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We show that a previous failure to describe the frequency shift 6 and linewidth I of the optical zone-
center mode in silicon with an anharmonic shell model arises from the neglect of the electronic polariza-
bility effects in the perturbative treatment of the anharmonic interactions. We consider cubic anhar-
monic shell-shell interactions between nearest-neighbor atoms in a shell model used in the past for sil-
icon. We apply an anharmonic perturbation theory which properly takes into account the adiabatic con-
straint for the shell's polarization. We obtain 5 and I as functions of temperature in good agreement
with experimental data.

I. INTRODUCTION

The simulation of electronic polarizability effects in lat-
tice dynamics is most commonly made with the shell
model (SM). ' Here, the adiabatic condition for the
electrons is represented by equilibrium conditions of
massless shells for every instantaneous core config-
uration. Such constraints give rise to effective long-range
core-core interactions and must be considered in the per-
turbative development of the phonon self-energy due to
anharmonic interactions between shells of neighboring
ions. Thus, important corrections over a perturbation
theory for anharmonic interactions between effectively
rigid ions are obtained. By taking a mono-
atomic chain as a test, we have recently shown that those
corrections are significant for the wave-vector depen-
dence of the phonon frequency shift and linewidth as well
as for the ratio between these quantities.

An anharmonic SM has been applied quite a long time
ago for the calculation of anharmonic effects on the
long-wave optical phonon (the Raman mode) in silicon.
Although the bare phonons were obtained from the
SM, ' the anharmonic effects are calculated through the
usual perturbative formalism, which considers anhar-
monic force constants between point ions. With cubic
force constants fitted to thermal expansion data, a fre-
quency shift in good agreement with experience was ob-
tained, but the linewidth comes up an order of magnitude
larger than the observed value. This discrepancy was
more recently discussed, although not clarified, by Haro
et al. ' They obtain satisfactory results from a model
which includes harmonic 1ong-range non1ocal dipole in-
teractions, while the anharmonic interactions are incor-
porated as in the previous work. Other calculations of
the Raman mode self-energy in Si do not take into ac-
count electronic polarizability effects explicitly either in
the harmonic nor in the anharmonic part. "' The vari-
ous results have been recently reviewed. '

Our one-dimensional calculation allowed us to antici-
pate that the above-mentioned failure of the anharmonic
SM for Si may be ascribed to the neglect of the long-

range polarizability effects in the perturbative treatment
of the anharmonic interactions. We address this question
in this paper by applying the developed perturbative for-
malism to the calculation of the linewidth and lineshift of
the Raman mode in Si with the realistic anharmonic SM.

The electronic polarizability effects on the lattice dy-
namics of the homopolar covalent materials are better de-
scribed by the bond-charge model. ' However, a calcula-
tion of the anharmonic phonon self-energy has not been
attempted with this model.

II. THE MODEL

We started from the harmonic SM of Refs. 7 and 8
(best fit) to calculate the eigenvectors and frequencies of
the phonon modes. Since the parameter aT of the model
is not specified in Ref. 7 or 8 we take nT=nz. Also we

modified slightly the parameter m& in order to improve
the fit. The model reproduces satisfactorily the experi-
mental data for the principal symmetry directions.

In the next step, we attempted to obtain the anharmon-
ic parameters used by Cowley and co-workers ' for the
cubic interaction but we didn't succeed. First, one can
show that the parameter B of Dolling and Cowley van-
ishes identically for a nearest-neighbor central interac-
tion, in contradiction to their result that B is different
from zero. This was also pointed out in Ref. 10. Second,
it is not possible to derive an expression for the
Griineisen constant y(qj) in terms of the parameters A

and B defined in Ref. 8. For these reasons, we were not
able to compare our results directly with Cowley's calcu-
lation. Therefore, we determined the cubic central force
constants P &

(Oa. , ltc') from experimental data and per-
formed the calculation with the anharmonic SM and also
with the expressions for the usual perturbation theory.
(1~+) denote the unit cell, atomic site, and Cartesian in-

dex, respectively. The parameters C =P"'/R —3D/R
and D =P"/R P'/R, which dete—rmine P &

(Oa., ltc'), '

are evaluated using the expression of the optic mode
Griineisen constant y(Oj), ' with p" obtained from the
second- and third-order elastic constants. ' From the ex-
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+ g' —,'(t},jY I v;v, —2v; v, +u;u, j
EJ

