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about 3%. We therefore can conclude that the CPA
is a reasonably good approximation even if scatter-
ing potentials are correlated.

In this paper, we have presented a simple form-
alism for a modified CPA which takes into account
effects of off-diagonal randomness self-consistent-
ly. Our formalism is perhaps most suitable for
treating disorder in Heisenberg ferromagnetic
alloys. In the weak-scattering limit, the CPA re- -
produces the result of the mean-field theory as ex-

pected. In the strong-coupling limit, the CPA goes
beyond the mean-field theory in that it predicts
such properties as critical concentration, which has
so far been beyond the scope of the mean-field
theory. The contribution from correlated terms is
estimated to be only a few percent corrections.
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A theory of spin fluctuations is presented for transition-metal alloys of arbitrary concen-

tration using an analog of the coherent-potential approximation of Soven.

The model is

used to analyze experimental data for the spin susceptibility of paramagnetic Pd~Ni alloys,
and it is also possible to calculate the Curie temperatures of ferromagnetic Pd-Ni alloys.

1. INTRODUCTION

There have recently been a number of experi-
ments which have measured the bulk susceptibility,
the electronic specific heat, the electrical resis-
tivity, and other properties of nearly magnetic
transition-metal alloys.! All these quantities show
dramatic behavior as the concentration of the alloys
is varied. For example, the bulk susceptibility
of Pd-Ni?* exhibits a sharp increase as the con-
centration of Ni is increased, and the alloy becomes
ferromagnetic when this concentration reaches
about 2.2 at.%.

The theory of localized spin fluctuations has been
extremely successful in describing such alloys:

It has been treated in detail by Lederer and Mills, °
and by Englesberg, Brinkman, and Doniach.® How-
ever, the validity of this theory is restricted to

dilute alloys—so that it concerns itself only with
the initial behavior of experimental quantities, for
example, in Pd-Ni, the initial slope of the suscep-
tibility as a function of Ni concentration.

There is here a strong analogy with the now well-
understood theory of dilute nonmagnetic alloys,
which is also limited to the description of initial
behavior. In this case, however, a successful
technique has been developed to extend the theory
to higher concentrations of impurities and, in
principle, to substitutional alloys of arbitrary com-
position. This technique is the coherent-potential
approximation (CPA) of Soven, 7 which has been dis-
cussed by a number of authors, ® and which recently
has been used to describe disordered Cu-Ni al-
loys.?

In the present paper, an analog of the CPA is
used to develop a new approach to spin fluctuations
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in nondilute transition-metal alloys. The formal-
ism of the method is presented in Sec. II, and a
detailed comparison with the susceptibility of
paramagnetic Pd-Ni and the Curie temperature of
ferromagnetic Pd-Ni is given in Sec. III. The final
section discusses the limitations of the theory and
ways in which it might be improved.

II. SPIN FLUCTUATIONS IN DISORDERED TRANSITION-
METALS ALLOYS

A. Dynamic Susceptibility

The alloys under consideration are binary alloys
AB in which both components are transition metals.
The electronic structure is described by a single
conduction band, and their magnetic character is
described by a Hamiltonian due to Hubbard!®:

_ T
H-? Ty Ciocjo+ Z\/ IA”nnu
[

+E Mgy, Mg=CloCig+ (2.1)
cl, and c,, are creation and anihilation operators
for the conduction electrons in Wannier representa-
tion; o is a spin index, and ¢ labels a lattice site.

