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The critical-state behavior of an infinitely long type-II superconducting thin-film strip is theoret-
ically analyzed for an arbitrary sequence of applied transport currents and perpendicular magnetic
fields. Included are solutions for applied field only, transport current only, transport current ap-
plied to a sample initially in the remanent critical state, ac applied field, ac transport current, and
simultaneously applied Geld and transport current. The results are compared side by side with cor-
responding solutions for the more familiar slab geometry; there are striking differences in behavior.

I. INTRODUCTION

New experimental methods recently have beea de-
veloped to image and measure inhomogeneous mag-
netic flux distributions and hysteretic flux penetration
in type-II superconductors. For example, magneto-optic
measurements have produced images of the magnetic
flux penetration behavior in high-temperature supercon-
ductor (HTSC) platelet crystals and thin films. Minia-
ture Hall sensors have been used to measure flux
penetration behavior in crystals and 6lms including the
eH'ect of transport current on the local magnetization.
Scanning Hall probes were used to obtain the lo-
cal magnetic-field profiles in HTSC single crystals which
even allow for single vortex spatial resolution. In addi-
tion, the microscopic Hall-sensor array promises to be
a very sensitive tool for investigation of flux penetra-
tion and vortex dynamics in films and thin crystals. 3

Because of the importance of thin-61m applications of
the high-temperature superconductors, there currently is
considerable interest in the hysteretic magnetic behav-
ior of thia superconducting 6lms. While the hysteretic
properties of bulk type-II superconducting samples are
reasonably well understood, a good theoretical under-
standing of the corresponding properties of thin 6lms so
far has been lacking. The purpose of this paper is there-
fore to introduce a theoretical &amework for the calcu-
lation of hysteretic magnetic 6elds and electrical current
distributions, so that such results can be applied in the
analysis of future scanning Hall-probe or magneto-optical
experiments with improved field sensitivity and spatial
resolution.

The origin of the magnetic hysteresis of type-II super-
conductors subjected to quasistatic changes of applied
magnetic fields and transport currents has long been un-
derstood in terms of critical-state theory. ' The basic

concepts involved in this theory are as follows. The pen-
etration of magnetic flux into type-II supercoaductors
occurs via quantized vortices (fluxons), which nucleate
at the surface when the surface field is high enough. The
macroscopic magnetic-6eld flux density B in the super-
conductor (B is the average of the local magnetic flux
density b over a few intervortex spacings) has magnitude
B = neo, where n is the local density of vortices (number
per unit area) and Po ——hc/2e = 2.07 x 10 Gcm2 is
the flux quantum.

The thermodynamic driviag force per unit volume on
such a vortex array is F = J x B/c, where J is the coarse-
grained current density defined via J = (c/4vr)V x H.
Here, the thermodynamic magnetic 6eld H, a function of
the flux density B, is defined in terms of the free-energy
density F(B) via H = 4+BF/BB In isot. ropic materi-
als, the minimuin and maximum values of H(B) in the
mixed state are H(0) = H, i, the lower critical field, and
H(H, 2) = H,2, the upper critical field. In the absence of
surface-barrier or surface-pinaing eH'ects, B and H sat-
isfy the well known boundary conditions that the normal
component of B and the tangential component of H are
continuous.

When the magnitude of the Loreatz force density
F = J x B/c exceeds the maximum pinning force density
F„=J,B/c, the vortices move in the general direction
of F. The resulting vortex motion relaxes the vortex dis-
tribution, such that the vortex density B becomes more
uniform and the magnitude of J decreases. Flux motion
generally ceases as J approaches J . The critical-current
density J, a function of B, is an extrinsic property of
the superconductor depending upon the distribution of
metallurgical defects that locally pin the vortex cores.

To simplify the analysis of fiux penetration into a type-
II superconductor, various assumptions often are made.
One of these, which we use in this paper, is that the
current density J has only one component. As shown in
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Fig. 1, when a slab or film (width 2W) that is infinite in
the y direction is considered, and currents and magnetic
fields are applied only parallel to the y and z directions,
respectively, the current-density vector has only one corn-
ponent,

tors, for which H ~ && H,2, in the Bux-density range
B ) H, z. Under these conditions the &ee-energy density
in the mixed state is primarily magnetic in origin, such
that F = B2/8x and H = 4vrBF/BB =-B.

The basic equations for the current density used in this
paper therefore are

c (BH,
4

BH t

Bz )

When the slab is also in6nite in the z direction, the
situation is further simplified, because H is then zero
by symmetry, and only the first term on the right-hand
side of Eq. (1) contributes to the Lorentz force on the
vortices. On the other hand, if the height d of the sample
in the z direction becomes very small, as in thin-film ge-
ometry (d « W), the second term on the right-hand side
of Eq. (1) becoines increasingly important. One way to
think of this term is that it arises from the bending of the
vortices that penetrate through the film. However, in the
limit of very thin 61ms when the vortices are essentially
two dimensional and the current density is nearly uni-
form across the sample thickness, it is better to think of
this term as arising &om the fact that the exterior mag-
netic 6eld wraps around the sample and has tangential
components H of opposite sign on the top and bottom
of the sample [K (x, z = d/2) —= H(x, z =—+d/2)).
Continuity of H (x, z) at z = kd/2 thus requires a large
gradient of BH /Bz across the sample thickness.

As discussed in Refs. 1, 19—22, it is nearly always the
case in thin-film geometry that the first term on the right-
hand side of Eq. (1) can be neglected relative to the
second term. While space does not permit a detailed dis-
cussion of this point, the basic reason for this is the strong
demagnetization effects that occur in film geometry. The
approximation that J„=(c/4x) (BH /Bz) for a thin film
then makes it possible to obtain analytic solutions for
numerous hysteretic states of thin films.

For simplicity, in this paper we also make two addi-
tional assumptions that are commonly made in exam-
ining the basic physics of the critical-state model. The
first of these is that J, is a constant, independent of B.
The other simplifying assumption is that H = B. This
approximation can be justified in high-K, superconduc-

-Shb

Film

B,(x)

FIG. 1. Schematic diagram of slab and film geometries con-
sidered in this paper. The origin of our coordinate system is
at the center of the slab or film.

(2)

for a slab that is infinite in both the y and z directions
(Fig. 1) and

Jy(x) = [Bx(x~ z = d/2) —B~(x, z = —d/2)] (3)

for a film that is infinite in the y direction, J„(x) here
representing the current density averaged across the 61m
thickness d.

The use of Eq. (3), which assumes that the first term
on the right-hand side of Eq. (1) is negligible, some-
times leads to solutionss 2s 2s for which BB,/Bx has in-
verse square-root divergences, a behavior that violates
the above assumption. Such vertical slopes in the 6eld
profiles therefore are not physically meaningful. Includ-
ing the first term on the right-hand side of Eq. (1) as
a correction term would remove such divergences and
change them to profiles with finite slope (as in slab ge-
ometry) on a length scale Ax typically of order d, the
film thickness (d « W).

