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Approximate analytical solution of the nonlinear Boltzmann equation
with an electron-electron interaction
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The nonlinear Boltzmannn equation in which electron-electron interactions are taken into account
and in the presence of an electric field is solved by an iterative strongly convergent procedure starting
from the linearized solution. The numerical calculations are interpolated so as to have an explicit
analytical Fokker-Planck equation whose steady-state solution is of the kind of a Chapman-Cowling-
Davydov expression. The analytical solution is useful to treat the long time tails of the distribution func-

tion which would demand 10 years of calculation by a Monte Carlo method.

In the case of spatial uniformity, the electron probability density f (r, v, t)=f(v, t) is governed by the nonlinear
Boltzmann equation in which the electron-electron interactions are taken into account
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where t denotes time, a=eE/m the electron acceleration
due to the electric field E, v' and V,' are the velocities of
the electron and the atom of the ith species, respectively,
immediately before a scattering event such that the corre-
sponding velocities after collision are v and V; at a
scattering angle 8, with p, =cos8„d Q=sin8, d8, dp„
where y, is the azimuthal scattering angle, F; (V;, t ) the
distribution function of the ith species of scattering
atoms, v„and v, the ith species atom-electron and
electron-electron differential collision frequencies, respec-
tively.

Equation (1) is rigorously valid when f(r, v, t ) does not
depend on r. Its linear part (in f) is still valid in the form
of Eq. (1) even when f (r, v, t) depends on r provided
F;(r,V;, t)=F;(V;,t) is r independent as can be proved

by integrating the complete Boltzmann equation over r.
The nonlinear part of Eq. (1) (given by the last two terms

of the collision integral) is an acceptable approximation

upon integration over r when its contribution is modest

compared to that of the linear part as can be seen by the
density-gradient expansion.

Except in the trivial case of equilibrium, for which

f(v) ~exp( —mv /2kT), no exact solutions are known

for Eq. (1}. There are numerical solutions, for instance,
obtained by the Monte Carlo method. These solutions

are very useful in many cases but not when the long time
tail of f (v, t ) is of interest. For example, the 1/co fiicker
noise for electrons has been measured down to co;„=(1
month) '. Taking into account that the flight time of
electrons in semiconductors is =10 ' s one should cal-
culate the trajectories of 30X86400/10 ' =2.6X10'
free Sights, demanding a time of =10 years if using a
modern supercomputer.

Approximate solutions are obtainable by the reduction
of Eq. (1) to a Fokker-Planck equation. Chandrasekar
obtained it for the isotropic component fv of f and then
he solved it numerically. Spitzer and collaborators '

have extended this calculation by retaining the first two
components of the Legendre expansion

f(v, t)=fv(v, t)+pf, (v, t), (2)

where p=E v/Ev. Then Rosenbluth and collaborators7
further developed Spitzer's method in the case of an
inverse-square force in the collision operator which gen-
erates logarithmic divergences at small scattering angles.
To suppress the divergences they introduce a natural
cutoff where the relative kinetic energy of the particles is
approximated by 3kT. They say —that "it would probably
not be justified in any event to consider the argument of
lnD as better determined than this. " Actually, this ap-
proximation is acceptable for v &(v ) but not for
v «(v ) which is an important speed interval for the
study of the flicker noise.

The complicated expressions appearing in this method
are to be solved numerically and no explicit analytical
solution is obtained. This method is therefore unable of
producing the long time tail off (v, t ).

Rosenbluth's method has been simplified and im-
proved by Gurevich and by Kagan and Lyagushchenko
who introduce both the atom and electron temperatures
(T and T„respectively i}n the Coulomb logarithm. How-
ever, Gurevich restricts his treatment to a small degree
of ionization and to assumed Maxwellian distributions.
This second point is criticized by Kagan and Lyagush-
chenko who find an approximate expression for fo(v} in
the steady-state case. No time dependence is considered
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in Refs. 8 and 9 and experimental values for T, are used
in Ref. 9 in order to obtain tractable results.

