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Dynamical mean-field theory for a spring-block model of fracture
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In a recently proposed spring-block model of fracture, it was found that growth of domains of positive
and negative components of the stress field before cracking sets in, was crucial for the pattern formation
of the cracks. In this paper a mean-field theory is proposed to describe the dynamic behavior of the
stress field in the spring-block model. Mean-field site and pair approximations are made for the system
before cracking sets in. The single-site mean-field approximation gives steady-state densities of positive,
negative, and zero components of the stress field, in quantitative agreement with the spring-block model.
The pair approximation gives densities of the components of the stress field which are in close agreement
with the simulation of the spring model, and predicts domain growth of the positive and negative com-

ponents of the stress field as seen in the spring-block model.

In a recent paper' a spring-block model was introduced
to study general features of the statics and dynamics of
fracturing. The spring-block model contained only one
parameter, the ratio between the threshold for block slips
and the threshold for springs to break. It was found that
growth of domains of positive and negative components
of the stress field before cracking sets in was crucial for
the pattern formation of the cracks. In this paper a
mean-field theory is introduced to study the dynamic
behavior of the components of the stress field of the mod-
el in Ref. 1. Mean-field site and pair approximations are
made for the system before cracking sets in, i.e., in the
limit where the threshold for springs to break is infinity.

The model in Ref. 1 consists of a two-dimensional ar-
ray of blocks displaced from equidistant equilibrium
points, and connected to four nearest-neighbor blocks via
springs with a time-dependent coupling constant K(t).
The time-dependent coupling constant was introduced in
Ref. 1 as an increasing time-dependent Young's modulus
of the system, but, since the force on a block is given as
the coupling constant times the displacement, one can
just as well interpret the constant K(t) as a length scale
of the system (assuming a constant Young's modulus),
representing an expansion or contraction of the system.
Initially, the blocks are randomly displaced and connect-
ed to nearest-neighbor blocks via springs. Free-boundary
conditions are used so that all the blocks at the boundary
are only connected to blocks within the bulk.

A block slip occurs when the magnitude of the force on
a block exceeds a threshold value for slip, F,. The mov-
ing block is assumed to slip to zero-force position, which
redefines the forces on those nearest-neighbor blocks con-
nected to the sliding block. A block slip can in turn give
rise to new block slips, creating a chain reaction of
events. The system is driven by a time-dependent cou-
pling constant K (t), which is assumed to increase linearly
with time, rejecting the presence of a constant, increas-
ing, external driving field. Units are chosen such that
K(t) =t +1. The increasing coupling constant K (t) con-
tinuously triggers new block slips.

The total force F; . on block (i,j) is a vector and can be
written as

=K(t)(4 dx, , dx. ..—dx, +, , —&»;., —

4dy; dy; 1 j dyt+1 j dye j—
~ dyl j+~) ~

where dx, ,dy; are the displacements of the block i,j in
the x and y directions, respectively.

Since I only consider the model without allowing the
springs to break, the model can be mapped onto a cellular
automaton, which obeys the rules

(1) Initialize all sites so that the magnitude ~F; j ~
of the

force at site i,j has a random value between 0 and F, .
(2) If any ~F, j~ &F, then redistribute the force F; to

its neighboring blocks:

F„„~F„„+aF;J-, F;J ~0 . (2)

Here a is a measure for the conservation of the redistri-
buted force in a block slip.

(3) Repeat step 2 until every unstable block has slipped.
(4) Locate the block with the largest strain ~F

Multiply all the sites by F, /~F, „~ and return to step 2.
In order to formulate a dynamic mean-field theory I

will only consider the block slide of one central block,
and make three assumptions: (i) It is assumed that the
force components of the system can be represented by
coarse-grained values, so that a block can only have three
values: a positive force component (represented as
black), a negative force component (represented as white),
and a zero force (represented by a 0). (ii) When the cen-
tral block slides the four neighbors will be assigned the
color of the central block, and the central block becomes
a 0 block. (iii) It is assumed that one block slide is at-
tempted per time unit. The mean-field assumption (i) cor-
responds in the spring-block model to replacing the
specific form for the distributions of the negative and pos-
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de(t)/dt =4[1 Pq(t)]PJ'S(t) —Ppf(t) 4P~(—t)Ps,(t)—

=3'(t) 4'(t), —

dNo(r)/dr =1 4Po(r)P p r) —4Po(t)P&(r)—

=1 4Po(t}, —

N~(t) =N N~(t) No(t) .— —

(3)

(4)