+$3(v )+$4(v), (2.1)

where ((ts(v), $4(v) are, respectively, the cubic and quartic
shell-shell interaction for a nearest-neighbor two-body
central potential. We denote i—:(isa}. P, P, and P
are the short-range core-core, core-shell, and shell-shell

interactions, respectively. u;,v; denote the core and abso-

lute shell displacements. P is the Coulomb force con-

stant and Y is the shell charge of the ion. We recall that
the total ionic charge is equal to zero. The prime in the
second term of (2.1) means that the summation runs over

(l K )K( la ). The general form of the matrices P, tI}

and P for first and second neighbors are given in the Ap-

pendix. The values of the parameters are reproduced in

Table I. The polarizability parameters are Y = —4.6e for
the shell charge and %=356.1 (e ttv) for the core-shell

coupling constant of the ion.
Following the procedure of Ref. 5 for developing the

perturbation theory up to second order with the potential
of Eq. (2.1), we find that the diagrammatic expansion for
the phonon self-energy is

perimental values of y(Oj) (Ref. 17) and the elastic con-
stants (Ref. 18) we obtain C = 14.27e /v A and
D = —42.08e /vA, where v is the primitive cell volume.

The anharmonic SM is essentially the same as the one
defined in Ref. 5 but it is developed in three dimensions
and we also add up the Coulomb interaction to the har-
monic part of the potential. The whole crystal potential
is written in the following way:

p(u, v}=Q I —,'p; u;u +tjs, u;v, "+ ,'ttt;j—v;v, j

and

POj, co)=I' '(Oj, to), (2.5)

where

g(h)(O )
— y ~X(3)(O ) ~2

qJ) J2

XP(to, co (qjt), to (qj2}), (2.6)

b,"(Oj)= — g (2n (qj, )+1)
SN

qJ )

X I2Z(Oj, qj, , —tU„OJ)

+Z(Oj, Oj, qj, , —qj, )j, (2.7)

6' '(Oj)= g [2n(ql, )+1]X' '(Oj, Oj, qj„—qj, ),8N
qJ)

(2.8)

tually from cubic anharmonic shell-shell interactions and
is peculiar to the SM.

Diagram (c) in the series (2.2) has a vanishing contribu-
tion for a crystal with every atom at an inversion center.
Even though the silicon crystal does not possess this sym-
metry, it can be seen that the coefficient X' '(Oj, Oj „Oj2 )

corresponding to the vertices of (c) vanishes unless j,j„jz
refer to three different optical branches. Therefore, dia-
gram (c) does not contribute for silicon, as it was previ-
ously pointed out. '

It follows that the frequency shift 6 and linewidth I
for the zone-center optical mode in silicon are given by

6(Oj, co)=h' '(Oj, co)+b, ' '(Oj)+b, "(Oj)+b, (Oj)

(2.4)

(a) (b) (c)
(Oj) =to(Oj) exp 3y(Oj—)f a( T')dT' —1

0

(e)

(2 2) and

(2.9)

After replacing the expressions for each diagram, we ob-
tain (with the same ordering)

+ ~(3) ~(3)
gij + 2giq~ (qlp 8lt gph~ (ths(gsj

r("(Oj, co) = g ~X(3'(Oj, qj, , —qj, )~'

qJ) J2

X2)(to, co (qj, ), (o (qj2)) . (2.10)

(3) (3)+ zgiqX(qlpgptghsX(thsgjl

~(4)
t giq~ (qklm)f klgmj

N is the number of q points sampled in the Brillouin zone
and n (qj) is the Bose occupation number. Equation (2.4}
includes the thermal-expansion contribution 5 to the
lineshift, where a( T) in Eq. (2.9}is the thermal-expansion

+
2 giqZ(qklm)gklgmj (2.3)

where g," is the free phonon propagator in direct space (a
parenthesis means symmetrization in the enclosed in-
dices). The vertices denoted by a dot, square, and trian-
gle correspond to X' ', X' ', and Z, respectively, whose
expressions are given in the Appendix. As it can be seen
there, the effective quartic vertex of diagram (e) arises ac-

—7.797 —4.473 0.264 —0.298 —0.619
0.000 9.320 0.000 0.000 0.000

29.217 —9.583 —0.989 1.116 2.319

0.800
0.000

—2.999

TABLE I. Harmonic force-constant parameters for the first
(a and P) and second neighbors in silicon. Unit: e /u.
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coefficient. " The functions P and 2) are defined in the
Appendix.