Neither of the above approximations are used in our
new method consisting of the use of Eq. (2) and of an
iterative procedure for the nonlinear electron-electron in-
teraction. In spite of our heavy use of the computer, we
succeed to obtain an explicit approximate expression for
the Fokker-Planck equation and its solution in the
steady-state case by analytical interpolation of the partial
numerical results.

For the electron-atom interactions we use the Davydov
approximation, ' i.e., F(V, t)=5 (V) and the substitu-

tionof fo for

f0=f0+(kT/mv)(af o/av ) . (3)

Multiplying the resulting equation by the jth Legendre
polynomial (Po=l and P, =p) and integrating over p
gives'

afo a a+
2 (v f )=Bo. (4)at 3V av

af,+a =B, , (5)at av

where
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p, being the scattering angle in the laboratory system.
To obtain Eq. (6) we have used the physical considera-

tion that the number of electrons scattered inside an ele-
mentary solid angle is the same in any reference system,
i.e., v, d Q=v„d Q, in which the subscript c denotes the
center-of-mass system and v„ is given by the Rutherford
formula" (in Gauss system)

4Ne

rn ~v,
' —v'„~ (1—p, )

where N is the free-electron concentration and p, =cos8,
the cosine of the scattering angle 0, in the center-of-mass
system. Moreover, we have also used the obvious rela-
tion ~v' —v',

~

= ~v,
' —v'„,

~
representing the nonrelativistic

I

invariance of the relative velocities.
We approximated f (v„t)=fo(v„t) in Eq. (6) since

}ttf(v, , t) is much smaller than fo for free electrons in
gases and semiconductors when E & E;„,where E;„ is the
electric field value at which the inelastic collisions begin
to be appreciable compared to the elastic ones. Obvious-
ly we cannot neglect f&(v, t) in Eq. (6) because f, appears
as a factor and is not added to the leading term fv(v, t).

For E (E;„and electron-atom scattering it is'

v' —v =v(1 —p, )I /M;,

where m and M; are the masses of the electron and of the
ith species atoms, respectively, so that the following
first-order expansion is sufficient:

v' f, (v', t)v„.(v', p, )=v f, (v, t)v„(v,p, )+ v(1 —p, ) [v fj(v, t)v„(v,p, )] .
1

av (9)

The scatterings between free electrons are always elas-
tic (to within the soft radiated photons which, on the
average, are compensated by the absorbed soft photons)
but the recoil of the collided electrons can be large.
However, because of Eq. (7), the scatterings with small 8,
(hence with p, =cos8, =1) are much more effective.
They imply small speed variations so that

f, (v', t)=f1(v, t)+(v' —v) fi(v, t) .a
(10)

Bv

& (v)= fd v', f d Q, (1—p )
m

I

3 fp(v t)
V V~

(13)

For j=1 the second term on the rhs of Eq. (9) can be
neglected (usual approximation) since the first term does
not cancel. We get

Substituting Eqs. (9) and (10}in Eq. (6) gives B, = — gv, , +(v, ) f, (v, t), I', 14)

Bo-g2 [v f—o(v, t)v, ;(v)]+ A (v) fo(v, t},
M; V2BV Bv

where

where the average value of the electron-electron collision
frequency v, for momentum transfer turns out to be

4&e(v, )= fd v, fd Q, (1—p, ) iv —v, ~

m

v. ;=fd'Q(1 —p, )v„(v,p, ) (12) Xf,(v„t)(1—~, ) . (1S)

is the collision frequency for momentum transfer for elec-
trons with atoms and ions. Moreover,

As usual we put af, /at =0 in Eq. (5) so that it be-

comes, by the use of Eq. (14),
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(v, )+g v, ; f, (u, t) .
v

Substituting Eq. (11)in Eq. (4) gives

~fa a' a u' (v, )+gv, ,t 3v2 3v

—1 Bfp

Bv

where —,'(v —v', } and —,'(v —v, ) are the velocities in the
I

a — m ufo
2

u fog v, , +A . (17)

The unknown function fu appears in A and (v, ) and
is the cause of the nonlinearities in Eqs. (11) and (14).
The physical idea to eliminate these nonlinearities is to
replace fo in Eqs. (13) and (15) for its solution fu in the
linear case, then solve again the system of Eqs. (4} and (5)
finding a second-order solution fo which is used to
recompute Eqs. (13}and (15}. Finally we check, that A

and (v, ) are slightly changed by the new f0. In other
words we use an iterative procedure and verify that it
strongly converges so that the second step is already
sumcient.

