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From electron to small polaron: An exact cluster solution
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We perform the exact diagonalization of two, four, and six vibrating molecules strongly coupled with

one electron to show that a small polaron describes both adiabatic and nonadiabatic regimes. Electron
spectra are derived and compared with the adiabatic Holstein approximation and with the Lang-Firsov
canonical transformation in a wide range of the adiabatic parameter and the coupling strength. We
show that the self-consistent Migdal approximation is violated at an intermediate value of the coupling
constant A, =1 and the adiabatic or nonadiabatic small polaron is the ground state for the intermediate
and strong coupling A, ) 1. The phonon frequencies are calculated for a wide range of the coupling, in-

cluding the intermediate region.

I. INTRODUCTION

It has been known for a long time' that a system of
electrons and phonons coupled by the Frohlich interac-
tion is unstable at some critical value of the coupling.
The phonon-vacuum instability appears in the adiabatic
description' as an instability of bare phonons at A, = —,':
the renormalized phonon frequency co being to&1 2iL. —

The nature of the ground state in the strong-coupling
limit A. & 1 is of great interest. The many-electron system
on a lattice strongly coupled with any bosonic field turns
out to be a charged Bose liquid (BL) consisting of on-site
or intersite small bipolarons (charge 2e, spin 0 or 1) if the
Coulomb repulsion is not very large or a heavy polaronic
Fermi liquid in the opposite case. The point is that A, = 1

is the condition for the small polaron formation, which
has been known for a long time as a solution of a
single-ferrnion problem on a vibrating lattice. Once small
polarons are formed the adiabatic approximation no
longer holds because the electron band (no matter how
wide it is) shrinks into a very narrow polaronic band.

The important point is that phonons are stable and
their frequency renormalization is small (as 1/A, ) in the
polaronic region of coupling, A, »1, as has been shown
with 1/A, expansion. ' Thus, the Frohlich Hamiltonian
can be applied for any value of A,.

These results have been derived for a sufficiently large
value of A,. Several attempts to describe the intermediate
region of the coupling A, = 1 with and without electron-
electron correlations are known in the literature. These
are based on the variational approach, " ' the Monte
Carlo calculations, ' ' and on the exact (numerical) solu-
tion of a several-site model. ' ' The general conclusion
is that there is a continuous smooth evolution from a
wide-band Fermi liquid to narrow-band small polarons
(or bipolarons) in the intermediate region of the coupling
A, =1 and that neither Migdal nor small polaron approxi-
mations are in quantitative agreement with the exact re-

suit at intermediate-coupling strengths.
However, the numerical solutions of a several-site

models have been given for a fixed value of the adiabatic
parameter colt=1.0 (Ref. 17) or colt=0. 5. ' At the
same time these results have been compared with the
Lang-Firsov approach, which is, strictly speaking, appli-
cable only in the nonadiabatic limit co/t & 1. No compar-
ison with the Holstein adiabatic small polaron has been
made. Therefore, the applicability of the relevant small
polaron theory in the intermediate-coupling region
remains to be checked.

A numerical exact calculation of a self-trapped exciton
was reported by Kongeter and Wagner' for a difFerent
value of the adiabatic parameter. Two separated peaks in
the spectral function were found and the disappearance
of the second peak in the extreme nonadiabatic situation
was stated.

In this paper we solve a model of two, four, and six vi-
brating molecules coupled with one electron in the adia-
batic colt &1 as well as in the nonadiabatic colt & 1 re-
gimes using numerical diagonalization with 50 phonons
for two sites and with 30 phonons for four and six sites.
We show that the adiabatic Holstein small polaron and
the Lang-Firsov canonical transformation are in excellent
agreement with the exact solution in adiabatic and nona-
diabatic regimes, respectively, for all values of the cou-
pling strength. The Migdal approximation is only valid
for a weakly coupled adiabatic system A, ,co/t «1. The
phonon frequency renormalization is studied in a wide
range of the coupling, including the intermediate region.

II. ANALYTICAL APPROACHES
TO A STRONGLY COUPLED

ELECTRON-PHONON SYSTEM

The familiar Frohlich Hamiltonian in the site represen-
tation has the fallowing form:
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w =D exp( —g ), (2)

and independent phonons with a bare frequency co. Here
D =zt is a bare half-bandwidth in a rigid lattice.

