
Sec. III B, we now use the Maxwell equations

S(h+ 4vm)cV&e=-
8t (58a)

IV. ELECTROMAGNETIC PROPAGATION IN ISING-LIKE
SYSTEM

A. Propagation Constant and Characteristic Impedance
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s(7 e)ggxh =
at

(58b)

[1+(k /koe„)] h„= —4vm„,

h, = -4gm, ,

[1+ (k /ko o,)]h, = —4am, ,

e„=—(k/iko e, )h, ,

e~=0,
e = (k/ikon„)h„,

where the abbreviation

ko = (d/c = 27I'/Xo

(eoa)

(60b)

(60c)

(ela)

(elb)

(61c)

(62)

denotes the absolute magnitude of the propagation
constant in free space. Equations (60) are seen to
have a solution for which h„=h, =m=0 and h, &0.
We assume, however, that this "nonmagnetic" wave
(characterized by k=iko&,'~o) is not excited under
the experimental conditions, and we shall hence-
forth be concerned only with that wave for which
h, =o. Thus Eq. (eoc) gives m, =o, in agreement
with Eq. (3V). By eliminating h„and h, from Eqs.
(60a), (eob), (35), and (36), we then obtain two
linear homogeneous equations for the unknowns
m and m, In order that these equations possess
a nonvanishing solution, the determinant of the
coefficients must vanish. This requirement yields
a secular equation which we simplify by using the
inequality (39) in conjunction with the approxima-
tion (40). The solution of the secular equation is

H, + H~ +v,~M +(in(u/Iyo I)
(see/g„ I yo I

)' —[H, +H, +v,M, + (inca, / I y., 1)]' '

(63)
which may be combined with Eq. (41) to give

k = iko[e „(1+4vy) ]' (64)

We wish to emphasize that the susceptibility g
contained in Eq. (64) is the y given by Eq. (41).
Thus Eq. (64) does not yet contain the approxima-
tions (49), (50), and (56). In situations where these
approximations are not fulfilled, therefore, the
solution of the boundary value problem of Sec. IV B
should be based on Eq. (64) rather than on the ap-
proximate expression

and express the dielectric constant & in the form

E'jlxlx+ &slyly+ E'I)lglz y (59)

which is appropriate for the 4/mmm macroscopic
symmetry of DyPO4. Assuming the entire space
and time dependence of m, h, and e to be given by
e' ' "', we find that Eqs. (58) yield

which results from combining Eqs. (64), (53), and
(57). The advantage of Eq. (65) is that it contains
the simple expressions for JL(, , —1 and p, which are
given by Eqs. (55) and are subject to the approxi-
mation (56). In the problem of Sec. IVB, there-
fore, we use the propagation constant k of Eq.
(65) rather than that of Eq. (64). Thus we avoid
the need for computer calculations and obtain a re-
sult in closed form. Also used in Sec. IV'B is the
ratio Z= e,/h„whose value

Z = e, /h„= k/ikon„ (66)

is given by Eq. (elc) and is proportional to the
characteristic impedance of the material under
consideration. For a wave propagating along —i,
rather than+i, , the sign of k and hence that of Z
must be reversed.

B. Resonant Transmission through Slab

~= h„',"/h'" . (67)

The boundary conditions require that both e, and
h„be continuous at y=0 as well as at y= L. Thus
we obtain

h„'o' —h„'o' —Zh„'o'+ Zhm' =0,
A',~ +h~ —h~ —h () =0,(1) (&) (3) (4)

—~e- "o'h"'+ Z e-"h'" —Z e"'h'" = O

fkoL g(1) kL I (3) kLI (4) 0

(esa)

(68b)

(68c)

(esd)

which may be regarded as four linear homogeneous
equations for the unknowns h~", h~', A~3', and h~'.
In order that these equations possess a nonvanish-
ing solution, the determinant of the coefficients
must vanish. This requirement yields a secular
equation whose solution is

4Z fkoE' (I+Z)o "-(I-Z)o -" ' (69)