I, and I are the intra-atomic exchange constants
for atoms A and B, respectively. All interatomic
exchange effects are neglected and the restricted
sums on the right-hand side of (2.1) run over lattice
sites A and B, respectively. 1

The spin excitations of the alloy are described by
the dynamic spin susceptibility x,5(q, ¢’, w), which
is temperature dependent. For the particular case
of an alloy composed of only one A atom in an other-

- wise pure B matrix, and for which Iy =0, Lederer
and Mills® have shown that x45(g, ¢’, ) in the
random-phase approximation (RPA) is

X3 (g, ©)Lx’(q’, w)
1-Lixp(w)

XAB (q, q', w)= Xg (q’ w)éqq’ +

(2.2a)
where
XE(w) =23, x3(g, @) . (2. 2b)

The alloy is in a paramagnetic state. x2(g, w) is
the noninteracting dynamic susceptibility of the pure
B matrix, and ¢, ¢’, and w are the momentum and
frequency coordinates of the spin excitations which
no longer possess translational invariance. Equa-
tion (2. 2) shows that a single A atom scatters the
spin excitations of the B matrix from state |gq, w)
to state lg’, w); this multiple scattering is de-
scribed by a £ matrix
7R ) I/ w— (2.3)
1-Lxsw)’
whose poles correspond, in the absence of a local
magnetic moment, to localized spin fluctuations on
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the A atom.®

For a concentrated AB alloy described by the
Hamiltonian of (2.1) the assumption of an average
band structure reintroduces translational invariance
and leads to a noninteracting susceptibility
Xa110y(@, w). In the average crystal the interaction
between the electrons is approximated by an aver-
age exchange constant I, (w) which has to be eval-
uated as a function of alloy composition. I (w) is
a function of frequency and has an imaginary part
for w#0. The dynamic susceptibility xe (g, w) of
the concentrated alloy in the RPA is then given by

Xalloy(qs w)
1- Ieu(w)Xauoy(‘L

The excess exchange scattering on each lattice
site is thus I, — I;;(w), where a=A or B, and from
(2. 3) the ¢ matrix for such excess scattering is

Xett (q’ ) ) (2 4)

I efl(w)

Tol0)= Tt

= Logs ()] (2.5
Xeo2(w) is the average over all lattice sites of the
local spin susceptibility, and is given by

(2.6)

A direct analogy with the coherent potential ap-
proximation of Soven’ suggests that I;;(w) should
be determined by equating to zero the average over
all lattice sites of the excess exchange scattering.
In terms of the # matrices of (2. 5) this becomes

naTs(w) +n5 T(w)=0, 2.7

where n, and ng are the concentrations of A and B
atoms, respectively. From (2.5) and (2.7) the
self-consistent equation for I,;,(w) becomes

(14 = Lgs ()]

Xélf):(w)zzq Xeff(q’ w) .

Leg(w)=nuly +ngly -

X x:gf(w)[IB =L (@)] , (2.8)
and this equation, together with (2. 6) and (2. 4),
provides a description of the spin dynamics of a
transition-metal alloy in the paramagnetic state.

In the limit of a dilute alloy of A in B (n, <1),
Eq. (2.8)for I, (w) can be written in the explicit
form A

nA(IA - Ip)
(IA"IB) c(w) ’

where x1°°(w), defined in (2. 2), depends only on I5.
Equations (2. 4) and (2. 9) are then identical with
the result of Englesberg, Brinkman, and Doniach®
(EBD) for the susceptibility of a dilute binary alloy.

The actual local susceptibilities on A or B sites
will, of course, differ from the average value
X2¢(w). By analogy with the CPA expressions for
the local density of electron states, ? the actual
values may be written as

Lge(w)=1, (2.9)
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Xeft (@)

1- [Ia - Ieﬂ(w)]xrt’g(w) ’
and this expression describes the localized spin
fluctuations on A and B sites in the disordered
alloy.

The bulk spin susceptibility of the alloy is given
by the limit of y.(g, w) as ¢ and w tend to zero,
so that, from (2. 4),

bulk _ Xalloy(O, 0)
X = .
1- Ieff(O)Xa.lloy(os 0)

Xa110y(0, 0) is the static bulk spin susceptibility of
the alloy in the absence of interactions.