Our goal in this paper is to describe various situations
in which it is possible to obtain analytic solutions for the
critical states of thin 61ms subjected to applied perpen-
dicular fields and transport currents. To assist the reader
in visualizing these cases, we illustrate both the similari-
ties and striking differences in behavior between thin-61m
and slab geometries. While our results for the thin-film
case may appear to be familiar because of their resem-
blance to those in slab geometry, they are completely
new, except that Norris was the 6rst to derive the re-
sults for an applied transport current, and Brandt et al.~4

and Brandt and Indenbom2s (whose work we learned of
in a report received in the 6nal stages of preparation of
this manuscript) recently solved many of the same prob-
lems considered here. We first treat, in Secs. II and
III, the response to applied magnetic 6elds and trans-
port currents. This will lay the theoretical groundwork
for a general understanding of magnetic hysteresis in thin
films. In Sec. IV we consider the more complex case in
which a sample, initially in the remanent critical state,
is subjected to a transport current, and in Sec. V we
treat the response to alternating 6elds and currents. In
Sec. VI we examine the monotonic penetration of Hux
&onts under increasing applied fields and transport cur-
rents. We propose in Sec. VII several approaches to the
dif6cult problem of critical-state current and field with
history of applied fields and transport currents. Finally,
we summarize our results in Sec. VIII.
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II. RESPONSE
TO AN APPLIED MAGNETIC FIELD

We consider here both an in6nite type-II supercon-
ducting slab and a long superconducting thin-61m strip.
Both the slab and the film have width 2W along the x
axis and extend in the y direction, so that the film can
be regarded as just a slice of thickness d of the infinite
slab shown in Fig. 1. We assume the width of the slab or
strip 2' to be much larger than the penetration depth
A. We initially consider the response when a magnetic
6eld B is gradually applied along the z axis, and later
we examine the behavior when a transport current is ap-
plied along y. We Grst analyze the situation where the
magnetic field is applied starting &om the virgin state in
which B = 0 everywhere.

In slab geometry, application of the magnetic 6eld
B induces a diamagnetic current along both surfaces,
thereby shielding the interior of the superconductor.
When B is less than the lower critical field H, q, this
screening current Bows only within about A of the surface
and decays exponentially beyond this. However, when
B )& JI,i in a high-e type-II superconductor (the case
considered here), many vortices penetrate into the sam-
ple, and ignoring the distinction between B and H intro-
duces little error. In this case, the current density can be
calculated to good approxiination from V x B = 47rJ/c,
which in slab geometry reduces to

dBz(x) 4~
( )dx

(4)

In the critical-state model, ' the current density J
entering the Lorentz force is calculated &om V' x H =
4z J/c, where H is the internal magnetic field in equilib-
rium with the magnetic Bux density B. In the critical
state, the magnitude of J equals the critical-current den-

sity J,. As stated above, however, here we restrict our
attention to Bux densities sufBciently high that the dis-

tinction between B and H can be ignored. Assuming for

simplicity that J, is 6eld independent, as in the Bean
model, is is one thus obtains from Eq. (4) the following

critical-state profiles in slab geometry:

J„
Js(x) = & 0,

—J„

(6)

where the Geld-free region of width 2a is given by

B)
The vortices penetrate to the center of the slab at a char-
acteristic applied field value B, given by

Figures 2(a) and 2(b) show the corresponding cur-
rent and field distributions for various B values. When
B ( B„the volume of the slab is divided into regions
of two types: a "field-&ee" region or, more generally, a
"6eld-invariant" region if we start &om a nonvirgin state,
and "critical" regions. In the Geld-&ee region in the cen-
ter of the slab, B = 0 independent of B, and the region
is characterized by J = 0. The critical regions are char-
acterized by IJl = J„and the field here is determined
by J and B . Changes in the applied field displace the
boundary between the Geld-&ee and critical regions.

We now analyze the film geometry using the same con-
cepts. Application of a weak applied 6eld B in the z di-
rection induces Meissner screening currents to Bow. Al-
though there is no significant penetration of B, through
the film in this vortex-&ee state, the net magnetic 6eld
wraps around the film such that there is a discontinu-
ity in the component of B between the top and bottom
surfaces of the film. In turn, because of Ampere's law,
currents Bow in the 61m, not just within A of the edges at
+TV and —TV, but all the way to the middle of the 61m.
Conformal mapping methods can be used to obtain
the following expressions for J„(x), the current density
averaged over the 61m thickness, and B,(x), the position-
dependent Bux density perpendicular to the 61m:
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FIG. 2. Calculated critical-state behavior
as the applied 6eld B is increased for a sam-

ple initially in the virgin state. The cur-

rent-density and magnetic-Sux-density pro-

files for a slab are shown in (a) and (b),
and the corresponding pro61es for a 61m are

shown in (c) and (d). Arrows indicate the

progression of the pro61es as B increases.
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B,(z) =
x2 —W2

J (*)=-
2vrd &W2

/z/ & w. (10)

—W&z&W, (9)
a & x & W. As shown by Norris, it is possible to use
conformal mapping and the method of images to obtain
the current density in the central region —a & z & a aris-
ing in response to currents in the Hux-penetrated outer
region. The image current per unit width that arises in
response to a current filament I = J,dAx at x = —t is

Equation (9) holds for all —W & z & W except within
a narrow region of width A near the edges if d ) A. If
d & A, a modified expression for J„(z) is needed within
a distance A of either edge, where A = 2A2/d is the two-
dimensional screening length. We assume in this pa-
per, however, that either A & d &( W or, if d & A, that
d & A & A &( W, such that penetration-depth correc-
tions are needed only in regions of negligible width.

Equation (10) holds for any z outside the film ex-
cept in a region of width d near the edges if d ) A or
width A if d & A. Because of demagnetization eKects,
the field at the edge of the 61m is much larger than the
applied 6eld. As shown in Ref. 27, if one approximates
a film of width 2W and thickness d as an ellipse with
semimajor axis W and semiminor axis d/2, the field at
the edge is estimated to be B,gs, (2W/d) B . How-
ever, this expression overestimates the 6eld enhancement
found experimentally. A more accurate expression is
found to be B,ss, gw/dB, which is obtained from
Eq. (10) by replacing z by W + d/2 and noting that
d && W. A similar expression can be obtained using the
approach of Ref. 27 but by choosing the semiminor axis
of the ellipse so that the local radius of curvature is d/2
at the edge. When B,gz, exceeds H, 1, vortices nucle-
ate at the film's edge and penetrate into the 61m. The
depth to which these vortices penetrate depends upon
the strength of pinning; the weaker the pinning, the far-
ther the vortices penetrate. According to the critical-
state model, 1~ the distribution of vortices in metastable
states can be obtained by setting the magnitude of the
current density equal to the critical value J . Whereas
in the case of slab geometry the current density depends
almost entirely upon the gradient of H, in film geometry
J depends primarily upon the curvature of H. As dis-
cussed in detail in Refs. 1, 19—22, this occurs because of
the strong demagnetizing eEects that are present in 61m
geometry.