We suppose that the DyPO4 sample is in the form
of a slab bounded by the planes y=0 and y=L along
the y direction but unbounded along the g and z di-
rections. Suppressing, for simplicity, the time
dependence e'"', we now consider the magnetic
components of the five waves which are involved
in propagation through the slab. The incident wave
h~'e "o' and the reflected wave h„'o'e"o' propagate
in "front" of the slab (y &0), the waves h~'e*' and
h„'o'e ' propagate inside the slab (0&y&i.), and the
transmitted wave h' e "o' propagates in "back" of
the slab (y&L). It should be noted that the corre-
sponding electric components are given by Eq. (66),
that the amplitudes A 0 A~ are, in general,
complex, and that the quantity of interest is the
relative amplitude

k iko'E~~ [1+ 2(p& —1 —iso)] (65)
We note parenthetically that if the spin-wave terms
discussed and discarded in Sec. III A were non-
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negligible, then it would be necessary to use the
general exchange boundary condition' in addition
to the electromagnetic boundary condition used
above.

The quantity of interest in the experiments~'3 is
the ratio of the transmitted intensity to the incident
intensity. This quantity is given by T=- l7 I be-
cause the intensity is the time average of the mag-
nitude of the Poynting vector. Since the quantity
actually measured '3 is not equal to T but propor-
tional to T, we calculate not the relative transmis-
sion T but its normalized value T/T„, where T„ is
the value of T for p. , —1= p,~=0, i. e. , for H, =

In calculating ~ and hence T/T„ from Eq. (69), we
use Eqs. (65) and (66) and recall that [because of
the approximation (56)] both I p, , —1 I and I gq I are
small compared to unity. We find it convenient,
moreover, to assume that q, is real and that its
value satisfies &, -4. These restrictions are in-
troduced solely for the sake of simplicity and can
be removed, if necessary, at a later date. After
some lengthy algebra we obtain our final result

1+—(p, —1)+ p, e- &"2T A Bp Cp
T D

(70)

where the abbreviations A, B, C, D, p, and k, are
defined by

A = p —2p cos2k, L+ 1,
B=p —(1+p )e ' ~icos(2k, L[I+—,'(p, , —1)]j

(Vla)

2k~I P~ (7 1-b)

C = (p —1) e "+"2 sinI2k, L[1+—,'(g, —1)]],
D= p —2p e ~&~"~ cos(2k,L[1+—2(p, , —1)]].

(Vlc)

p (ql/2+ I)/(q1/2 I)

k, = ko&,

~ e-» & ~a (Vld)

(Vle)

(Vlf)

2k,L «1 .
Equation (VO) now becomes

(72)

(73)

which shows that in a thin sample of a strongly
Ising-like material the deviation of T/T„ from
unity vanishes in first order. This conclusion is
a quantitative confirmation of our earlier remark
(see Sec. I) concerning the possibility that in a
thin sample of an Ising-like material the resonance
absorption is too weak to be observable. We wish
to emphasize, however, that the validity of Eq.

Qf particular interest is the limiting case of a
thin sample. Since in this case L is small com-
pared to the wavelength X inside the slab, it is
appropriate to introduce into Eq. (VO) the additional
approximation

(73) is confined to materials which are so strongly
Ising-like that the stringent approximation (56) is
satisfied.

In order to derive a thin sample result in which
the first-order deviation of T/T„from .unity is
nonvanishing, we return to Eq. (69) and use the k
of Eq. (64) rather than that of Eq. (65). Thus we
avoid the assumption l p~ —1 I «1 which follows
from the approximation (56) and Eqs. (55). We
assume, instead, that koL, &„, and p~ satisfy the
approximations

~kL~ =k,L~(~„p,,)"'~«I, (74a)

—.koLI~ + p, l
«I,

and find that Eq. (69) now yields

T/T„= 1 —koI, p, ,

(74b)

(75)

which does contain a first-order deviation from
unity. If we now express p2 by Eq. (55b), then we
find that this deviation is an even function of H,
—H,"', i.e. , T/T„ is symmetrical, and if we take
the further step of invoking the approximation (56),
then we again obtain Eq. (73).