At zero temperature yu10,(0, 0) is equal to Ty,
the average density of free-electron states at the
Fermi level. Thus, at T=0, the expression for
the bulk susceptibility becomes

Xo*%(w) = (2.10)

(2.11a)

bulk)T_ - Fav .
=0 1- [Ieft (0)]T=0rav

For isoelectronic alloys such as Pd-Ni I',, may be
assumed to be independent of concentration, but for
other alloys it is necessary to include band-struc-
ture effects explicitly.!! For some discussion of
this point, see both Secs. II and IV.

(x (2.11b)

B. Critical Concentration: Curie Temperature

A particular class of alloys to which the present
model is appropriate corresponds to 'y, Iz <1 and
I, I, >1, so that within the RPA, metal B is an en-
hanced paramagnet and metal A a Stoner ferromag-
net.? Such alloys exhibit a paramagnetic-ferro-
magnetic phase transition at a concentration
Ny =Neyt- Since the static limit of the bulk spin
susceptibility becomes infinite at the ferromagnetic
phase boundary, the implicit equation for n..; is,
from (2. 11b),

1= Tyy[Ler1(0)] 7o -

At concentrations n, >n,,, the alloy will exist in
a ferromagnetic state at temperatures less than a
Curie temperature T, which depends on concentra-
tion. T, is the temperature at which x*“'¥ of (2.11a)
becomes infinite, so that

(2.12)

1= [Xa110y(0; 0)Lge (0)]T=Tc (2.13)

Xa110y(0, 0) may be expanded to second order in
ET,/cr, where € is the Fermi energy, and since
kT, < e€p, this expression may be rewritten as
T I o — 1/2
c =(—L————e—r v[raf}(O)); =1 ) ) 2.14)
c aviA =
Tf is the Curie temperature of the pure A metal.
[Ze¢¢(0)] 7.7, may be determined from (2. 8) if the
temperature-dependent local susceptibility is ex-
panded as
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X235 (0)por, = Ty [C = D(RT, /€ )?] . (2.15)

T,,C is the value of x'2£(0) at zero temperature and
at the critical concentration n.;: It may therefore
be determined from the bulk susceptibility in the
manner described in Sec. II. D is a parameter
which depends only on the band structure of the al-
loy: Its value may be explicitly derived in an ap-
proximation which treats the conduction band as
free-electron-like, but, in general, it may be used
as a fitting parameter. The Fermi energy €5 is
assumed not to change with alloy composition: It
is determined from the value of T4,

From Egs. (2.14) and (2.15) the expression for
T, becomes

(Tc/T:)z = ({[1 - ravC(IA - IB)]2 +4nA ra.vC(IA - IB )} 1/2
=1+ T, C, —Ip) + 20)/[(1 +¢)ZC] s

(2.16a)
where ¢ is given by
o= D
~ 8r2Ce
X(l_ 11 -T,,CI - I;)1 - 2n,)! )
Tl -Tn O, - )P, T,,CU, )} 2 )
(2. 16b)

III. COMPARISON WITH EXPERIMENT

The theory developed in Sec. II is now used to
analyze the experimental data for Pd-Ni.

Pd-Ni is paramagnetic for Ni concentrations less
than about 2.2 at.% and is ferromagnetic for Ni
concentrations greater than this. The two metals
are isoelectronic and happen to have densities of
states at the Fermi level of almost the same value
(2. 3 states/eV/atom).*** Consequently, in the
paramagnetic region, it is a reasonable approxi-
mation to assume I',, [Eq. (2.11Db)] to be constant
at this same value, provided that the Ni and Pd
conduction bands have the same shape and are not
displaced relative to one another.

Under these circumstances, the theory of Sec.
II A can be applied directly.