In steady state the site approximation thus gives the
probabilities:

itive force components of the blocks at a given time by a
constant. Assumption (ii) corresponds to assuming that
the force on the blocks of the system can be represented
by coarse-grained values, so that a block can only have
three values: a positive force component (represented as
black), a negative force component (represented as white),
and a zero force (represented by a 0); (ii) When the cen-
tral block slides the four neighbors will be assigned the
color of the central block, and the central block becomes
a 0 block. (iii) It is assumed that one block slide is at-
tempted per time unit. The mean-field assumption (i) cor-
responds in the spring-block model to replacing the
specific form for the distributions of the negative and pos-
itive force components of the four nearest neighbors will
always point in the same direction as the block that slid,
whatever their value was before the central block slid. In
the spring-block model the blocks slide due to the in-
creasing coupling constant which defines the time scale
by setting K(t)= t+1. In (iii) it is assumed that the in-

creasing coupling constant gives rise to a constant nurn-

ber of block slides per time unit.
Let Nz denote the numbers of black blocks, N~ the

numbers of white blocks, and Np=N —N~ —N~ the
number of 0 blocks (in a lattice with a total of N blocks).
Let P(i)=N;/N denote the corresponding probabilities.
Let Pz denote the probability that a black block slides

per time unit and P~ = 1 —Pz denote the probability that
a white block slides per time unit. In the site approxima-
tion, the change in the number of (say} black blocks if a
black block slides is given by 4(1 Ps ) (the p—robability
that the four neighbors were not black) —1 (since the
black block that slides becomes a 0 site). Likewise the
change in the number of black blocks when a white block
slides is given by —4P&. One easily derives the following
equations of motion for the numbers of the different
blocks:

for black and white blocks are symmetrical so that
P~(t)=P~(t); P&(t)=P~(t)= —,

'—. The steady-state

single-site approximation thus predicts P p
=

—,', P~
=P~= —,'. This is to be compared with the simulations

of the spring-block model which give Pp =0.10, Pz
=P~ =0.45, independent of lattice size.

%"ithin the framework of the mean-field theory, one
obtains a better approximation regarding bond probabili-
ties, which is the next in a series of progressively more ac-
curate cluster methods. Since every time a 0 block is
created (by a block slide} it will have four black or white
blocks as neighbors, one does not encounter 00 bonds.
The model thus contains five different nearest-neighbor
bond types, so the mean-field pair approximation takes
the form of four coupled equations for the bond concen-
trations. Let N; denote the number of i-j nearest-
neighbor bonds (ij =B,H, O) and let P,, denote the corre-
sponding probability for finding a bond of type i j(wi-th,
as mentioned above, Prl=0). In Fig. 1 is shown the pro-
cess of a black block that slides, under the assumption
that all four nearest-neighbor blocks take the color of the
sliding block. The figure shows the 16 bonds that need to
be considered in the pair approximation. If a black cen-
tral block slides, the number of BB bonds can be in-

creased if one of the 12 bonds that are not nearest-
neighbor bonds to the sliding block is a BR'or BO bond.
Only half of these cases will give rise to an increase
in BB bonds [namely, when the W' (0) block is nearest
neighbor to the sliding block], thus giving the
factors 6Pg (t)P~+, (t), 6Pgf(t)Pso(t) in the equation for
dN&s(t)/dt. Likewise the number of BB bonds can de-

crease if a white block slides and if one of the 12 bonds
that are not nearest-neighbor bonds to the sliding block is
a BB bond. This gives a factor —12Ps,(t)Pss(t) in the

equation for dN&z(t)/dt. Finally the number of BB
bonds can decrease if a black block slides and one of the
four nearest neighbors is a black block. This is a condi-
tional probability and can be calculated to be

4P+(t)P&z(t)—/2P&(t). In general one has that the

probability for a block to be of type i, given that one of its
nearest neighbors is of type j, is P(i j~)=P; /2P~. Using
similar arguments for the changes of the other bond num-

bers, the equations of motion within the pair approxima-
tion take the form

(b) o

PSS 3p ss
B 3 B

pSS 3p SSS
8 4 8'

PSS
p 4

(6)

—0

where the index SS stands for steady state. In the simula-
tions of the spring-block model, the system was initial-
ized so that the total force on the blocks was zero. Since
the increasing coupling constant gives rise to the same
change in the multiplicative factor on both the negative
and positive force components, the total force of the sys-
tem was therefore always zero. In the mean-field approx-
imation, a total force of zero means that the probabilities