Next to be discussed is Eq. (70), our result for
the general case of an arbitrary L. We consider,
for this purpose, the typical graphs of T/T„shown
in Fig. 1. They were computed on the basis of
Eq. (70) and the following representative values~
of the various parameters: ko= 2v/0. 022023 cm ';
&„=16.8; M, =693. 30 emu; g =19.29; g, =0.10;
5H, = 12. 5 oe. [As to the value of M„note that
Eq. (46) gives M, .=1234. 9 if we use g =19.29,
(S, )= ——,', unit-cell volume=289. 61&10 ~4 cma, and

number of Dy
' ions/unit cell =4. Correcting for

the 56. 142% relative abundance of the "even" Dy
isotopes then yields the value M, = 693.30 assumed
in the computation. It may be more realistic, how-
ever, to use the total M„ i. e. , M, = 1234. 9, be-
cause in the present calculation hyperfine effects
have been neglected. The upper partof Fig. 1 shows
T/T„as a function of L for a fixed value of H„
namely, for H, = EF, ', and clearly displays a pattern
of dimensional resonances indicative of interference
effects. The lower part of Fig. 1 shows T/T„as
a function of H, —H,"' for L=I,, =0.0410 cm (left-
hand portion) and for L = L2=0. 0420 cm (right-hand
portion). It is seen that for L = I.„athickness for
which d(T/T„)/dL is positive, the magnetic reso-
nance transmission is such that I d(T/T )/d(H,
—H,'")

I is larger for H, H',"&0 than for H—, —H,
"'

&0, whereas for L=L3, a thickness for which
d(T/T )/dL is negative, the magnetic resonance
transmission is such that Id(T/T„)/d(H, —H',")

I

is larger for 0, —H',"&0 than for H, —H, '&0.
These asymmetries do not occur in the thin sample
result of Eq. (V5) and are, therefore, consequences
of electromagnetic propagation effects. Specifical-
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ly, these asymmetries arise from the fact that in
Eq. (70) the deviation of T/T from unity is .due not
only to p, ~ but also to p, , —1, and that at resonance
p., —1 changes sign. It should be noted, in this
connection, that in Eq. (70) the quantity p, , —1 occurs
both by itself and as part of the phase angle
2k,L[1+-,'(p, , —1)], corresponding to the fact that
p, ~

—1 is contained both in' and ink'. But the most
revealing aspect of Eq. (VO) is probably its predic-
tion that under appropriate conditions T/T„can ex-
ceed unity. This prediction constitutes a particular-
ly clear manifestation of electromagnetic propaga-
tion effects. The reason is that in the absence of
such effects, i.e. , in the thin sample result of Eq.
(75), the occurrence of T/T„& 1 is impossible be-
cause it would require that p, 2 be negative and
hence that energy be generated rather than ab-
sorbed in the sample.

We close with some comments on the relevance
of Eq. (70) to the far-infrared magnetic resonance
experiments '3 in DyPO4. First to be noted is the
fact that the experimental results2'3 can be fitted
reasonably well with asymmetric curves of the type

-100 0 IOO -IOO 0 IOO

z- Hz (Oe) H —H (Oe)

FIG. 1. Graphs of the normalized relative transmission
T/T„computed on the basis of Zq. (70) and the representa-
tive values of the various parameters listed in the text.
Upper part: T/T„vs sample thickness L for H =Hg~, i.e. „
at magnetic resonance. Lower part: T/T„vs H, -H,'~
for L=L~ (left-hand portion) and for L=L2 (right-hand por-
tion).

The author wishes to thank G. A. Prinz for many
discussions of experimental results, and both
him and J. H. Schelleng for programming an elec-
tronic computer to plot Fig. 1 and other graphs of
Eq. (VO).

