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Mean-square displacement from Mossbauer and x-ray data for solid krypton:
A comparison of theory and experiment

R. C. Shukla
Department ofPhysics, Brock University, St. Catharines, Ontario, Canada LZS3AJ

D. %.Taylor
Department ofPhysics, McMaster University, Hamilton, Ontario, Canada LBS4MI

(Received 3 September 1993)

The Mossbauer recoilless fraction is calculated from the lowest-order anharmonic-perturbation
theory, the Green's-function method, which sums the lowest-order anharmonic contributions to all or-
ders, and the Monte Carlo method. In all cases we have employed a nearest-neighbor-interaction
Lennard-Jones and Morse potential. Excellent agreement is shown to exist between the theory and the
Mossbauer and x-ray experimental results.

The recoilless Mossbauer fraction f of Kr in solid Kr
was measured as a function of temperature by Gilbert
and Violet' (GV). The experimental values of f by GV
for the 9.4 KeV transition of Kr in solid Kr were evalu-
ated again by Kolk using a nuclear resonance cross sec-
tion cro=(1.15+0.03)X10 ' cm. Kolk's work was
prompted because the experimental values of f as deter-
mined by GV were much lower than those calculated
from the Debye-type harmonic theory and some approx-
imate anharmonic theories. '

The purpose of this work is to calculate f from a
variety of theoretical methods now available in the litera-
ture for inclusion of the anharmonic effects and then
compare them with the revised f values of Kr as deter-
mined by Kolk. '

We have employed the following methods in our calcu-
lations of f for Kr, viz. , the lowest-order (A, ) anharmon-
ic perturbation theory (PT), ' the Green's-function
method and the Monte Carlo (MC) method. The latter
two methods include anharmonic contributions to all or-
ders of anharmonicity with the qualification that only
certain types of anharmonic contributions arising from
the cubic and quartic terms of the anharmonic Hamil-
tonian are included in the Green's-function method.
Since the calculation by these three methods can be car-
ried out quite accurately it is worthwhile to make a com-
parison of the theoretical results for f from each of these
methods with the experimental values. We believe this to
be an accurate anharmonic calculation off for Kr. Since
the experimental data are known in the low-temperature
range up to 85 K we compute the quasiharmonic contri-
bution from the finite temperature expression for the
mean-square atomic displacement (MSD), (u ), and cal-
culate the lowest-order (A, ) anharmonic contributions to
MSD in the high-temperature limit (T)8D, 8D is the
Debye temperature}. The A, contributions are added as
corrections to the quasiharmonic result in the tempera-
ture range eD ~ T ~ T, where T is the melting temper-
ature. In all three calculations mentioned above we use
the nearest-neighbor central force model of the fcc lattice
with atoms interacting via the 6-12 Lennard-Jones (LJ}

interaction potential and the Morse Potential, with pa-
rameters given in Shukla and Shanes. '

The ( u ) results from the Green's-function method
are obtained from the following:
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whereas the high-temperature limit quasiharmonic and
the A, anharmonic contributions are calculated from
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and finally the quasiharmonic contribution to MSD in the
low-temperature range is calculated from the following
finite temperature expression:

2M
(2n +1}

3 2NM . co .
qj gJ

(7)

The MSD is related to 2M via 2M=(~q~ /3)(u ) and
the Mossbauer fraction is given by f=exp[ —2M ].

In Eqs. (1)—(7) the various symbols have the following
meaning: A' is the Planck's constant divided by 2~; N
represents the number of unit cells in the crystal and M
the atomic mass; T is the temperature and kii the
Boltzmann constant and P=(ka T} ', co~ is the phonon
frequency for the wave vector q and branch index j; Q+
is the renormalized phonon frequency which is calculated
from Eq. (2) with the knowledge of the cubic shift b,s(qj)
and quartic shift 54(qj) whose expressions are obtained
from the second and third terms, respectively, on the
right-hand side of Eq. (3). The 4 functions in Eq. (3}are
the Fourier transforms of the third and fourth rank ten-
sors. Full details of the calculation can be obtained from
Ref. 7. B, C, D in Eqs. (4)—(6) are given by

1 d 1B= — P(r), C = — P(r),r dr ' r dr

1 d
D = — P(r),

r dr

where P(r) is a two-body potential function and
F(r)=$"(r)+(1/r )P' with primes denoting the corre-
sponding derivatives of P. The functions S&H (a, },
S4„(a,), Ss„(a,), and similar other functions in Eqs.
(4)—(6) represent the various Brillouin zone (BZ) sums
which arise in the quasiharmonic and the A, anharmonic
calculations of MSD. In Ref. 8, these sums were evalu-
ated to a high degree of accuracy and fitted to
an exponential function involving polynomials of
degree 5 in the form f(a, )=exp[P(a, )], where P(a, )

ob„(a, }". The coefficients b„ for these polynomi-
als are given in Ref. 8 in Table IV. a& is a parameter
which characterizes the volume dependence of the
Brillouin-zone sums. It is defined by a& =P'/[rP" —P'].
Full details of these calculations can be obtained from
Ref. 8.