After the vortices penetrate into the film, the condi-
tion found in the slab, that

~
J~ = J, in the outer region

and J = 0 in the central region, does not apply. What
is required is a solution for J and B for which B = 0
in a region of width 2a in the film's center. The reason
for this is that, when either A & d (& W or, if d & A,
d & A & A &( W, the z component of the magnetic
Hux density is exponentially small except within the ap-
propriate penetration depth of the penetrating vortices.
Along the sample edges, ~J~ = J„and the local vortex
density n(z) is related to the transverse component of
the magnetic field B,(z) via

t2 a2

7r(t + z) a2 —z2 (12)

Adding to this the image current per unit width that
arises in response to a current 61ament —I at x = t, we
obtain

x(t2 —z') a' —z2 ' (13)

Integrating over all the filaments in the constant-J, re-
gion yields the following image-current-density distribu-
tion in the region —a & z & a:

J;„(z)= 2J,z QW2 —a2+ W
1n

7i a —x a

2J, w2 —a2)
arctan

(W a2 —z2 (14)

The net current density J„ in the region —a & z & a,
however, is the sum of J;„and J „, the current density
induced in response to the applied 6eld. J z is evalu-
ated from Eq. (9) by replacing W by a. As stressed by
Norris, J„must be continuous. Thus we must choose
a such that J „cancels the 6rst term on the right-hand
side of Eq. (14). The resulting width 2a of the field-free
region is given by

where

W
cosh(B /By)

'

4
By = -dJ,

C
(16)

is the characteristic 6eld for 61m geometry. The net cur-
rent density J„ in the film is therefore

W~ —a~ ~z„(x) =
I

—'„.arctan( —g~.':.' ~,
—Jc)

—W&x& —a,
—a&x&a,
a&x&W.

(17)

This result is analogous to the current distribution ob-
tained by Mikheenko and Kuzovlev for the "thin disk"
geometry and consistent with the result obtained by
Larkin and. Ovchinnikov3 for a semi-infinitely wide thin
film.

The transverse component of the magnetic field is
given by

where $0 —— hc/2e. By analogy with the three-
dimensional (3D) case (slab geometry), the current den-
sity J„must be J, for —W & x & —a and —J for

B,(z) =B + — " dt,
2d J„(t)

w

which, upon carrying out the required integration, results
1n
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0,
B,(z) B I ~*~v w~ —~~+wg*& —~~

ag)x2 —W~
(

—aux&a,
izi ) a.

(19)

M, = —/1 —(a/W) = —tanh(B /By).
Mmax

(22)

The apparently infinite slope of B,(z) as z ~ +a is an
artifact resulting from the use of Eq. (3). Inclusion of the
first term on the right-hand side of Eq. (1) would change
this behavior to one of linear slope (as in slab geometry)
within a distance d of the flux fronts at z = iai. It should
be noted that in the limit of small B /By the width 2a
of the field-free region becomes nearly equal to the width
2W of the strip, and Eq. (17) reduces to Eq. (9) and Eq.
(19) reduces to Eq. (10).

Figures 2(c) and 2(d) show the current-density and
magnetic-6eld distributions for various values of the ap-
plied field. Note that there are substantial difFerences in
the way a slab and a film respond to an external 6eld.
In the critical region, uzi ) a, the current density obeys
iJi = J, in both geometries. In the vortex-free region,
however, there is a continuous nonzero current density
in the film, while J = 0 in a slab. The Hux penetra-
tion depth increases linearly with B in slab geometry,
whereas in the film the penetration is strongly nonlinear
as given by Eq. (15). Related profiles of the Hux penetra-
tion into thin 6lms and thin crystals of HTSC's have been
recently observed by use of magneto-optic techniques
and scanning Hall-probe measurements.

The magnetization per unit volume in the general case
is given by

W

M, = zJ„(z)dz.
-w

(20)

M, ( a2) B ( B)= —
i

1 — = — 2—
M g W'p B, q B,)

for B & B„whereas in a 61m

(21)

It is interesting to note that when iJi = J, through-
out the sample, the maximum magnitude of the magne-
tization is the same for both slab and film geometries:
M = J W/2c. However, the approach to this value as
a function of the applied 6eld is very difFerent in the two
geometries. In a slab we obtain

IIX. RESPONSE TO A TRANSPORT CURRENT

We now analyze the distribution of transport current
in slab and film geometries in the absence of an applied
field. For a slab, a small applied current Bows within
about A of each surface (A « W) and decays exponen-
tially beyond this. When the self-6eld at the surface
exceeds H, q, however, vortices penetrate into the sample
to a depth that is determined by the strength of pinning,
which in turn is characterized by the critical-current den-
sity J,. As above, we consider only the case of high-r
superconductors and large fields, such that w'e can ig-
nore the distinction between 8 and H. According to the
critical-state model, the current density is then

0, —a(x&a,
J'.. . i*i w', (23)

where 2a, the width of the central field-free region, is
determined by

a = W(1 —IT/I, ) (24)

Here IT is the applied transport current in the y direction
per unit height of the slab and I, = 2R'J, is the criti-
cal current per unit height. Figures 3(a) and 3(b) show
current-density and Hux-density distributions for various
values of IT . Note that an in6nite slab produces a con-
stant magnetic field of 2mIT /c on the left of the slab and
a negative 6eld of the same intensity on the right.

In film geometry, a weak applied transport current I~
in the y direction generates a self-field that wraps around
the sample and produces a discontinuity in the compo-
nent of B between the top and bottom surfaces of the
61m. Currents therefore Bow near the 61m surface and
not just within A of the edges, but across the entire width
of the 61m. Conformal mapping methods ' can be used
to obtain the following expressions for J„(z), the current
density averaged over the film thickness, and B,(z), the
fIux density in the plane of the 61m:
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critical state when IT* ——I,.



49 MAGNETIZATION AND TRANSPORT CURRENTS IN THIN. . . 9807

Jv(z) =
~d/W2 —z' —W&z& W, (25)

B.(*)=— (26)
c)z(gz2 —W2

The field at the edge of the 61m can be estimated
as shown in Ref. 27 by approximating a film of width
2W and thickness d as an ellipse with semimajor axis
W and semiminor axis d/2. The resulting estiinate is
B,gs, 4' /cd. However, this expression overestimates
the edge field. An experimentally more accurate expres-
sion for the field enhancement is B,gs, 2Iz/cgdW,
which is obtained from Eq. (26) by replacing z by
W + d/2 and noting that d « W. A similar expres-
sion can be obtained using the approach of Ref. 27 b»t
by choosing the semixninor axis of the ellipse so that the
local radius of curvature is d/2 at the edge. si When B,gs,
exceeds H, q, vortices enter the sample and penetrate to
a depth determined by the critical-current density J,.
To obtain the resulting current-density and Qux-density
profiles, we seek a symmetric solution with Jy: Jz on
both edges of the strip and a continuous Jy in a cen-
tral field-&ee region. The solution can be obtained by
following a procedure similar to that which led to Eq.
(14) to first obtain an image-current-density distribution
J;„ in the field-&ee region of width 2a. The integral of
the resulting J;„over the cross section of the strip in
the region —a & x & a is exactly equal to the negative
of 2(W —a)dJ„ the current carried by the critical re-
gion. The total current density in the region —a & x & a
therefore xnust be the sam of J„and Jz» the Meissner-
response current density generated by a current I~ in a
strip of width 2a. Jz„ is evaluated from Eq. (25) by
replacing W by a. Choosing a so that a continuous, non-
divergent J„(z) is obtained, we obtain

ized & W.

cretan (gJ„
—a&x&a,
a&fz[&W,

(27)

where the width of the field-free region 2a is determined
&om

a = W/1 —(Iz/I, )2, (28)

+B ln g~& —~& —gW~ —a~ ' fz[& W,

(29)

where B, is positive (negative) and the upper (lovrer) sign
applies when z & 0 (z & 0). As discussed in the para-
graph following Eq. (19), the diverging slope of B,(z) as

and I, = 2dW J, is the critical current of the strip. Note
that, in contrast to the slab case, there is a nonlinear
dependence of a upon the transport current Iz .