All previous perturbative calculations of phonon fre-
quency shifts and linewidths consider anharmonic force
constants which arise from a Born-von Karman develop-
ment of the crystal potential in powers of the nuclear dis-
placements. Thus the ions are taken as effectively rigid
units and therefore we shall call this the rigid-ion (RI)
perturbative approach. This treatment has been applied
even in cases where the bare phonon frequencies were ob-
tained from a harmonic model which explicitly takes into
account electronic polarizability effects. Such approach
corresponds to perform the limit K~00 in the expres-
sions for the vertices given in the Appendix except
in the eigenvectors and frequencies. This leads to
S p'(KK', q)~0 and C &(~II', q)~ —5 Jrb, In this way
we recover the expressions of the usual perturbation
theory and the term 5"vanishes. Note that the expres-
sions (A3) and (A4) for the vertices in diagrams (b), (c),
and (d) are analogous to the ones of Ref. 9, except that
the core eigenvectors e(qI') are replaced by the shell ones
C (q)e(qI').

III. RESULTS AND DISCUSSIONS

Cowley has pointed out that the quartic anharmonic
contribution 6 ' nearly cancels the thermal-expansion
contribution 5 within the RI perturbative approach.
On the other hand, we expect that the result for the SM
expression of 5'"' [Eq. (2.8)] is much smaller than the re-
sult obtained from the RI theory. Therefore, since b
is already a minor contribution, we neglect the quartic
term b, ' ' in Eq. (2.4) for the lineshift but retain b,

For the numerical evaluation of the frequency shift
b, (Oj, Io), and the linewidth 1(Oj,co), we sampled 111
points in the irreducible one-forty-eighth portion of the
Brillouin zone. We also took into account the Umklapp
processes. We have chosen the following representation
of the 5 function:

TABLE II. The various contributions to the frequency shift
(cm ') at 300 K for the SM perturbation theory and the RI lim-
it. 5 is the total frequency shift.

g(e) ATE

SM
RI

—2.631
—30.497

—1.646
0.000

—0.288
—0.288

—4.565
—30.785

also display the limit to the RI perturbation theory b~,'
for the (b) diagram. We see in Table II that the values of
the total linewidth for our SM anharmonic treatment are
substantially smaller than those for the RI limit. This
was also found with the simple one-dimensional model.
We also observe that the new contribution to the lineshift6"obtained when the shell polarization effects are prop-
erly taken into account in the perturbative development
of the phonon propagator, is comparable in magnitude to
the contribution b,sM of the same theory.

In Fig. 1, we plot the frequency shift difference
h(T) —b, (0) as a function of temperature. We can see
that the agreement of the anharmonic SM theory (solid
triangles) with the experimental data (open circles) is
quite good below 500 K. If the thermal-expansion term
is not included the agreement is less satisfactory (solid
squares). The increasing discrepancy between experiment
and theory, particularly noticeable above 500 K, is due to
the neglect of fourth-order anharmonic terms arising
from quartic anharmonic interactions in second-order or
cubic anharmonicities in fourth order of perturbation
theory. These terms correspond to diagrams with vertex
corrections,

E'

5(Io) = lim
77(co +e )

(3.1)
—10

S~o

8
So
0

0

and for the principal part,

1 . N= hm
N & e~o ~ +g2 2

(3.2)

with small but finite values of e. The calculated values of
6 and I are independent of e within certain intervals.
We select @&=6cm ' and a&=2 cm ' for the 5 function
and principal part representation, respectively, values
which he in the center of such intervals.

The third-order force constants P & (0~,1'~') were
evaluated with the anharmonic parameters C and D de-
rived from experimental data as explained at the begin-
ning of Sec. II.

In Table II we show the different contributions to the
frequency shift b, (Oj, co) for the zone-center optical mode
co=co(Oj) at 300 K. We have used the experimental data
of Ref. 19 for the thermal-expansion coefficient as a func-
tion of temperature a( T) to evaluate b, for silicon. We
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FIG. 1. Frequency shift difference of the Raman model in sil-

icon versus temperature: experimental data (0 ), SM perturba-
tion theory for cubic anharmonicity including thermal expan-
sion (A) and without it (0), RI limit of the perturbation theory
with thermal expansion (6 ) and without it (0).
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We recall that the effective quartic vertex & arises from
cubic shell-shell interactions. Additional diagrams, with
vertices ~ instead of & above, would contribute to the
same order if quartic anharmonicity were included. The
experimental data in Fig. 1 show a nonlinear depen-
dence with T up to the highest temperatures. The terms
we have calculated, as well as the neglected quartic
anharmonicity in first order [diagram (d) in Eq. (2.2)], are
all linear in the phonon occupation numbers and thus
lead to a linear temperature dependence of the self-energy
at high temperatures. The just mentioned neglected
terms of higher order, on the other hand, are quadratic in
the occupation number and thus would provide the
necessary corrections at high temperatures. This has
been clearly shown by empirical fits in Ref. 13. Our re-
sults are similar to those of Ref. 10, which were obtained
with a RI scheme for the harmonic model with the in-
clusion of short-range forces up to fourth neighbors and
long-range nonlocal dipole interactions. These long-
range interactions are generated implicity in a SM and
have a direct physical interpretation. In order to com-
pare with Cowley's results, we performed the RI limit in
the expressions of 6(Oj, co) without including the
thermal-expansion contribution 5 . We obtain the
values represented by open squares in Fig. 1 which, in
contrast with Cowley's calculations, differ significantly
with the experiment. This discrepancy must be ascribed
to the previously mentioned inconsistencies of Cowley's
expressions which lead us to a determination of the
anharmonic parameters. We also show through open tri-
angles that the inclusion of the thermal-expansion contri-
butions leads to even worse results in this limit.