FIG. 1. Process of a black block that slides, under the as-

sumption that all four nearest-neighbor blocks takes the color of
the sliding block [Eqs. (9)-(12)]. The figure shows the 16 bonds

that need to be considered in the pair approximation, Eqs.
(9)—(16). (a) Before the block slides. (b) After the block slid.
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dNtttt(t)ldt =6Ptt(t)Pttw(t)+6P~(t)Pttp(t)

Ptttt(t)
2—

Ptt (t) —12Pw(t)Pas(t),
Pg(t) (9)

dNww(t)ldt =6Pw(t)Pttw(t)+6Pw(t)Pwp(t)

Pww(t)
2P—(t)w p (t)

—12'(t)Pww(t), (10)

dN~H(t)/dt =12Pg (t)Pww(t)+6Ptt(t)Pwp(t)

2Ptt
—(t)Pttw(t) /Pa (t) 6Pgf—(t)Pttw( t)

+12Pw(t)Ptttt (t)+6Pw(t)Pttp(t)

2Pw(—t)Pttw(t)/Pw(t) 6PwP—aw(t), (11)

DNsp(t)/dt =2'(t)[P~w(t)/P~(t)+Ptttt(t)/Ptt(T)]

+6Ptt(t)Pwp(t) —
6Ptt (t)Pttp(t)

—12Pw( t)Ps p( t), (12)

where Pwo(t) =1 Ptttt(t) —Pww(t)—Pttw(t) —Pro(t).—
The site probabilities are determined by PJ

~Jj Xl IJ

Numerical integration of Eqs. (9) (12) in t-he case of
symmetrical probabilities for the white and black blocks
gives Poss=0. 18, Pz =Pw=0. 41, which gives a better
agreement with the spring-block model than does the
single-site approximation. One can now make a direct
comparison with the "excess energy" EE(t) in the
spring-block model, which was introduced to give a mea-
sure of the domain sizes of domains of equal force com-
ponents at a given time t. EE is a measure of the total
length of the domain boundary network and scales
as bE-R(t) ', where R(t) is a length scale of the or-
dered domains. In the pair approximation, one
has AE(t)=E(t) Ess where —E(t)=Pt)B(t)+Pww(t)

Pttw(t) and—E =lim, „E(t}. In Fig. 2 are plotted
the difFerent bond probabilities together with E(t) for a
simulation with N=500 blocks and assuming a time-
independent probability for a block slip Ptt=Pw=
The simulation was done with a bias in the initial distri-
bution of black and white blocks. Initial distributions
with symmetrical probabilities between black and white
blocks, and black and white bonds, gave similar trends,
with the same steady-state values for E(t) and the bond
probabilities. The fact that E(t) is a positive and increas-
ing function for initial values of time t means that the
simple mean-field assumptions actually are able to predict
a domain growth of domains of equal force components,
like the one that was observed in the spring-block model.
Comparing the steady-state values of the bond probabili-
ties in the mean-field assumption: Pz& =P~=0.17;
Pg~ 0 28' P~() =P~o 0 19 with the steady-state
values of the bond probabihties for simulations of the
spring-block model: P~~ =P~=0.38; P~~ =0.04;
Pwp Pao 0. 10 (for a lattice with 500 sites), one noticesSS SS

that the domains of equal force components are smaller
and the interfaces between different force components are
larger in the mean-field approximation. In Ref. 1 one
found that EE(t) ~ t ~ with P= —,', whereas the pair ap-

ProbabiTity
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0
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FIG. 2. Bond probabilities versus time t under the assump-
tion that all four nearest-neighbor blocks takes the color of the
sliding block, Eqs. (9)-(12). (a) Pss(t), (b) Pss(t), (c) Pss(t),
(d) P~o(t), and (e) PBp(t). (f) is the energy density defined by

PBB~ t~+ P$vw~ t~ PBw

proximation predicts an exponential behavior b,E(t }
~exp[ —(tla)] with a=N. It is not strange that the
mean-field picture fails to predict the right dynamical
behavior, especially because of the very crude approxima-
tion (ii} that assumes that one block slide is attempted per
time unit. In the spring-block model the block slides
occur due to the increasing coupling constant. It is not
true that a new block slide occurs every time the coupling
constant is increased by 1—rather the activity of block
slides has a tendency to cluster so that time periods with
a high activity are often followed by time periods without
any activity. Besides, it was shown in Ref. 1 that the
probability that a single block slide would result in s oth-
er instantaneous block slides was a power-law distribu-
tion D (s) ~ s ' for the steady state. Even though D (s)
might have an exponential form for early times before the
system has reached the steady state, it is clear that the to-
tal neglect of any temporal correlations in the mean-field
assumption (ii) is at best a very crude approximation. As
an attempt to include the above-mentioned temporal
correlations, one could let the probabilities that a black
or white block slides, P~ and P~, depend on, e.g.,
1/Ps(t) and 1/Pw(t) instead of being constants, as was
used for the simulation in Fig. 2. This would refiect the
fact that the force in the spring-block model starts to ac-
cumulate on fewer blocks as the number of blocks with a
zero force grows, so that the blocks with a force different
from zero should be more likely to slide. Incorporating
this into Eqs. (9)—(12) one again finds an exponentially
fast domain growth with the same steady-state values as
for the simulation in Fig. 2.