The transverse component of the magnetic 6eld, ob-
tained by integration using Eqs. (18) (with B = 0) and
(27), is

'0, —aux&a,

B.()=&

z -+ ka (as well as in several other similar cases in the
following sections) is an artifact that would be removed
within a distance d of z = ~a~ in a more exact analysis.
For very small currents it can be shown that Eq. (27)
reduces to Eq. (25) and Eq. (29) reduces to Eq. (26).

Figures 3(c) and 3(d) show J„(z) and B,(z) for sev-
eral values of the transport current Iz . The slab and film
solutions have some significant difFerences. The 6eld-&ee
region in the slab is always current &ee, whereas in the
film one may have any value of

~ J„~ & J, in the central
region where B, = 0. In fact, the field-&ee region of
the film may even carry the majority of the transport
current. At Iz = 0.6I„ for example, 60% of the vol-
ume of the slab carries transport current with density
J„and the remaining 40% carries no current at all. On
the other hand, in the film at 0.6I, only 20% of the vol-
ume carries J„whereas the remaining vortex-&ee region
carries 2/3 of the total current with an average density
of 0.5J,. The width of the Geld-&ee region drops linearly
with I~ in the slab but has a strongly nonlinear behav-
ior in the film. Comparing the pro6les of the magnetic
field, we see a linear penetration of the Geld into the slab,
whereas in the strip the field peaks sharply at the edges
and drops rapidly toward the center. The magnetic-field
profiles due to transport currents in thin HTSC filros
have recently been measured by use of the magneto-optic
technique. 4'5

IV. SAMPLE IN THE REMANENT STATE:
RESPONSE TO A TRANSPORT CURRENT

%e now combine our previous results in order to ana-
lyze the current and field distributions produced when a
transport current is applied to a sample in the remanent
state. Here we define the rexnanent state as the critical
state that is produced by first exposing the sample to a
very high magnetic field and then reducing the applied
field to zero. In this state J„(z) = —J, for —W & z & 0
and J„(z) = J, for 0 & z & W, as shown by the solid
lines in Figs. 4(a) and 4(c). The transport current is
now gradually applied in the y direction. The added cur-
rent cannot fiow in the region z & 0 because

~ J„~ cannot
exceed J, in the critical state. All the transport current
therefore Bows in the region x & 0. This additional cur-
rent changes the profile of the magnetic field and hence
the distribution of vortices. However, the vortices xnove
only if (J~ exceeds J,. Where )J„(z)~ & J„ the driving
force is smaller than the maximuxn pinning force, and
the vortices remain immobile. As a result, the volume
of the sample is again divided into critical regions where

~ J&(z) ~

= J, and the field is modified by the transport
current, and field-invariant regions where

~

J„. (z)~ & J,
and the field B, is equal to its value in the rexnanent
state. In slab geoxnetry, this condition is fulfilled when
the added transport current Bows symmetrically about
the z = —W/2 plane with critical density J, next to
z = —W and z = 0 as shown in Fig. 4(a). The net
current distribution is given by
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FIG. 4. Calculated critical-state behavior
as the transport current IT is increased for
a sample initially in the fully penetrated re-
manent state. The current-density and mag-
netic-Qux-density profiles for a slab are shown

in (a) and (b), and the corresponding profiles
for a film are shown in (c) and (d). The solid

curves show the initial I~ ——0 profiles, and
arrows indicate the progression of the sub-

sequent profiles as IT increases. The entire
cross section attains the critical state when

Ig ——I,.

J (z) = J„—W & z & —W/2 —a or —W/2+ a & z & W,
—W/2 —a & x & —W/2+ a. (30)

The width 2a of the field-invariant region is now given by

R'
a = —(1 —IT /I, ),

2

which is half of the value obtained in Eq. (24). Figures 4(a) and 4(b) show the current and Beld distributions for
various values of the transport current in the slab geometry.

In film geometry, application of a transport current results in a net current-density distribution that is the sum of a
remanent-Bux contribution, J„„(z)= —J, for —W & z & 0 and J„„(z)= J, for 0 & z & W, and a transport-current
distribution,

' 2J„
4J, (W/2) ~ —a~Ji„(z) = &

' arctan,
( +~&2l»

0,

—W & z & —W/2 —a or —W/2+ a & z & 0,
—W/2 —a & z & —W/2 + a,

0&~& W
(32)

Note that the added transport current Bows symmetrically about z = —W/2, but only in the region x & 0. The
maximum magnitude of Jq„(z) is double that given in Eq. (27), and hence the width 2a of the Bux-&ozen region,
given by

a = —gl —(IT /I. )',
2

(33)

is half that given by Eq. (28). The net current density is

Jc)

Jy(z) = 4g (w/2)~ —a~. (+W»).

—W & z & —W/2 —a or —W/2 + a & z & W,

—W/2 —a & z & —W/2 + a. (34)

The resulting net current and field distributions are
shown in Figs. 4(c) and 4(d). It is striking that in
film geometry the current density may change in both
magnitude and direction (from nearly —J, to J,) while
maintaining the same B,(z) in the Bux-frozen region. In
slab geometry, on the other hand [Fig. 4(a)j, J„(x) =
—J in the field-invariant region. This results from Eq.
(4), which dictates that Beld invariance requires current-
density invariance in slab geometry. The efFect of the
transport current on a thin HTSC film in a remanent
state has been recently measured by Darwin et aL using
a miniature Hall sensor.

Because the transport-current contribution Jq„does

1 W 0
zJ.dz+ (z+ W/2) J,„(*)dz

2cW ( o

0
—(W/2) J,„(z)dz .

—W
(35)

not Bow symmetrically about x = 0, the magnetization
of the sample changes from M = M in the remanent
state to M = 0 at IT ——I,. Noting that the net current
density is the sum of the remanent current-density con-
tribution J„„(x)and the transport-current contribution
Ji„(z), we may rewrite Eq. (20) in the form
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M, = M (1 —I~/I, ), (36)

so that the magnetization drops linearly with increasing
transport current I~ in both film and slab geometries.

The second term vanishes because Jq„(x) is symmetric
about x = —W/2, and the integral in the third term is
just the total transport current IT. Thus

bB /2)1a=W 1— (37)

where the 6B /2 factor arises from the fact that the new
shielding current density has an amplitude 2J, relative to
that of the B 0 initial conditions. The resulting current
distribution is described by

V. RESPONSE
TO ALTERNATXNC FIELDS AND CURRENTS

' —J„
J„

J„(2)=q 0,
—J„

, J„

—W&x& —a,
—a & x & —ao,
—ao & z & ao
ao&z&a,
a&x& W,

So far we have analyzed situations in which the trans-
port current or applied field were changed monotonically.
We now generalize our results to account for alternating
Gelds and currents. When the direction of the field or cur-
rent is changed, the response of the system depends on
the previously attained maximum values, which we will
denote by the subscript 0. This "memory" is preserved
as long as the new values do not exceed the previous
maximum values. Once the current or the applied field
exceeds in either direction the previous absolute maxi-
mum values, the system "loses its memory" and behaves
monotonically as described in the previous sections.