The dynamic susceptibility for Pd-Ni to lowest
order in Ni concentration is given from (2. 4) and
(2.9) as

(Iyy = I W
)30, ) (B s TGRS

(3.1)

In this approximation, the average local suscepti-
bility is given from (2. 2b), (2.6), and (3.1) as

(Im - [Pd)XIgzcl) (w)
- (Im - Ipd)x}:%"(w) ’

Xett (©) = xpa (@) + 1y, 7

(3.2)
where
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The dynamic susceptibility to a higher order in
Ni concentration is obtained by substituting x:3g(w),
given by (3.2), into (2. 8) to obtain L, (w), and then
substituting for I, (w) in (2.4). This approximation
is valid for Pd-Ni since the Ni concentration is very
small in the paramagnetic regime. The static
limijt, as expressed by (2.11b), then gives an ex-
plicit (but cumbersome) expression for the zero-

(3.3)

. ' AN s )
05 10 15 20 25

Concentration of Nickel in Atomic °/o

Theoretical fit to the data of Williams (Ref.

FIG. 2.
2). Error bars for the concentrations (A. 1. Schindler,

private communication) are shown. The full curve uses
Talpa=0.88, Ty In;=1.16, C;=3.45, and C,=108; the
dashed curve uses I'y, Ipg=0.80, T', In;=1.20, C1=2.43,
and C,=102. Both curves correspond to an initial slope
of n=70, which is drawn as a dash-dotted line and cor-
responds to the EBD theory.

C,=96. The initial slope has a value 7=60.

temperature spin susceptibility.

The following expressions for the critical concen-
tration ny,;; and the initial slope, 7, of the suscep-
tibility as a function of concentration are obtained:

n - (1 - IPdrav’)[l - (INl - IPd)C],]
orit (INl - IPd)rav + alcz(INira.v - 1)(Ipdrav - 1) ’

(3.4a)
1 9 bulk ; .
7 E[ oy haller ] Pl 214 I‘?"r“ , (3. 4b)
Xea Oy idug, ., a
where
o= rav(INi "IPd)/[l - (INi _IPd)ravC] ) (3.5a)

10
o8t
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§ 0.4t
To / / 4 SADRON and MARIAN
/‘ ! @ CRANGLE et al.
o2F !
0.0 L 1 l 1 L L
) 20 40 60 80 100
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FIG. 4. Curie temperatures of Pd-Ni alloys, showing
theoretical fits to the experimental data (Refs. 19 and
20). The full curve has D=0.25, and the dashed curve
has D=1.50. The dash-dotted curve is the prediction
of the uniform enhancement model (see text).



5
TABLE 1. Exchange constants for Pd and Ni.
Material TI Ref.
Pd 0.8 13, 17
Pd 0.84 16
Pd 0.88 15
Ni 1.16 15
Ni 1.20 18
ravcl =Eq de(q: 0) Exk’odc(o) ’ (3- 5b)
(To)*Ca=20 [xpala, 0T =x53 (8. 5¢)

The available data for the bulk spin susceptibility
of paramagnetic Pd-Ni are shown in Fig. 1. In
order to fit the theory to these data it is necessary
to choose values for I'yIy; and I'y, [y, and then to
determine from the data best values for the param-
eters C, and C, of (3.5). The values of I',,Jy; and
T'yIpg which have been suggested by other work-
ers!3,15~18 5o shown in Table I, and the solid lines
in Figs. 2 and 3 use the values of Shimizu.!® These
two figures represent best fits of the theory to the
data of Williams and of Fawcett ef al., respective-
ly.

In order to indicate the extent to which the theo-
retical curves depend on the values of the exchange
constants, Fig. 2 also shows a dotted curve which
is a best fit to Williams’s data® using I, Jy;=1.2
and T, [p4=0.8. It is noticeable that the three the-
oretical curves do not correspond to the same
values of the parameters C, and C, [Eq. (3.5)], and
so it is not possible to state unambiguous values for
these parameters; however, this is a result of the
considerable scatter of the data points.