We have also calculated the phonon linewidth with the
help of Eq. (2.10). The results for 2I are shown in Fig. 2
as a function of temperature. We observe that the con-
sistent anharmonic SM theory leads to results (solid
squares) in good agreement with the experiment up to
temperatures of the order of 750 K. Above this tempera-
ture, the nonlinear behavior of.the experimental data is
more pronounced and the failure of the theory is related
to the neglect of fourth-order anharmonic process. We
also performed the RI limit in 2I (open squares) and ob-
tained a discrepancy similar to that of Cowley: The re-
sults lie an order of magnitude above the experimental
data.

In Fig. 3 we plot the frequency dependence of the 6' '

contribution to the lineshift at 10 K. The term 6"pecu-
liar to the SM is frequency independent. The results for
the RI limit are considerably larger than those of the
anharmonic SM in the whole frequency range. The typi-
cal dispersive behavior is essentially the same for both
cases, which reflects the fact that only the vertices are
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modified when taking the RI limit. The frequency shift is
negative up to frequencies of the order of 650 cm ' for
both models. At higher frequencies, the SM results are
positive, while the RI limit shows negative values of 6' '

between 850 and 1000 cm '. At higher temperatures, we
observe in both cases that the magnitude of 6' ' increases
specially for low frequencies but the qualitative behavior
remains unchanged.

We calculated the linewidth as a function of frequency

at several temperatures. In Fig. 4, we show the results at
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FIG. 3. Frequency dependence of contribution (b) to the fre-

quency shift in silicon at 10 K: SM perturbation theory ( )
and RI limit of the theory ( ———).
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FIG. 2. Linewidth of the Raman mode in silicon versus tem-
perature: experimental data (o), SM perturbation theory for
cubic anharmonicity (~ ) and RI limit of the theory (CI).
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FIG. 4. Frequency dependence of the damping constant I in
silicon at 10 K: SM perturbation theory for cubic anharmonici-

ty ( ) and RI limit of the theory (
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IV. CONCLUSIONS

We have shown that a proper treatment of the elec-
tronic polarizability effects, while performing the anhar-
monic perturbation theory for the shell model, leads to a

10 K. We observe that the dispersive behavior is the
same for both models, but the RI limit exhibits much
larger magnitudes than the SM results in all the frequen-

cy ranges considered. We observe three bands according
to various two-phonon combinations. The lower band
centered around -320 cm ' corresponds to 2 TA. The
second band around -620 cm ' is due to LO-TA and
TO-TA combinations and exhibits the highest peak at
650 cm ' for both models. Finally, the upper band
around 1040 cm ' corresponds to transitions to LO-TO
phonon combinations. Each peak in I is clearly related
to a resonantlike feature in Fig. 3. With increasing tem-
perature we find the same behavior as in the case of 5' '.

The overall smaller intensities of the SM compared
with the RI limit in both Fig. 3 and 4 are due to the fact
that the variation of the intershell distances caused by
core displacements is attenuated by the core-shell polar-
ization. Therefore, the effects of anharmonic interactions
between shells is weaker the softer the core-shell interac-
tion. It can be seen that the absolute shell displacements,
which enter through (A7) in the expressions of the ver-

tices, are in general smaller than the core displacement
amplitudes. On the other hand, the attenuation of the
shell displacements depends on the form of the core
eigenvector and therefore becomes indirectly frequency
dependent. This effect leads to intensity ratios for dis-
tinct frequencies in the SM different from the correspond-
ing ratios in the RI limit, as can be seen in Fig. 3 and 4.
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APPENDIX

The general form of the matrices P, P, and P for
first and second neighbors are, respectively, first neigh-
bors:

n p p
$(111)= P a P

p p a

second neighbors:

p v —6
$(110)= v p. —5

5 5

(A1)

(A2)

where (111) means the atom located at the coordinate
(1,1,1)a/4 and (110) correspond to (1,0,0)a/2, a is the lat-
tice constant.