Suppose, for example, that a zero-Beld-cooled sample
is exposed to an increasing applied Geld up to a maxi-
mum value B 0 and the field is then dropped to a lower
value, B = B 0 —AB . At B 0 the current and field
distributions follow the results of Sec. II and are shown
in Fig. 5 by the solid curves. These distributions are
the new initial conditions prior to the change AB . In
slab geometry the width 2a of the Geld.-invariant region
in decreasing field is given by

W )+
"+i 2-

i
(»)B, ) B, ( 2B ) B,

In Glm geometry a similar analysis reveals a nonlinear
dependence of the width 2a of the field-invariant region,
now given by

W
c ohs(b, B /sB2y)

' (4o)

and the current and field distributions are described by
superposition of oppositely circulating shielding currents,

where ao ——W(1 —B o/B, ). Once B drops below Bo-
(b,B = 2B o), the memory of B o is erased and the
distributions follow Eqs. (5)—(7) with negative values
of J,. This process is depicted in Figs. 5(a) and 5(b).
Using Eq. (20) we obtain the following magnetization of
the slab in an alternating field:

(~J, 1+ —arctan
i ~

0

—S'&x& —a,
—a&x& —ao,

—ao & z & ao,

apex&a,
a&x&R'

(41)
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p

fxf/W~ —a(~&+Wv a~ —a20

B,(z) = g
y a, gf*~—w~f

f
x

f
QW2 —~0+ IV V * —o0

f
x

f QW —a +Wax —a

oov fx2 —wmf av fx~ —w~f )

—ao&x&ao,
ap & lzl & a,

lzl ) a,

(42)

where ap ——W/cosh(B p/By). If AB exceeds 2B p, we
return again to Eqs. (15), (17), and (19) with the cur-
rent direction reversed. The magnetization of the strip
in decreasing field is given by

1 — — +2 1—
= —tanh(B p/By) + 2 tanh(EB /2By), (43)

provided that AB does not exceed 2B 0.
The critical-state behavior of a circular thin-film disk

in an alternating perpendicular applied magnetic Geld
has been analyzed by Mikheenko and Kuzovlev; an er-
ror in Ref. 32 in calculating the superimposed current
and field distributions has been corrected by Zhu et al.
The combined approach of Refs. 32 and 33 has been ap-
plied and extended by Clem and Sanchez to calculate
the critical-state magnetization M, of a circular thin-film
disk, as well as the corresponding complex ac suscepti-
bility and ac losses.

The critical-state behavior of a thin-film strip has been
analyzed recently by Brandt et al. and by Brandt and

f

Indenbom, who also have computed the ac losses in
an alternating perpendicular applied magnetic field. The
results of Eqs. (40)—(43) are in agreement with those
of Refs. 24 and 25. Experimentally, the magnetic-Beld
profiles in thin samples exposed to alternating applied
fields have been recently measured by use of magneto-
optic techniques and scanning Hall sensors.

We now turn to the discussion of alternating transport
currents. Similar to the case of alternating Gelds, the
system "remembers" the maximum current as shown in
Fig. 6. The current is initially increased to a maximum
value ITO and then decreased to IT ——ITO —BIT. In
slab geometry we obtain ap ——W(1 —IT p/I, ) and a =
W(l —b, IT /2I, ) when b,IT & 2IT p. As long as a ) ap,
the current distribution is similar to the magnetization
case of Eq. (38), but with symmetric negative current
J„=—J, in the outer region lzl ) a and positive current
J„=J, in the region ap & lzl & a.

In the film the resulting current is a superposition of
the distribution given by Eq. (27) arising Rom IT p and
a similar negative term, but with twice the amplitude,
arising &om AIz".

arctan, ',' —2 arctan

1 ——arctan

—ao&x(ao,
ap & lzl & a,
a & lzl & W.

(44)

The corresponding Geld is given by

B(z)=I
p

+Bf ln
vows —a~& —gx2 —

a&~&

gfs~ —W~
f

Qfs~-W~
f./

—ao & x ( ao,
ap & lzl & a,

lzl ) a.
(45)
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FIG. 6. Calculated critical-state behavior
as the transport current IT is decreased for a
sample initially carrying current IT ——0.6I
in a partially penetrated state shown in
Fig. 3. The current-density and mag-
netic-Sux-density profiles for slabs are shown
in (a) and (b), and the corresponding pro-
files for films are shown in (c) and (d). The
solid curves show the initial IT ——0.6I pro-
files, and arrows indicate the progression of
the subsequent profiles as I& decreases. The
entire cross section finally attains the critical
state when IT ———I .
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Here the positive (negative) sign corresponds to z
0 (z ) 0), ao = Wgl —(IT 0/I, )2, and a
Wgl —(b,IT /2I, )2. Equations (44) and (45) apply for
AIz ( 2Izo. If LIz & 2Izo, the memory is erased,
and we return to Eqs. (27) —(29) with the direction
of the current reversed. Field profiles due to alternating
transport currents in films of HTSC's have been observed
experimentally by magneto-optic measurements.

An additional case to consider is the application of an
alternating transport current to a sample initially in the
fully penetrated remanent critical state. In particular,
we analyze the situation in which a current is applied
to a maximum value IT and then dropped back to zero.
Figure 7 shows the resulting final distributions for vari-

ous values of the maximum applied current IT .In slab
geometry, as discussed in Sec. IV, the transport current
Hows in two strips of width (W//2)(IT /I, ), one adjacent
to, but to the right of, x = —W and the other adjacent
to, but to the left of, z = 0. After the current reaches its
maximum value and starts to decrease by AIz, the addi-
tional negative current (relative to the peak IT current)
Hows in two strips of width W(BIT /2I, ), one adjacent
to, but to the right of, 2; = —W and the other adjacent
to, but to the left of, x = W. When the current is re-
duced back to zero, IT = SIT, the positive contribution
of Iz just to the right of z = —W is canceled because of
the linear relation of the current penetration depth. The
result is

—J
Js(z) =

C)

—W&z& —W/2+a or W/2+a&z&W,
—W/2 + a & z & W/2 + a, (46)

where a is given by Eq. (31).
The decreasing transport current Hows symmetrically

about x = 0 and therefore does not reduce the magne-
tization as long as LIz & IT. Generally, alternating
current will not change the magnetization as long as the
current value does not exceed any previous maximum
value. The initial magnetization state breaks the sym-
metry of the transport current How, and as a result the
system remembers the last two extremes of the applied
current, the positive and the negative, rather than just
the absolute extreme, as in the case of alternating field
or current starting &om the virgin state. If a positive
transport current is raised to I„, starting from the fully
penetrated remanent critical state, and then reduced to
zero, the two extremes are I„and I„=0. In general, a

slab initially in the remanent critical state subjected to a
transport current Ig alternating between a positive value

Iz and a negative value —I„has magnetization

I„'~ (
I.y g I.y

' (47)

where —I„&Iz & I„.
In film geometry the situation is different because of

the nonlinear penetration depth of the current. For in-

creasing transport current the field-invariant region is

given by ao ——(W/2)gl —(IT/I, )2, as in Eq. (33),
whereas when the current decreases by EI~, we obtain
a = Wgl —(bIT/2I, )2, as in Eq. (45). The resulting
current distribution is

T

1+ —arctan
I o~:s I

—arctan
I i, ~~')~ ~, —W/2 —ao & z & —W/2+ a,

&y(z) =& 4 & wJc 1 ——arctan
I s:* ~

—a & z & —W/2 —ao or —W/2+ ao & z & a,
, —J„ a& ized& W,

(48)
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FIG. 7. Calculated critical-state behavior
for a sample, initially in a fuHy penetrated
remanent state, to which an applied trans-
port current is raised to an intermediate value
IT and then reduced to zero. The cur-
rent-density and magnetic-Sux-density pro-
files for slabs are shown in (a) and (b), and
the corresponding profiles for films are shown
in (c) and (d). The solid curves show the
profiles for the remanent state, and arrows
indicate the progression of the profiles for in-
creasing intermediate values of IT. Since the
final transport current is zero, the integral of
J„(z) is zero in each case.