The second order gives the polaron self-energy and the
polaron ground-state energy:

so—- Dn A+—1

2zA,

H = —t g c,~c, +geo g c, c, (d, +d,~) +co g d,td, ,
&ij & I t

where t is the nearest-neighbor hopping integral, c;,d; are
electron and phonon operators, correspondingly (for sim-
plicity the Holstein model of local molecular phonons is
considered), g is a dimensionless interaction constant re-
lated to the canonical coupling constant A, =g co/zt, z is a
coordination lattice number, z =2 for a one-dimensional
chain.

The Migdal approximation, which is based on the sum-

mation of a particular set of diagrams for the electron
and phonon Green functions is restricted by a small value
of the coupling constant because of the phonon-vacuum
instability, as we have discussed in the Introduction. One
can also see the instability of this solution in the electron
self-energy (see the Appendix}.

There are two analytical approaches to the strong-
coupling limit. One is based on the Lang-Firsov canoni-
cal transformation and on the expansion in powers of
1/A, , which has been elaborated on by Gogolin for elec-
trons and by Alexandrov and Capellmann' for phonons.
With the canonical transformation one can eliminate the
strong Frohlich interaction leaving with the residual
polaron-phonon coupling, which is a perturbation if
A, )&1.

In zero order in I/I, one obtains a narrow polaronic
band with a half-bandwidth:

and Mashtakov one can obtain the main results of the
adiabatic approach through the functional integration
over the electronic f; and phononic (bosonic)

P; = 1/&2(d; +d; ) fields of the action.
In the spirit of the adiabatic approximation one can

neglect the time dependence of the displacement field to
obtain in zero order co/t~O from the minimum of the
Lagrangian the displacement field and the electron wave
function.

In the strong-coupling limit A, && 1 the polaron
ground-state energy is given by the same expression, Eq.
(3), as derived with the 1/A, perturbation expansion, and
the renormalized phonon frequency: '

1co=A 1—
2zA, 2

' 1/2

The low-lying (E & g co) excited states have the energy

E —cp+ +kco
coN

2

w =D exp( —g ),
where

(7)

with k = 1,2, 3, ...,N the total number of sites.
For higher energies E &g co the polaron spectrum is

continuous and corresponds to the fast electron motion
under the polaronic potential well.

To calculate the renormalized bandwidth one should
take into account nonperturbative nonadiabatic correc-
tions to the action. Up to now this problem in the adia-
batic regime was solved only for a two-site model,
(i,j =1,2). The half-splitting of the electronic level w,
which imitates the half-bandwidth, is given by

The second-order phonon self-energy is given by the loop
diagrams of Fig. 1 and the renormalized phonon frequen-

.10

D =4D
7rt

1/2

P A.
' ~(1+P) (8)

n
N —co 1

4zA,
(4)

+ ' + ~ ~ ~

+ + ~ ~ ~

FIG. 1. Phonon self-energy in the strong-coupling limit.

Here n is the density of polarons per site.
The second approach is the adiabatic approximation,

developed by Rashba ' and Holstein. It is based on the
expansion in powers of colt «1. Following Kabanov

with P=+1—1/A, , and

g =g P— in[A(1+P)/2]1
(9)

Expression (7) is a generalized Holstein formula, 7

which as we show works in the whole small polaron re-
gion, A, ) 1 for the adiabatic case co/t &1. To get Eq. (7)
we have used the dilute instanton gas expansion, which
gives the correct expression for the preexponential factor.
Expression (7) corresponds to the well-known Holstein
formula if we take into account leading terms in 1/A, in
Eqs. (8) and (9). We note that in the strong-coupling lim-
it p= 1 and the exponent in the renormalized bandwidth,
Eq. (9), is the same, as is obtained with the canonical
transformation, Eq. (2): g =g. However, the term in front
of the exponent, D, Eq. (8}differs from D for any value of

There is also an essential exponential difFerence be-
tween Eqs. (2) and (7) in the intermediate-coupling re-
gion, where g differs from g (see also Fig. 8).
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III. NUMERICAL SOLUTION
OF SEVERAL-SITE MODEL, COMPARISON