The expressions for the vertices in the reciprocal space
are

good description of the phonon frequency shift and
linewidth in silicon. The results are substantially
different from the ones obtained with the usual anhar-
monic perturbation theory, where the anharmonicity is
taken between effectively rigid ions. In particular this ex-
plains the big discrepancy with experimental data ob-
tained previously for the linewidth of the zone-center op-
tical phonon in silicon with a shell model. Our results
still show discrepancies at high temperatures which are
due to the neglect of fourth-order anharmonic terms,
which lead to a T dependence of h(T) and f'(T). Com-
pared with the results which Haro et al. ' obtained with
a more complicated harmonic model, our results are of
similar quality for the frequency shift and slightly better
for the linewidth.

Finally, we wish to point out that an analogous treat-
ment of anharmonic interactions in the calculation of
phonon self-energies should be developed for other mod-
els which explicitly include degrees of freedom for the
description of electronic polarizability effects, like the
bond-charge model. An anharmonic version of this mod-
el has been applied to the study of the mode Gruneisen
constants in Si. ' These, however, retain their usual ex-
pressions due to the fact that the phonon frequency
changes upon strain do not contain contributions from
polarizations of bond charges, which remain at the inver-
sion centers in the Si structure when this is homogene-
ously deformed. Also our application of the usual expres-
sion of the Griineisen constant for the determination of
the anharmonic parameters in the shell model is allowed

by the fact that no contribution of shell polarizations will

arise in Si. In fact an isotropic volume change does not
distort the coordination tetrahedra around each atom,
and therefore does not induce any shell displacement.
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I"'(q,j„q2j„q3j,)=,g g g p (ltc, l'a-') g p„(ltt, l'tt'),1

2X3I
1 2 3

4
X'"(q,j„q„j„q3j„qJ4)=,g g g p (IK, 1 K ) g V„(lK,1 K ),2X4!

1K 1'K a a a a n=1
1 2 3 4

1
(qtji qi2q3J3q4J4) 2X3,X3t g g g g g g 4aa, a 1~1 2~2

llKl 12K2 13K3 14K4 aa&a2 pa3a4

2 4

X Pp (13K3,14K4) g g 5 p (K„K„—q, —q~)( —1)"+'exp[( —q, q2—)r (I„tt„,l, tr, }]
r=1 s=3

2 4

X g9'„(I, „l, ) gP(I, „I ). ,

(A3)

(A4)

(A5)
n=1 m =3

where we have made the following definitions:

9„(Itt, l'tt') =E(tr,—q„j„)exp I i q„r( itt) j E(tr'—, q„j„)exp [iq„r( I'tt') j,
C p(KK', q„)ep(tt', q„j„)

E (tcq„j„)=g
p»' QM„to (q„j„)

and the matrix C is

Cap(KK', q) = g S r'(tetr", q)Fpr(tr'tt", q),
PK

where

(A6)

(A7)

(A8)

and

S r (KK, q)= [ttt p(tctc', q}+Y P p(tetr', q)+E5 pts„„.j (A9}

Fap(KK", q) =Pap(trtt', q) Ygap(at&—', q } . ' (A10}

(Al 1)

and

P p(tctc', q), tI} p(tttr', q), and P p(trx', q) are the shell-shell, core-shell, and Coulomb interactions in the reciprocal space,
while E is the core-shell coupling constant of the ion. M =M„ is the mass of the ion tr, ep(a, qj} is the eigenvector
component, and to (qi) is the harmonic frequency of the (qj) mode. In all the cases, [l„a'„a„j„&4 refer to unit-cell,
atom, and Cartesian indices and [q„j„j„,4 to wave vector and branch index, respectively.

In Eqs. (2.13) and (2.17) we defined, respectively, the following functions:

n (qj, }+n(qj2)+1 n (qj, )+n (qj2)+1
&(co, to (qJ&), co (qJ2))= .

co+co (qj, }+co (qj2) ~ to co (qj, ) —co (q—j2)

n (qj, ) n(qj2) — n (tU', ) n(qj2)—
co —to (qj, )+co (tU2) ~ to+to (tU', ) —co (qj2 }

2)(co, to (qj, ), co (qj2)) —= [n (qj, )+n (qj2)+1][5(co—co (qj, ) —co (qj2)) —5(co+to (qj, )+too(tU'2)) j

+[n(qj, ) n(qj2)—][5(to+to (qj, )
—to (qj2)) —5(co—co (qj, )+co (qj2)) j .

In Eq. (Al 1) the subscript P denotes principal part.

(A12)
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