9S12 E. ZELDOV, JOHN R. CLEM, M. McELFRESH, AND M. DARWIN 49

which holds for any BIT as long as a & ao + W/2. Fig-
ure 7 shows the current and Geld distributions for various
maximum I7 values in the case of zero final transport
current, such that AIz ——IT. The fact that the sam-
ple is initially in the fully penetrated remanent critical
state has a major efFect on the final distributions. One
can compare the results of Fig. 7 at I~ ——0.6I„ for ex-
ainple, with those of Fig. 6 (curve labeled 0.0), in which
the same sequence of transport currents has been applied
to a system in the virgin state. The efFect of an alter-
nating transport current on the Geld profile in thin Glms
of HTSC's has been investigated experimentally using
miniature Hall sensors. 9

The efFect of an alternating transport current upon
the magnetization M, of the film is similar to that of Eq.
(47). However, a much more complicated expression for
M, results because of the nonlinear penetration depth of
the current.

VI. ASYMMETRIC CURRENT FLOW:
MONOTONIC CASE

In the previous sections we have analyzed the response
of the sample to external fields or transport currents ap-
plied separately, for the sample initially in the virgin state
or in a fully penetrated remanent critical state. All these
cases resulted in symmetrical current distributions with
the center of symmetry at z = 0 or z = +W/2. In or-
der to determine the response to a general combination of
field and current a more detailed analysis must be carried
out.

A transport current fIowing in the positive y direction
results in positive Qux penetration on the left side of the
sample (B, & 0 for z & 0) and a negative fiux on the
right (B, & 0 for z & 0). A magnetic field applied in the
positive z direction results in positive fIux penetration on
both sides of the sample. Clearly, if the current and field
are applied simultaneously, the amount of Aux penetra-
tion on the two sides of the sample will not be equal. In
addition, the resulting distributions will depend on the
precise sequence of current and field applications. We
first analyze the case in which the field and current are
increased monotonically starting &om a virgin state. For
simplicity, we restrict our attention here to IT ) 0 and

J„
Js(z) = g 0,

J„

—S'& z & —aL„
—al. &Z&aR,
aR &X&%;

{49)

and the total transport current per unit height of the
slab is IT = J,(2W —aR —aL, ). This current induces a
magnetic field of +27rIT/c outside the slab in addition to
the applied field B . Using Eq. (4) and requiring zero
Geld in the vortex-free region, we obtain the field profile

x & —TV,
——,J,(z+ al. ), —W & z & —aL„

B,(z)=& 0, +L, & + & +R)
——J,(z —aR), a~ & z & W,

Continuity of B,(z) results in the following relations:

t' B.
aL, =Wi 1—

B, I.) '

B IT)
nR = W

I
1+ B, I.J'

o = (n~ + aL, )/2 = W
I

1 ——I,
f IT'i (51)

p = (an —ag)/2 = WB /B,

(50)

The width 2a of the Hux-free region depends only on the
transport current, as given in Eq. (24), whereas the posi-
tion of the vortex-free region inside the slab is controlled
by the applied Geld. The corresponding current and Geld
distributions are shown in Figs. 8(a) and 8(b).

The above results were obtained by assuming that the

B ) 0, but the results are easily generalized to negative
values of IT and B . Assume that the balance between
the field and current is such that some positive fIux has
penetrated from the left (B, & 0) and some negative fiux
has entered from the right (B, & 0). In slab geometry
the resulting current and field distributions will be sim-
ilar to those shown in Figs. 3(a) and 3(b). However,
on each side of the slab the Hux penetration depth mill

be difFerent. Let —al. denote the Bux-kont position on
the left and aR that on the right, so that the vortex-
&ee region has a width of 2a = aR + al. and is centered
at p = (aR —aL, )/2. The current distribution is given,
therefore, by
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FIG. 8. Calculated critical-state behavior
in monotonically increasing field and current
in the high-current —low-field regime. The
current-density and magnetic-Bux-density
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Arrows indicate the progression of the profiles
as IT is increased which results in generating
currents which How in the same direction on
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current Hows in the same direction on both sides of the
sample. This assumption is valid only if a~ & W in Eq.
(51), i e.

(52)

1 dIg 1 dB~
I, cR B, (53)

If the field is changed too rapidly, even though Eq. (52)
holds, currents in the opposite direction are induced close
to the edge of the slab and Eqs. (49) —(51) are invalid.

To Gnd the response of the slab in the low-current—
high-field regime, IT /I, & 8 /B„we have to start with
currents Sowing in difFerent directions on opposite sides
of the slab. Following the same procedure as above we
obtain

8 IT I
aL, =W

i

1—
Bs Ic)

aR = W
I

1 — + —
/8, I.y'

8, ) '

p = WIT/I, .

(54)

In this regime the roles of the current and the Geld are
interchanged; the width of the Sux-&ee region is now de-
termined by the field, and its position is shifted by the
current. The monotonic condition in this regime is ex-
changed as well and requires (dB /dt)/8, & (dIT /dt)/I, .
Some representative current and Geld distributions for
the low-current —high-field regime are shown in Figs. 9(a)

which means that the magnitude of the self-Geld induced
by the transport current outside the slab must be larger
than the magnitude of the applied field. We refer to this
as the high-current —low-Geld regime. The profiles of Figs.
8(a) and 8(b) are applicable to any direction of the field
as long as the current is high enough. The condition of
high current in Eq. (52) is not sufficient, however, to
guarantee these profiles. The final IT and B have to be
reached monotonically so that air decreases continuously
at all times (daR/dt & 0). This leads to the limitation

and 9(b).
The magnetization of the slab is determined by inte-

grating the current distribution using Eq. (20). In the
monotonic high-current —low-Geld regime the current dis-
tribution is given by Eqs. (49) and (51) and the resulting
magnetization is

(55)

Note that this relation holds only for Iz /I, & 8 /8, .
In the low-current —high-field regime the current flows

in different directions on opposite sides of the slab, and
the current distribution is determined by the parameters
given in Eq. (54). The magnetization in this case is

(56)

which holds only for 8 /8, & IT/I, In t.he absence
of transport current the magnetization expression re-
duces to that of Eq. (21) as expected, while Eqs. (55)
and (56) become equivalent at IT/I, = 8 /8, In Eq. .
(56) the magnetization drops quadratically with current,
whereas in the previous cases, such as in Eq. (36),
we obtained a linear current dependence. This differ-
ence arises from the monotonicity requirement. Equa-
tion (36) was obtained for a slab in the remanent critical
state, which is equivalent to B = B, with the direc-
tion of the current reversed. A transport current ap-
plied gradually to a slab in the remanent state fulfills

IT/I, & 8 /8, = 1 but does not satisfy the rate re-
quirement since d(IT /I, )/dt & d(B /8, )/dt = 0. There-
fore, the situation discussed in Sec. IV is fundamen-
tally different &om the monotonic case described here
and results in different current distributions and mag-
netizations. For example, one can compare the current
profile of Iz/I, = 0.2 curve in the critical state in Fig.
4(a) with that of IT /I, = 0.2 and 8 /8, = 1.0 in Fig.
9(a). Although the values of IT and 8 are equivalent,
the distributions are very different because of the differ-
ing preparation procedures. In Fig. 9 the field and the
current are increased simultaneously and monotonically.
On the other hand, in Fig. 4 the current is applied after
the field has reached its final value, which results in two
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current-direction reversals as compared to one reversal in
the monotonic case.