Another change in the mean-field approximation that
one could make is to introduce a limited probability for
invasion of a neighboring white block when a black block
slides, and vice versa, instead of the simple ansatz where
all four neighboring block always get the same color as
the sliding block. One way to do this is to include a fac-
tor of 2Pw(t) for the probability that a white block be-
comes a black block when a black block slides, and a fac-
tor of 2Ptt(t) for the probability that a black block be-
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4P@t)Ps—ra,(t)

24Pgf(t)—P~(t)Pu. (t),
dNls~(t}

=24Prs(t)Pg ~ (t)PIs,(t)+6Pgf(t)Primp(t)

(14)

s Prie.(t) s4'(t) —Pa, (t) 12Pgf(t)Ps—„,(t)Pa, (t)
Ps t

+24P„r (t)Pisis(t)Pis(t)+6Pis, (t)Psp(t)

Pri~(t)
4Prr(t) —P~(t) 12PrrPsa —(t)Ps(t),

P„,(t)

dip(t) Pan (t)
=2'(t) 2Pa (t)+2Pss(t)Ps(r)P, r

comes a white block when a white block slides. Starting
with Pn (0)=—,, this probability will be 1 as in the as-

sumption (iii), but as time elapses and Pn, (t) becomes less
than one-half, it will be more diScult for a black sliding
block to invade a white neighboring block. This seems to
be a natural assumption, since as noted above the force in
the spring-block model starts to accumulate on fewer
blocks as time elapses, thereby making the blocks more
stable towards changes in sign when a neighboring block
redistributes 4 of it value. The spring-block model as
noted before also contained the behavior of having in-
stantaneous avalanches, meaning that for example a
black block that slid eventually in a later block slip of the
instantaneous avalanche again would become black.
With the same idea as before of a limited probability for
invasion, one can then include a factor of 2P, (t)
(i = W, S) for the probability that there will be any
change when a block slides next to a block of the same
color. With these remarks the modifications of Eqs.
(9)—(12) take the form:

N~~(t) = 12Pis(&)Pg p (&)Prr(&}+6Pg (&}Pisp(&)

4P~ ( t)—P~is ( t) 24Ptssr(—t)Pisis ( t)Ps ( t), (13}

~Nww(&) = 12Pg ( t)Pisis, ( t)Pis( t)+ 6P~( t)Prrp( t)

Probability
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FIG. 3. Bond probabilities and energy density versus time t
under the assumption of a limited probability for change of
color of the four neighboring blocks when a block slides, Eqs.
(13)—(16). (a) Pgg ( t) (b) Pgr~( t) (c) Pg~(t) (d) Perp( t) (e)

P&p(t), and (f) E(t).

In Fig. 3 are plotted the different bond probabilities to-
gether with E(t) in the case where one has a limited
probability for invading the neighboring block under a
block slip, Eqs. (13) (16). Th-e initial distributions were
as for the simulations shown in Fig. 2 and it is assumed
thatP =P

The steady-state values for the different probabilities
were found to be: Po =0.12, P& =P~ =0.44,
P~~ =P~=0.22, P~~ =0.31, and Pwo =Pro =0 13
One notices that the pair approximation with limited
probability for invasion gives close agreement with the
densities of negative and positive components that were
seen in the simulation of the spring-block model. As one
would expect, the bond probabilities with a limited in-
vasion probability give better agreement with the simula-
tions of-the spring-block model, but the mean-field theory
still predicts too high a value for the probability of hav-

ing interfaces between different force components. The
dynamics of the domain growth is still found to have an
exponential dependence.

+12'(t)Prrp(t)Pa, (t) 6P~(t)Pqp(t)—
—12Prr(t)Pimp(t)Ps (t} 6Ps,(t)Pap(t)—

s Paw(t)
+2Pa, [1—2'(t)] .

P~(t)
(16)
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