In both Figs. 2 and 3 the dash-dotted line is the
prediction of the EBD theory [(2.4) and (2.9)] fitted
to the appropriate values of 7 from (3. 4b) which
are 70 and 60, respectively. It is noticeable that
neither value is as high as the value of 87 usually
quoted in the literature.! The critical concentra-
tions corresponding to the two sets of data are also
different: 2.3 and 2.5 at.%, respectively. Values
of the critical concentration obtained from resis-
tivity and specific-heat measurements are typically
2.2 at.%, favoring the theoretical extrapolation
from Williams’s data.? However, the theory does
not include either the effects of clustering or the
effects of critical fluctuations, and so it is probable
that the critical concentrations are overestimated.

In order to fit the Curie-temperature data, **2°
it is again convenient to assume that I';; does not
change with alloy concentration. The justification
for this assumption is much weaker than that for
the paramagnetic alloys—but its use does not
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strongly affect the theoretical predictions.

The data are displayed in Fig. 4, and the solid
line corresponds to a best fit which uses the values
of C; and C, from Williams’s data? to give a value
of the local susceptibility at the critical concentra-
tion as 13. 2 states/eV/atom. The corresponding
value of the parameter D is 0. 25, and the sensi-
tivity to the variation of D is indicated by the dashed
curve, which corresponds to D=1.50. The general
agreement of the theory with experiment should be
contrasted with the prediction of the simplest
“virtual-crystal-like” theory, which sets I,,,(0)
=nyylyy +Mpalpg, and yields the dash-dotted curve.
Better agreement with experiment might be expected
if the theory took better account of changes in the
band structure, and if the effect of Ni-Ni inter-
atomic exchange were included.

IV. CONCLUSION

A method for examining the properties of concen-
trated transition-metal alloys in RPA has been
presented above. The method is applicable to iso-
electronic alloys and, inparticular, explains experi-
mental data for paramagnetic Pd-Ni. Its extension
to describe the magnetization and the spin-wave
spectrum of the ferromagnetic alloy is under way.

The advantage of the theory is that it can describe
the properties of an alloy such as Pd-Ni at all con-
centrations, but its disadvantage is that it is based
on the intra-atomic scattering of spin excitations.
Thus it does not include interatomic exchange in-
teractions or clustering effects, although the latter
might be included by the use of “pair correction”
terms.”

It is also difficult to extend the theory directly
to alloys for which potential scattering is impor-
tant. In this case the scattering of spin excitations
can no longer be described in terms of a ¢ matrix,
since the electron-hole pairs which make up the
spin excitations are destroyed by potential scatter-
ing. Band-structure effects add further difficulties
to the calculation of the dynamic susceptibility, but
this problem is also under investigation.

ACKNOWLEDGMENTS

The authors wish to thank the following people
for stimulating and useful conversations: R. Bass,
W. F. Brinkman, A. Caillé, L. M. Falicov,

K. Levin, A. Luther, M. Shimizu, and P. Soven.
They are grateful to E. Fawcett, A. Schindler, and
G. Williams for helpful discussion of their sus-
ceptibility data, and to F. T. Hedgcock, W. B.
Muir, and J. O. Strom-Olsen for critical readings
of the manuscript.

*Work supported by the N. R.C. of Canada.
!G. Gladstone, J. R. Schrieffer, and M. A, Jensen,
in Superconductivity in Tvansition Metals: Theory and

Experiment, edited by R. D. Parks (Dekker, New York,
1968).
*Measurements reported by G. Williams, quoted in



106 R. HARRIS AND M. J.

A, 1. Schindler and C. Mackliet, Phys. Rev. Letters 20,
15 (1968). ' )

3C. Chouteau, R. Fourneaux, K. Gobrecht, and R.
Tournier, Phys. Rev. Letters 20, 193 (1968).

‘E. Fawcett, E. Bucher, W. F. Brinkman, and J. P.
Maita, Phys. Rev. Letters 21, 1183 (1968).

P. Lederer and D. L. Mills, Phys. Rev. 165, 837
(1968).

6S. Englesberg, W. F. Brinkman, and S. Doniach,
Phys. Rev. Letters 19, 1040 (1968); referred to in the
text as EBD.

'P. Soven, Phys. Rev. 156, 809 (1967); 178, 1136
(1969).