We now derive the response of a thin film under simi-
lar external conditions. In the previous sections symme-
try was always assumed, and therefore the distribution
of current could be obtained by integrating expressions
like the one given by Eq. (13). Since this is not the
case here, we have to analyze each side of the strip sep-
arately. To be more precise in our description, we refer
to the critical currents in the Bux-penetrated region as
the generating currents and the associated currents in the
vortex-&ee region as the image currents. The distribu-

tion of the image currents depends on the distribution of
the generating currents and on the width 2a of the re-
gion that has to be screened. Since the Bux-&ee region
is not centered in the middle of the strip, it is convenient
to switch to a dimensionless coordinate x' with its origin
in the center of the vortex-free region, z' = (z —p)/a.
The edges of the strip are at —Wl, = —(W + p)/a and
WR = (W —p)/a, whereas the vortex-free region extends
from z' = —1 to z' = 1. Using Eq. (12) with the new
coordinates, the image-current distribution arising &om
the generating current density J, between —R'L, and —1
is determined by

, +W l J. ~(»cs. z'W, +1
~

(57)
~i/1 —z'2 vri/1 —z'~ ( ) ~ 4 WL, + z' 2)

It is a property of the image currents that their inte-
gral across the Bux-&ee region is exactly the negative of
the integral of the generating currents across the Bux-
penetrated region. Thus, at the end of the calculation
it will be necessary to add two additional current con-
tributions to the image currents in the Hux-&ee region.
The first of these is the Meissner-response current distri-
bution associated with distributing the transport current
IT over the fiux-free region, as in Eq. (25), and the sec-
ond is the Meissner-response current distribution induced
by the applied field, as in Eq. (9). The first of these will
cancel the first term on the right-hand side of Eq. (57),

I

and the second will cancel the second term on the right-
hand side of Eq. (57). We therefore concentrate on the
only term remaining at the end of the calculation, the
third term on the right-hand side of Eq. (57). This term
gives rise to a continuous, nondiverging current-density
distribution, which has the value J, at x' = —1 and zero
at x'= S.

The above procedure must be repeated for the gener-
ating currents on the right side of the strip, assuming
first that they Bow in the same direction as those on the
left side, which corresponds to the high-current —low-field
regime,

J WR

dt =—
mV1 —z'& f) 5 —x'

J,QWR2 —1

t'ai/1 —z 2

J,z' ( 2 ) J, 6 . z'WR —1
ln

~

WR2 —1+WR
~

+ —
~

arcsin
1 —z" WR —z' 2)

As discussed above, the net current distribution in the vortex-&ee region is given by the superposition of the third
terms on the right-hand sides of Eqs. (57) and (58). Returning to the original coordinates, we obtain

J (z) — w a(W —a) a(w~a)
~ ~

~

arcsin ~* "~~ "~ —arcsin ~ "~~ +"~+ + vr p —a &x(@+a
l. J. —R' & z & p —a or p+ a & x ( W.

The corresponding magnetic-field distribution is obtained by use of Eq. (18), which after some manipulations gives

0, p —a&z &@+a,
B,(z) = ( Q (W+a)(i/[(W —i)' —o'][( -i)'- ']+(W—i)(*—i)- ') x&p+a or x&p —a,(W —a)(V'[(W+p) —a ][(a—p) a]+(W+p)(a n)+a—)— (6o)

where the upper (lower) sign holds for z ( p —a (z )
p+ a). The width of the vortex-free region 2a and its
position p are determined by the constraints that the
total transport current is

W
IT ——d Jy xdx

= dJ. g(W+ p)' —a'+ g(W —p)2 —a2, (61)

and that the currents induced by the applied field cancel
the logarithmic terms on the right-hand sides of Eqs. (57)

and (58):

2dJ, Q(W+ p)2 —a2+ W+ p
CL ln

c g(W —p)2 —a2+ W —p

The solution is facilitated by introducing the parameters
P = exp(2B /By), i = IT/I„and ~ = g(W&2 —1) +
Wg. After some algebraic manipulations we obtain
WL, = (1+ ~ )/(2'), WR = (p + ur )/(2p~), and
tu = QP(1+ i)/(1 —i), which lead to the following re-
lations between the Qux-&ee-region parameters and the
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external field and current:

WL, + W~ cosh(B /By)
(63)

of this regime's range of validity is determined using the
condition W~ = 1 or P = u. As in slab geometry, the
transport current must be large enough, and here the
current must satisfy the nonlinear condition

and IT/I, & taW(B /Bz). (65)
" = W"t.—.h(B./B, ).

WL, +WR I, (64)

These results are in striking contrast to those obtained
for slab geometry as given in Eq. (51). The width of
the vortex-&ee region in a slab is determined only by
the transport current, and its position is governed by
the applied field. Here, both the current and the field
cause shrinkage of the vortex-kee region, as if they act
independently [compare with Eqs. (15) and (28)] and
both aÃect its position. The resulting current and Geld
distributions are shown in Figs. 8(c) and 8(d).

The above results were derived under the assumption
that the current Bow is in the same direction across the
strip (the high-current —low-field regime). The boundary

I

In addition, we require monotonic application of the cur-
rent and field so that aR decreases monotonically with
time. Thus, the rate of the current increase must satisfy

d(IT /I, ) d(B~/By) Ql —(IT /I, )2

dt dt cosh(B~/By)
(66)

We now repeat the procedure for the low-current —high-
field regime, for which IT /I, & tanh(B /By), so that the
generating currents on the two sides of the strip Bow in
opposite directions. To obtain the net currents in the
vortex-&ee region we must add the third terms on the
right-hand sides of Eqs. (57) and (58) with opposite signs
to obtain

' J„ —W&z&p —a,

—J„ p+a&z(W.