Although in Ref. 8 the quasiharmonic (S&H) and the
quartic BZ sums (S4„,etc.) have been calculated very ac-
curately, we find that there is some room for improve-
ment in the cubic BZ sums. Hence we present in Table I
the revised values of S3„, S3&, and S3& for di8'erent

values of a, in 0~ a
&
~0. 1 at intervals of 0.02. In calcu-

lating these values we have used the scanning procedure
and evaluated them for a mesh of odd and even wave vec-
tors for step lengths 10, 20, and 30. Here the step length
is defined as the number of steps from the origin to the
boundary of the BZ in the x direction. The values
presented in Table I are the extrapolated values for the
infinite step length. These values of S3„,S3&, and S3+
are about 5% higher than those presented in Shukla and
Plint. In order to have a check on our numerical results,

TABLE I. Dimensionless sums S», S», and S3c for
different values of a &.

a&

0.10
0.08
0.06
0.04
0.02
0.00

0.029 753 7
0.032 320 3
0.035 517 8
0.039 590 6
0.044 922 2
0.052 1420

0.104224
0.112772
0.123 387
0.136864
0.154427
0.178088

S3c

0.580 168
0.631 239
0.695 066
0.776 690
0.884089
1.030 54

the finite-temperature quasiharrnonic contribution was
evaluated in the temperature range 5 K & T ~ 60 K by
two procedures: (1) by a straightforward sampling pro-
cedure with a regular cubic mesh, and (2) by the Gilat-
Raubenheimer method for the calculation and subsequent
integration purposes involving the phonon distribution
function g(co}. They agreed to four significant figures.

As mentioned earlier, the high-temperature results
from the A, contribution were added to the above
quasiharmonic results for T)8D, where 8n was chosen
as 64 K." In Fig. 1 we present these results for f along
with the experimentally determined Mossbauer and x-ray
results. The x-ray results have been determined by Win-
decker, ' and Mossbauer by Kolk. ' The MC results are
also presented in this figure.

In Fig. 2 we have presented the high-temperature re-
sults for the A, contribution, the Green's-function
method (shown as RE—renormalized frequencies) and
the MC method. The lattice spacings for all three
methods are the same as given by the zero-pressure con-
dition in the MC method. They are given in Ref. 13.

In Fig. 3 we present the result for the Morse potential
from the experimentally determined lattice spacings for
the finite-temperature quasiharmonic case with the A,

corrections added to them in the high-temperature limit.
The experimental values are again from the Mossbauer
and x-ray sources.

The experimental values for ln f shown in Figs. 1 and 3
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FIG. 1. Mossbauer fraction in Kr (represented as 1nf ) versus

temperature. Squares are the x-ray results, triangles are the
Mossbauer results. For the LJ potential, black dots and the

solid line represent the MC and the k2 PT results, respectively.
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FIG. 2. Mossbauer fraction in Kr (represented as 1nf) versus
temperature for the LJ potential in the high-temperature limit.
Crosses are the Green's-function (RE) results, black dots and
the solid line represent the MC and the A, PT results, respec-
tively.

that are labeled Mossbauer, are based on the experimen-
tal work of Gilbert and Violet. ""The value of the inter-
nal conversion coefficient available to Gilbert and Violet
was not correct and Kolk ' has reanalyzed the experi-
mental data using a later value of the internal conversion
coefficient. We have used the more recent analysis of
Kolk which is less sensitive to the physical parameters
used in the analysis. It gives larger values of lnf than his
earlier analysis. Note the value of 85 K. This was in-
correctly placed at 80 K in Fig. 2 of Kolk, there being
no data for 80 K in Gilbert's thesis. ' The x-ray values of
lnf in Figs. 1 and 3 are due to Windecker' and have
been read off Fig. 1 of Kolk. Representative values for
the uncertainties in lnf also shown in Figs. 1 and 3. The
uncertainties in the Mossbauer values are approximately
the same for all temperatures, where the uncertainties in
the x-ray values increase with temperature.

It is clear from these results that for both potentials

FIG. 3. Mossbauer fraction in Kr (represented as 1nf) versus

temperature for the Morse potential. The figure legends are the
same as in Fig. 1.

with experimental lattice spacings' the agreement be-
tween the theory and experiment is quite good in the tem-
perature range 5 KIT~85 K, although the LJ results
are a shade better than the Morse results. The experi-
mental point at 85 K is taken from Gilbert's thesis. In
comparison to other experimental points this seems to be
very low. Since no experimental data is available above
85 K the theoretical results cannot be tested in the tem-
perature range 85 K T~116 K. Within the range of
experimental measurements with respect to temperature
it is difficult to distinguish the results of the three theories
presented in Fig. 2. The results of three theories di8er
from each other for T) 100 K. A measurement in this
temperature range is highly desirable for testing anhar-
monic theories.
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