APPENDIX

As stated toward the end of Sec. II, we now de-
rive the classical equation of motion of M for the
situation in which the R of Eq. (1) is replaced by

Xn= —DS, . (Al )

shown in Fig. 1 for L= L,. Thus it appears that
electromagnetic propagation effects offer a possible
explanation of the asymmetry of the resonance. We
wish to stress, however, that a successful fitting
of the experimental curves by means of Eq. (VO)

merely suggests but does not conclusively demon-
strate the presence of propagation effects. The
reason is that the thickness of the presently avail-
able DyPO4 crystals is rather nonuniform, a situa-
tion which perhaps can be ameliorated by the devel-
opment of a polishing technique suitable for crystals
of unusual brittleness. For a given crystal, the
measured value of L varies, in fact, by as much as
20 tt (which is 5-10/c of L) over the sample sur-
face. On the other hand, a change of only 10 p, in
the value of L used in Eq. (70) is sufficient to
change the asymmetry of the calculated T/T„vs
H, —H,"curve from that shown in Fig. 1 for L
= L, to that shown in Fig. 1 for L = L2. It is con-
ceivable, therefore, that the variations in the
sample thickness cause an averaging of the two
kinds of asymmetry, and that the observed asym-
metry arises from processes not included in the
present theory. Two examples of such processes
are the scattering of electromagnetic (or spin)
waves by the "steps" on the sample surfaces and
some suitable linewidth mechanism capable of
producing an asymmetric line shape even in a
thin sample. In view of the uncertainties resulting
from sample imperfections, we suggest that the
observation most amenable to theoretical interpre-
tation is not the line-shape asymmetry but the ex-
perimental result that T/T„can exceed unity. A
probably unique explanation of this experimental
result is offered by the presence of propagation ef-
fects, as shown by the above-mentioned fact that
under appropriate conditions Eq. (70) does predict
T/T„& 1. It should also be noted that while our
calculations are directly applicable to DyPO4 in a
state of paramagnetic saturation, the methods of
the present paper are clearly adaptable to other
Ising-like materials, including antiferromagnets
and ferrimagnets in which the g tensors of the vari-
ous sublattices may all be different.
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S, = S„sin8+S,cos8, (A2c)

where the f axis of the $, q, f coordinate system
is taken to be along (g., ). We further suppose the
anisotropy energy to be much smaller than the ex-
change energy so that the quantum-mechanical por-
tion of the calculation of average values may be
based on first-order perturbation theory. By taking
the f axis to be the axis of quantization, one easily
obtains the well-known relations7

(S', ) = (S'„)= - -,'[(S', ) —S(S+1)], (Asa)

(S,S„+S„S,)= (S,S, ) = (S„S,)=0 . (Asb)

A straightforward calculation based on Eqs. (Al)-
(A3) with the use of Eqs. (2), (5), and (6) then yields

=M, xHD, (A4)

where HD is given by

H~ = —2(K,~)q(M,~)~ig/M, ~ . (A5)

Here i, is a unit vector along the z axis and (K„),
is, at this point, merely an abbreviation for the
quantity

(K„),= —,'ND[3 (S& ) —S(—S+1)].

To eliminate M„and its components from Eqs.
(A4) and (A5), we use Eq. (9) and the expression

(A6)

~ ~ ~ ~ ~ ~

g = gal„l~ +ggl~ly +g((lglg q
(Av)

which is appropriate for certain cases involving
uniaxial symmetry. Thus we obtain

M„=2(g, M„i„+g,M, i„+g, 'M, i,), (As)

where i and i, are defined analogously to i,. Equa-
tion (A5) now becomes

We use a rectangular coordinate system x, y, z
whose z axis is along the principal axis of the crys-
tal. Next we write the equations describing the
x, y, z components of Eq. (1) and apply the commu-
tation relations S && S = iS. Assuming the existence
of a ferromagnetic exchange interaction which pro-
duces a nonvanishing ( P„), we then introduce the
transformation

S„=S, cosy —S„cos8siny+S~ sin8 siny, (A2a)

S, = S& siny+ S„cos8cosy —S& sin8 cosy, (A2b)

H
gllg~1(Ksn)gMg~g

giiM —(8ii -gi ~g

which is seen to reduce to

H, = —[g„(K.,),/M]T..