WITH ANALYTICAL RESULTS

onth 1 A, orco
Two analytical approaches discussed above b dove are ase

or colt expansions. A priori it is difficult to

intermediate-coupling region, A, = 1 or for the intermedi-
ate value of the adiabatic parameter colt = l. It is clear
that the ground-state energy as well as the renormalized
phonon frequency are less sensitive to the parameters be-
cause they are the same in both approximations. Howev-
er, the bandwidth might depend strongly on the approxi-
mation used. Fortunately, as we show below, analytical

whole re
'

expressions, Eqs. (2) and (7) works perfectly well in th
e region A, & 1 for the nonadiabatic colt & 1 and adia-

in e

batic colt (1 systems, respectivel . This is
'

with the c 18wi e conclusion based on the comparison of the nu-

16m
merical solution for the ground-state energy of 8 d

molecular model in the adiabatic limit with the nona-
oreover, the correc-iabatic Lang-Firsov formulas. M, h

tions to the ground-state energy due to phonon frequency
renorma ization have not been taken into t

hese corrections are important in the int
cou lin limit A, —

e in ermediate-

p ing imit —1 and in the antiadiabatic limit ~) t
due to zero-point fluctuations.

We present here the solution of two- four- d-, our-, an six-site
mo e s or a wide range of the adiabatic parameter co/t.
For co/t =1 th e two-site problem has been solved b Ran-
ninger and Thiblin. ' y an-

After rewriting the Hamiltonian, Eq. (1), in terms of
the modes corresesponding to irreducible representations of
the symmetry group of the linear chain a symmetric
mode xo= u, + . +uN)l&N couples with the con-
stant total density of electrons n =n + +—n, . . . nN and can
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FIG. 3. Reenormalized phonon frequencies for a four-site

s er. our p onon modes are shown, a bare asymmetric
mode (u &, u2, —u2, —u

& ) is adiabatically unstable at A, =0.57.

be taken into account exactly (displaced oscillator). As a
result the t
the

e otal number of phonon modes cou 1 d th
e electron is reduced to N —1, N =2, 4, or 6. In the

pe wi

numerical calculations we take 50 phonons for N =2, 10
phonons per each mode for N =4, and 6 h—, an p onons per

To compare the exact results for a finite cluster with
the adiabatic approximation we have solved a set of the
a iabatic equations [Eqs. (3) and (4) in Ref. 22] for a finite
cluster with one-loop correction wh' hw ic gives renormal-
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ized phonon frequencies. The ground-state energy in the
adiabatic approximation is

N

Eo =co+ I /2 g a);,

Det[co 5,. ~.
—II,. (8)]=0,

where po1arization is

where 8; is determined in terms of the solution of self-
conistent equation
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trix we solve the self-consistent equation (11).
The results of comparison of the adiabatic approxima-

tion with one-loop corrections and exact results are
presented in Figs. 2(a) —2(d). As can be seen from Fig.
2(a) for co=0.25t there is an excellent agreement of the
ground-state energy in the adiabatic approximation with
exact results in the whole range of the coupling strength.
If the phonon frequency increases, the deviation of the
ground-state energy in the adiabatic approximation from
exact results appears in the intermediate-coupling range
A, —1. This deviation is connected with the fact that the
renorma1ized phonon frequency is close to zero and the
one-loop approximation is not suScient. One can easily
see this from the two-site model. For A, & 1 the renormal-
ized phonon frequency is

10 I I I I

-15 5 15 co =co+ 1 I, . (14)

FIG. 5. The adiabatic terms of a two-site model. The upper
curve corrsponds to the nonbonding state.

G ( ) g 4a 4n J
l,J

CO 6n n

(13)

P„(i)is a wave function in the presence of polaronic po-
tential well.

It should be noted that our approach is the same as an
unrestricted symmetry-broken Hartree-Fock approxima-
tion. The only difference from Ref. 29 is a different way
of considering loop corrections. In our approach polar-
ization loop has smaller matrix. Instead of the diagonali-
zation of a bigger random-phase-approximatin (RPA) ma-

In the region of A, -1 the phonon frequency is small and
the harmonic approximation for the adiabatic potential
breaks down. The anharmonic effects are strong and it
is necessary to take into account anharmonic terms in the
adiabatic potential.

The behavior of the local phonon modes as a function
of the coupling constant A, for the four-site model is
shown in Fig. 3. In the vicinity of A, —1 the local phonon
mode is close to the instability.