In order to obtain this iterative procedure, we recall
the definition of the cosine of the scattering angle 0, :

p, =(v' —v', ) ~ (v —v, ))v' —v',
I

'Iv —v, )
', (l8)

I II I I
u =u~(v„ux, u, p„,q, p,, ),

I I I I
z uz(Vz ~ "x»pe&pc } ~

I Iv, =v, (v„v„,v, p, ,y, p, ) .

(19}

The integrands of Eqs. (13) and (15) do not depend on
the azimuthal angle y, (in the center-of-mass system) so
that we have fd 0, = 2m J—dp, Th.e integrals (13)
and (15) seem to be performed only on four variables
v'„u„'. Consequently, A(u) and v, should be expressed
as parametrically dependent on v=(u, p, p) and u„', which
are the remaining four independent variables. In order to
have a parametric dependence only on Iv), we integrate
Eqs. (13}and (15) on the additional variables p, y, v„'. We
get for A (v}

center-of-mass system immediately before and after a col-
lision, respectively.

The 13 scalar quantities p, and the components of
v', v'„v, v, are related by Eq. (18) and by other four sca-

lar equations, one for the kinetic-energy conservation
v' +v' =v +v, and three for the components of the

momentum v +v'„-=v;+v„with i =1,2, 3.
Solving numerically the system of equations by stan-

dard mathematical routines and by the software package
Matl'iematica we get

I I I

A (u)= fd'v', fu(u'„t) f du„'fo(v„', t)f ,'dp f —dyf dp, (1—p, )

(20)

A (u) is numerically coinputed for every v by means of
the Monte Carlo method for a sevenfold integral, after
having put Eq. (20) in an adimensional form with respect
to the velocities v'„v„', v. The extra integrations on
u„',p, q appearing on Eq. (20} are the counterpart of the
physical fact that the scattering is characterized by two
internal variables, namely, the impact parameter and an
intrinsic angle. Note again that the values chosen for the
dependent variables v'„v„',p, p, p, are not completely ar-
bitrary but must constitute a scattering compatible subset,
i.e., they have to be able to generate corresponding values
for v„', v,', v,„,v,„,v„obeying to the momentum and en-

ergy conservation. Notice also the integration over IM,

with the well-known logarithmic divergence at small
scattering angles, which is usually limited by introducing
a natural cutoff for 8, =8, ;„, corresponding to a max-

f p pcM-
For the sake of simplicity we consider tentatively the

most simple and rough method of introducing the cutoff,
i.e., the Conwell-Weisskopf collision model we have stud-
ied in a preceding paper. In that paper we limited to the
case of slightly ionized helium and we derived a simple
formula for pcM(u) based on the well-known Conwell-

I

2Ne(v, )= f d v' f dv'f (Ov„', t)f dpf dq)

I

%eisskopf expression for electron-ion interaction
v=NZ e [m v (1—p, ) ] '. Since now the Rutherford
formula (7) has to be used instead, we see that v corre-
sponds to —,'Iv' —v',

) and the formula for pcM(v), in the

case of Si of our interest, can be extended in a straightfor-
ward way to

4 C)v' —v',
I

—1

4-'"C) ' —', )'+1 ' (21)

where C is a constant given by

C =10 ' (2.23N —1.5X10 ' ), (22)

dp, f0[v, (v'„v„',u, p, qr, p,, ), t](1—p, )

u being measured in cm/s and N in cm
We now express Eq. (15) in a similar way. To compute

the integrals (13) and (15) in a parallel way, it is better to
have the integration for (15) over the same variables as in
Eq. (20). We use the relation

d v =d v' Iv' —v'
I Iv —v'