(AQ)

(A10)

in the important special case when the displacement
of M„ from its equilibrium position is small. Sub-
stitution of Eqs. (AB) and (AQ) into Eq. (A4) then
yields our final equation of motion for the situation
described by K=SC~. While we do not present this
final equation explicitly, we note that it can be
written in the compact form of Eq. (12) in which

H,« is now given by the HD of Eq. (AQ).
Two comments on the above treatment seem ap-

propriate. The first of these concerns the meaning
of (K„)q. With the help of Eqs. (Al)-(A3) we obtain
the well-known expression

N(R~) = —2ND[3 (S', ) —S(S+1)]cos'8

(All�

)

for that portion of the anisotropic part of the free
energy density which arises from the single-ion
anisotropy represented by XD. Substitution of Eq.
(A6) into Eq. (All) gives

N (3C~ ) = (K„),cos 8, (A12)

so that (K„),is just the first ord-er anisotropy con-
stant arising from 3CD. We wish to emphasize that
if g is anisotropic then (K„), should not be identified
with the total (i. e. , phenomenological) first-order
anisotropy constant K,. This is not only because
(K„),contains solely that portion of the anisotropy
which arises from X~, but also because of the fact
that the anisotropy energy density N(K~ ) depends
on the orientation of M„whereas the total anisot-
ropy energy density depends on the orientation
of M.

The second comment on the treatment given in
this Appendix concerns the fact that it employs first-
order perturbation theory. This is usually ade-
quate in the case of uniaxial symmetry. In the case
of lower symmetry (e. g. , orthorhombic), however,
the use of higher-order perturbation theory was
shown" to reveal a new effect, namely, a mutual
admixture of the various spin states and hence an
anisotropic M„. This effect differs, of course,
from the case of an anisotropic M treated in the
present paper. Since the anisotropy of M„ is not
yet of experimental importance, its dynamical con-
sequences will not be considered here.
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The Raman spectra of the soft-phonon behavior in the ferroelectric transition in SbSI is stu-
died by means of a new technique in which the phase transition is induced by hydrostatic pres-
sure. The crystal temperature is maintained constant and the ferroelectric transition is
created by a linear shift of the Curie temperature. Evidence is provided for the existence of
two distinct mode couplings involving three phonons.

INTRODUCTION

Antimony sulfo-iodide is a crystal in which there
coexist a large number of remarkable physical
properties. SbSI is the first semiconductor found
to be both photoconductive and also ferroelectric. '
In addition, the crystal exhibits a strong electro-
optical and electromechanical effect3 and an unusu-

ally strong dependence of the band gap on the
electric field, ' as well as a very strong energy
band- gap variation with temperature. ' All these
interesting properties superpose and vary sub-
stantially when the temperature changes, in par-
ticular around the Curie temperature T&. In pre-
vious Raman-scattering investigations, it was re-
ported that an optical I', (A, ) band shows a soft-
mode behavior when Tc is approached from below.
It was also proposed that the band consists in fact
of two optical modes which exhibit the level-repul-
sion characteristic for a system of coupled har-
monic oscillators. ' Infrared ref lectivity mea-
surements show a temperature-dependent optical
mode when T& is approached from above. All these
experiments were performed at various tempera-
tures which modify simultaneously and appreciably
the other fundamental properties of the crystal.

In this paper, we propose a different technique

to study the phonon spectrum change during the
phase transition in SbSI. Under hydrostatic pres-
sure, the Curie temperature T& is considerably
lowered: dTc/dP= —39 to —50'C/kbar, accord-
ing to Refs. 5 and 10, and dT~/dP = —3'l C/kbar,
according to Ref. 11. It is then expected that the
ferroelectric transition may be induced by hydro-
static pressure at fixed temperature. The phonon
behavior may therefore be studied at various T&
instead of T. This method presents the significant
advantage of eliminating the influence of most of
the other effects, since they are only slightly pres-
sure dependent. Furthermore, with our experi-
mental equipment @n error of ~I'= 20 bar on pres-
sure is estimated; this corresponds to an error of
about 4T& ——0. 8 'C on the Curie temperature. It
is then possible to study the phase transition with
more accuracy.

It is the purpose of this paper to present the
Raman scattering of SbSI investigated at a set of
fixed temperatures under hydrostatic pressure.
Our attention is especially focused on the ferro-
electric phase-transition region where substantial
spectral change is expected. The results deduced
from this experiment are somewhat different from
those reported previously:

(i) Two mode couplings are actually observed.