8B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys.
Rev. 175, 747 (1968).

%G. Stocks, R. W. Williams, and J. S. Faulkner,
Phys. Rev. Letters 26, 235 (1971).

105, Hubbard, Proc. Roy. Soc. (London) A276, 238
(1963).

ZUCKERMANN

K31

1gee also K. Levin and K. Benneman, Bull. Am.
Phys. Soc. 16, 424 (1971).

2g, C. Stoner, Proc. Roy. Soc. (London) Al7, 371
(1932).

130, K. Anderson and A. R. Mackintosh, Solid State
Commun. 6, 285 (1968); O. K. Anderson, Phys. Rev.
B 2, 883 (1970); A. J. Freemann, A, M. Furdyana,
and O. J. Dimmock, J. Appl. Phys. 37, 1256 (1966).

143, Wakoh, J. Phys. Soc. Japan 20, 1894 (1965).

15M, Shimizu (private communication).

16A. Misetich and R. E. Watson, J. Appl. Phys. 40,
1211 (1969); A. Misetich (private communication).

I'T, M. Geballe, B. T. Matthias, A. M. Clogston,
and H, J. Williams, J. Appl. Phys. 37, 1181 (1966).

1p, Wohlfarth, J. Appl. Phys. 41, 1205 (1970).

15c. Sadron, Proc. Roy. Soc. (London) Al7, 371
(1932); V. Marian, Ann. Phys. (Paris) 7, 459 (1937).

2J. Crangle and W. R. Scott, J. Appl. Phys. 36,
921 (1965).

PHYSICAL REVIEW B

VOLUME 5,

NUMBER 1 1 JANUARY 1972

High-Temperature Entropy and Specific Heat of Interacting Electrons in a Solid*

‘ | Joseph Callaway
Department of Physics and Astvonomy, Louisiana State Univevsity, Baton Rouge, Louisiana 70803
(Received 23 July 1971)

The virial expansion for a fermion system is employed to derive an expression for the high-
temperature entropy of electrons which interact according to the Hubbard Hamiltonian. The
results are applied to an itinerant electron ferromagnet at temperatures well above the Curie
temperature. In contrast with the results of the Stoner theory, a nonvanishing interaction con-
tribution to the entropy and specific heat is obtained above T'.

INTRODUCTION

In two previous reports, the virial expansion has
been considered for a system of electrons in a
solid!'? which interact with an effective short-range
repulsion (the Hubbard Hamiltonian®). The virial-
expansion technique is applicable to low-density
systems at high temperatures. While these are
not the usual conditions which prevail in solid-
state problems, it is possible to use this technique
to study an itinerant electron ferromagnet, for
example, at temperatures higher than the Curie
temperature. In some such systems it is possible
to satisfy this condition and still have the tempera-
ture quite small relative to other characteristic
parameters (e.g., bandwidth).

In the usual treatments of itinerant electron fer-
romagnetism, it is found that the magnetic entropy
and specific heat vanish above the Curie tempera-
ture.? Such results are characteristic of molecular
field theories, and are at variance with nature. In
contrast, the virial expansion is an exact procedure
which will yield nonvanishing results for these
quantities. The specific heat of the ferromagnet
ScIn(7T¢ =6.7 °K) has been measured by Isaacs

and Knapp.® The present theory should be applic-
able to such a system.

Our previous calculations have yielded exact ex-
pressions for the second virial coefficient for a
system of electrons interacting according to the
Hubbard model. An exact expression has also
been obtained for the third virial coefficient, but
we are unable to evaluate it completely. The re-
sults presented here should be essentially exact in
regard to the first-order correction to the results
for a noninteracting system, but are only approxi-
mate in the next order.

THEORY

Let Z be the grand partition function for the sys-
tem, which has temperature 7. The free energy
F and entropy S are given by

F==pyTInZ, (1)

(%),

s

(in which V is the volume and u is the chemical po-
tential of the system). The virial expansion for Z
is