In the intermediate a=t regime the ground-state ener-

gy for A, & 1 in the adiabatic approximation is also in good
agreement with the exact results [Fig. 2(c)].

In the nonadiabatic limit co=3t, Fig. 2(d), we found
good agreement of the I.ang-Firsov approach after taking
account of the phonon frequency renormalization (4)
with exact results. It should be noted that there is no
visible difference in the ground-state energy of the four-
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site model with different types of boundary conditions
(free ends and periodic boundary conditions) for A, &1
[Fig. 2(a)]. This is due to the fact that the size of the
small polaron is restricted to the lattice constant (see
Refs. 7, 21, and 22} and the size of the system has no im-
portance in that case.

Figures 4(a) —4(f} show the spectral function of two-
and four-site models which correspond to the probability
of absorption of a free electron with the momentum k
into the ground state without any electrons as measured
by the angle-resolved inverse photoemission spectrosco-

A/, (e)=21ry (0,0~ck Im, 1)(m, l~ck I0,0)

X5(e—E' +E ),
where Im, n ) and E" are the eigenfunctions and eigen-
values of the Hamiltonian (1) with n electrons. Figures
4(a)W(d) correspond to the adiabatic limit. In that case
the spectral function has two well-pronounced maxima
for the two-site model and four maxima for the four-site
cluster. The first one corresponds to the polaronic pho-
non cloud. The states inside of this peak are responsible
for the polaron formation. Other peaks appear due to the
existence of the exicited nonbonding states, which corre-
spond to the upper adiabatic terms (Fig. 5). This peak is
connected with the high-lying excited states (E &g cu) in
the polaronic potential well. In the adiabatic approxima-
tion these states are responsible for the midinfrared peaks
in the optical conductivity. In should be noted that
the existence of the second peak in the adiabatic limit has
been reported earlier by Kongeter and Wagner. '

As can be seen from the Figs. 4(e) and 4(f) these non-

bonding states also exist in the intermediate regime
(co-t) in contrast with the Monte Carlo simulations. '

In contrast to the pure adiabatic picture in the intermedi-
ate regime co-t the polaron cloud and nonbonding states
are close to each other and there is mixture of these
states. In the antiadiabatic limit (co & t ) the adiabatic po-
tential does not exist due to fast phonon fluctuations and
the second peak in the spectral function disappears as has
been reported earlier. '

As can be seen from Figs. 4(c)—4(f) each line in the
spectral function split into a few lines and these lines
have different intensities. These peculiarities of the spec-
tral function clearly show that phonon modes are not de-
generate for this case due to a different renormalization
factor (see also Fig. 3).

The calculated exact phonon wave function of a two-
site model compared with the analytical one in the adia-
batic approximation,

$(X —gP)2
exp

240

1 —P+
' 1/2

co(X+gp}
exp

2Q)
(15)

is shown in Figs. 6(a}-6(d). In contrast with Ranninger
and Thibblin results' we found excellent agreement of
the phonon function with the adiabatic approximation up
to co-l [Fig. 6(c}]. The adiabatic approximation also

gives a good description for the well-developed shoulder
for X &0. It should be noted that in the adiabatic limit
the deformation is closely linked with the electronic wave
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function [see Eq. (11)] and a slow polaron tunneling cor-
responds to the tunneling of both deformation and elec-
tronic wave function. The shoulder of the phonon wave
function is proportional to the density of the electron
wave function on the neighboring site in the broken-
symmetry ground state.

This shoulder is extremely important in the adiabatic
limit when the phonon fluctuations are slow and the
ground-state energy strongly depends on the form of the
adiabatic potential.

In the antiadiabatic case this shoulder [Fig. 6(d)] be-
comes smaller and is not so important for the ground-
state energy. This is connected with the fact that lattice
fluctuations are fast and deformation relaxes quickly fol-
lowing the slow electronic motion. In that case there is
good agreement with the Lang-Firsov nonadiabatic
theory. '

Figures 7(a)—7(d) represent the result of the compar-
ison of the exact energies of the first six levels with the
small polaron levels, Eq. (6). As follows from the results
there is an excellent agreement of the adiabatic theory
with exact results for A, & 1 even in the intermediate re-
gime co- t.