I

(valid for elastic collisions} in Eq. (15). Taking into ac-
count that for particles with the same mass undergoing
elastic collisions it is )

v' —v',
)
=

) v —v, ) we get

1 —v', .v(u'u )
X

Iv —v'.
I

(23)
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where u, in fo ( v„t ) now has to be expressed as function

of the eight variables assumed as independent.
We use for fo(v~, t) the solution of the linearized

problem. %e treat here the most important case which is

the asymptotic or time-independent problem where fo is

given by the Chapman-Cowling-Davydov expres-
sion. ' ' ' By this fo we numerically get the value of
(v, )(u„) and A (u, ) as functions of the reduced speed

/( 2)1/2
1'

A (u„)=(1.2102X 10' N*)/u, , (25)

where N' is a reduced density measured in units of 10'
cm

( v, )(u, ) =(2.178 X 10' N )/{0.2523u, +0.0909)2 (24)

and

(26)

Because of Eq. (25) (valid in a wide u„range) the last term of Eq. (17) may be written as
A (u)Bfo/t)v= v t)[v A (v)fo]/t)u so that Eq. (17) acquires the more simple final form [in which Eq. (3) has been used]

~ ~

~fo 1 t) a ' ' —»fo kT t)fou' (v,„)+yv. , + f,+ A(v)+mvgv. .. /M,
r)t v2 t)u 3 gu

' mv av

v,', = (v, )+gv, ,

with A (u) given by Eq. (25).
The solution of Eq. (27} is

u 'A (u)+mg ™
l

(28)

V mv du
o(u) cc exp

kT+ma (3v )

which is a kind of Chapman-Cowling-Davydov equation.
We calculate the second-order approximation of ( v, )

and A (u, } by Eq. (29). We have found that (v, )2
differs slightly from the value (v, ) of the first approxi-
mation and is

{29)

( )
1.9315X 10'

(30)
(0. 1671u„+0.1055)

Similarly the second-order approximation A2 slightly
differs from the first-order approximation A and is

A2=(1.54X10' N*)/u, . (31)
We have therefore verified that our iterative procedure
converges very rapidly so that already the second step is
suf6cient.

The explicit solution of Eq. (26) when Bfo/t)t=O is
given by Eq. (29). We clearly see the effect of the

where (v, ) and A (v) have been calculated in the
steady-state case Bfo/Bt =0.

When Bfo/Bt =0 the quantity inside the curly bracket
must be a null constant since it vanishes for U ~0. Con-
sequently, we get

+ +ufo=0, (27)
t)u m 3v

where

I

electron-electron interactions in v, [given by Eq. (28)],
which is the geometrical average of two factors. The first
factor is simply the sum of the electron-ion, electron-
neutral, and electron-electron interactions. The electron
contribution in the second factor is larger since u 'A (v)
is practically equal to (v, ) for v„=(u„)'~ [as can be
seen from Eqs. (30) and (31)] but the second term inside
this second factor is strongly reduced by the ratio m/M, .
When the electron concentration is comparable with
those of the ions and of the neutral molecules, it is
(v, ) =gv, ~; but u 'A (u)

&&mdiv,

;/M;. Conse-
quently, Eqs. (28) and (29) are very different in the linear
case (in which the electron-electron interactions are
neglected} and in the nonlinear case (electron-electron in-
teractions included). In spite of this ( v, )2-—( v, ) and
A (v) = A2(u). The insensitivity of ( v, ) and A (u) from
the shape of a normalized fo(v} implies an independence
of fo(v, t) since at any given time t an fo(u, t) has a par-
ticular shape that could be that of a steady-state fo(u). It
follows that Eqs. (30) and (31) may be used even in Eq.
(26) with t)fo/t)t&0. Obviously a slightly better approxi-
mation should be obtained by (v, ) and A (u) calculated
by the linearized time-dependent solution.

Concluding, the explicit analytical Fokker-Planck
equation is given by Eq. (26) with (v, ) and A is given

by Eqs. (30}and (31), respectively. This has been achieved
by the use of modern symbolic and numerical software
tools. The analytical equation (26) is very useful for the
study of the long time tails of fo as demanded for the
electric noise and, in particular, for that having a spectral
power density inversely proportional to the angular fre-
quency co.
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