It should be noted that polaronic levels Eq. (6) in the
adiabatic limit are degenerate. There are two equivalent
positions of the polaron (sites 1 and 2) which correspond
to the same energy. The splitting of these degenerate lev-
els appears if we take into account tunneling processes.
This splitting is proportional to the polaronic bandwidth.

Finally to analyze the polaronic bandwidth we calcu-
late the splitting of two lowest levels. In that case we
have two well-controlled approximations for the band-

, width, Eqs. (2} and (7). As can be seen from Figs. 8(a)—
8(d) for co=0. lt there is a good agreement of exact results

with Eq. (7}. It should be noted that the Lang-Firsov ap-
proximation gives in that case 2 orders-of-magnitude
smaller value of the splitting. It means that in the adia-

batic limit the procedure of averaging over phonons to
estimate the polaronic bandwidth is incorrect. In the in-

termediate regime co=0.909t both formulas (2} and (7)

give more or less a good estimate for splitting [Fig. 8(c}].
In the nonadiabatic limit [Fig. 8(d}] the energy splitting is
in good agreement with the Lang-Firsov theory.

IV. CONCLUSION

Our conclusions are the following.
(i) The Lang-Firsov approach and the adiabatic Hol-

stein approximation are in the excellent agreement with
the exact diagonalization for the nonadiabatic to/t &1
and adiabatic co/t (1 system, respectively. We have also
found that in the intermediate regime (to —t ) both
theories give a satisfactory estimate for the ground-state
energy and the polaronic bandwidth.

(ii) In the intermediate-coupling region, A, = 1, the Mig-
dal approach is meaningless and the efFective bandwidth
of a small adiabatic polaron can be several orders of mag-
nitude larger than that obtained with the nonadiabatic
formula, Fig. 8. This drastically reduces its efFective
mass.

(iii) We have found that the spectral function has two
separated peaks in the adiabatic limit (Fig. 4), as has been
reported earlier. ' We also found that second high-energy
peak disappears in the nonadiabatic limit (to& t ) due to
mixture with a polaronic cloud. '

(iv) In the intermediate-coupling regime (A, —1) in the
adiabatic limit where a double-well structure appears in
the adiabatic potential and renormalized phonon frequen-
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cy is close to zero (Fig. 3) anharmonic effects are impor-
tant. "

(v) The renormalized phonon frequencies are found,
Fig. 3, in a wide range of the coupling, including the in-
termediate region.

It is necessary to mention that we have restricted our
analysis to the case of one electron or one hole and conse-
quently the Coulomb repulsion is absent from our Hamil-
tonian Eq. (1).

FIG. 9. Electron self-energy in the Migdal approximation.
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APPENDIX

The electron self-energy X in the Migdal approxima-
tion contains two contributions, XM and X„,Fig. 9.
XM-—A,co and thus remains small compared with the
bandwidth =t in the relevant region of the coupling
(A, (rico), which guarantees the self-consistency of the
approximation. On the other hand, X„=—g con turns
out to be comparable to or larger than the Fermi enegy
already at A. ) 1 for any filling of the band, as it was men-
tioned in Ref. 32, where n is the electron density.

As a rule this diagram, which is momentum and fre-
quency independent, is included in the definition of the
chemical potential p. However, this is justified only in
the weak-coupling regime. For a strong coupling A, ) 1

leads to an instability. To show this let us consider a
P

one-dimensional chain. The renormalized chemical po-
tential is given by

n.(n —1)
JM=2t sin

2
—2tin . (Al)

The system is stable if dp jdn is positive, which yields the
following region of the stability of the Migdal solution:

A, (—cos
2

n(n —1)
2

(A2)

For two- and three-dimensional lattices the numerical
coefficient is different, but the critical value of A, remains
to be of the order of unity. This consideration unambigu-
ously shows that the extension of the Migdal approxima-
tion to the strong-coupling region A. & 1 is unacceptable.
For a filling different from —,

' the critical value of A, above

which the Migdal approximation is violated turns to be
even less than unity.

It is important that in the 1D case the polaron forms
for any strength of the coupling. " This is clearly seen
from Eq. (A2). For n ~0 the critical value A,, is equal to
0. It means that system is unstable with respect to forma-
tion of localized polarons. Delocalization of the polaron
takes place due to tunneling processes, which are nonper-
turbative.
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