The resulting Geld profile is given by

'0, p —a&z&p+a,
B,(~) =

& a (w —~)(g((w+i') — ](( -i)' —*]-(iv'~i)( i,) o )++ ln , z&p+a or x&p —a,
(~+~)(v'((~—&)' —~'l((~ —i )' —~']+(iv' —i )(~-i )—o')

(68)

where the positive (negative) sign applies to z ( p —a (z )p+ a). The parameters a and p again are determined

by the applied current and field,

a

IT = g(W+ p) —a —g(W —p)2 —a2
2W . (69)

and

B = (By/2)la (/(W+p)a —a~ + W+p) (g(W —p)a —aa+ W —p) /a (70)

It is interesting to note that in this low-current —high-field
regime, using the definitions of P and u and some algebra,
we obtain expressions for a and p that; are identical to
those given by Eqs. (63) and (64) for the high-current-
low-field regime. This again is in contrast to the slab
case, where the roles of Iz and B are interchanged as
the current gets smaller. The results obtained for the
low-current —high-Geld regime in thin films are restricted
by inequalities that are the reverse of those given in Eqs.
(65) and (66). Such a case is depicted in Figs. 9(c) and
9(d).

The magnetization of the thin-film strip in the mono-
tonic case is obtained by integrating the current densities
of Eqs. (59) and (67) using Eq. (20). A lengthy integra-
tion procedure gives identical results for both the high-

current —low-Geld and low-current —high-field regimes:

M, /Mm~ = —[1 —(IT /I, ) ] tanh(B /Bg). (71)

At zero current we recover the results of Sec. II. At high
Gelds, however, the current dependence of the magnetiza-
tion is difFerent f'rom that of Eq. (36). This is because the
current distribution in the monotonic case [Fig. 9(c)] is
very diferent &om that of the nonmonotonic, remanent
initial state case shown in Fig. 4(c).

To our knowledge, no experimental results in the con-
Gguration of a monotonic application of Geld and current
have been reported. Conduction of such experiments
should be possible using magneto-optic or Hall-sensor
techniques.
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VII. NONMONOTONIC CASE:
SPATIAI VARIATION

OF THE CRITICAI-CURRENT DENSITY

We now describe the procedure for determining the
current and Geld distributions in the general case when
the Geld and the transport current are applied in any
sequence. The previous sections have dealt with various
simple cases to which the current superposition approach
can be applied. Here we analyze the case in which a
sample, initially in a virgin state, is subjected first to a
Geld B and then to a transport current Iz . This is a very
common experimental situation, which cannot be solved
by the techniques described in the previous sections for
the case of a thin-Glm strip. The procedure developed
below can be readily generalized to treat any sequence of
applied fields and currents.

As in the previous sections, we start with slab geom-
etry for clarity. In an in6nite slab the superposition ap-
proach always can be applied, and hence the solution is
straightforward. A positive field 8 applied to the slab
results in current fiowing with critical density on both
sides of the slab, and the Geld-kee region extends from
—aL, = —a to aR = a, as given by Eq. (7) and as shown
in Figs. 2(a) and 2(b). This state is the new initial condi-
tion for the application of the transport current. The ad-
ditional transport current must flow on both sides of the
slab, maintaining now a new field-invariant region inside
the slab. We denote the width of the new field-invariant
region by 2a, which spans the region —aL & x & aR. In
the case of a positive transport current, half of the added
current (per unit height of the slab) flows near the right
surface of the slab, where the added current density is
2J„changing the total current density &om —J, to +J,.
On the left side of the slab, the current density arising
&om the magnetic field already is at J„and therefore
the transport current penetrates deeper into the slab and
encroaches on the left side of the original vortex-kee re-
gion. The resulting total current distribution for positive
B and I~ is given by

(72)

where a~ = W(1 —8 /8, ), a& ——W'(1 —IT /2I, ), and
ar ——W(l —8 /8, —IT /I, ). This distribution holds as
long as the transport current is low enough that a& & aR
or IT/I, ( 28 /8, At higher transport currents the
right side of the Geld-invariant region a& passes the right
side of the original Geld-&ee region aR, thus erasing the
"memory" of aR. As a result, the distributions become
identical to the results of the monotonic case of Eqs. (49)
to (51).

Figures 10(a) and 10(b) show the corresponding
current-density and field profiles in a slab for 8 /8, =
0.4 and various IT/I, values. For IT/I, = 0.9 the dis-
tribution is equivalent to the monotonic case shown in
Figs. 8(a) and 8(b), since a& ( a~. For sufficiently
high fields the left side of the field-invariant region —aL,
rather than the right side a&, passes an as the transport
current is increased. This happens when 8 /8, ) 0.5
and IT /I, ) 2(1 —8 /8, ). Note that there is a funda-
mental difference between the two cases. In the low-field
case, when aR ( a~, the new field-invariant region is
enclosed within the original Geld-&ee region, and there-
fore the trapped lux in the field-invariant region is zero.
This situation is equivalent to the monotonic case. At
high Gelds when —aL ) aR, there is flux trapped in the
Geld-invariant region, and therefore the current density
in this region is now —J, rather than 0. The resulting dis-
tributions are similar to the case of the transport current
applied to the remanent state shown in Figs. 4(a) and
4(b). In the remanent state, however, the field-invariant
region is centered about +W/2, whereas here the position
of the center is determined by the value of 8 /8, .

In order to analyze the 61m geometry, we first must un-
derstand the limitations of the superposition technique
that we have used so far. In the previous section we
showed that in order to solve the current distribution
for the monotonic case we had to obtain the image cur-
rent associated with the generating critical current on
each edge of the sample separately. The profile of each
image-current distribution depends on both the width of
the generating current stripe and the width of the field-
invariant region, as shown by the last terms on the right-
hand sides of Eqs. (57) and (58). The image currents
associated with the two generating currents on opposite
edges are therefore interdependent, since flux penetra-
tion on one side shrinks the Geld-invariant region and
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ior for the nonmonotonic application of
field followed by application of transport
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or B = Bf with no transport current. Ar-
rows indicate the progression of the subse-
quent profiles as the transport current IT is
increased.
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forces the image current of the opposite side to adjust
itself accordingly. Given the functional form of the im-

age currents, the solution of the monotonic case;reduces
to the problem of finding the values of aL, and aR that
correspond to the applied 6eld and current.

The nonmonotonic case is more complicated because,
having established aL, and aR after some initial mono-
tonic increase of field or current, a nonmonotonic change
of the external conditions results in a new Bux-front pen-
etration determined by ai and a&. If each of the new
generating currents on the sample edges is in a direction
opposite to that of the original generating current, the
problem is easily solved. This is, for example, the case
for alternating 6elds or currents described in Sec. V. In
addition, the discussion in Sec. VI readily can be ex-
tended to deal with such a case. However, if the new
generating current is in the same direction on one edge
and in a direction opposite to the original current on the
other edge of the sample, a new approach is needed.

The current distribution of a thin-film strip exposed to
an applied field B in the positive z direction is shown by
the solid curve in Fig. 10(c). Addition of a small trans-
port current in the positive y direction causes a current
reversal at the right edge of the strip at a'„& z & W,
but not on the left edge, where a positive generating cur-
rent now extends &om z = —W to z = —aL. The image
current associated with the new generating current on
the right edge can be readily found and superimposed
onto the original currents. However, using the previous
approach we cannot de6ne the new image current due to
the total generating current on the left edge. The dif-
6culty is the increase of the width of the field-invariant
region. If we use the image current given by the last term
of Eq. (57) with the field-invariant region —a'L ( z ( aR,
we preserve the original field profile in this region. How-

ever, the field is changed in the region a~ & z & a&,
where it should be invariant as well. If the image current
is calculated for —aL & z & a&, then the field profile
will be invariant under further variations of aL or a& but
will not be equal to the original field profile, which had a
sharp change in slope at z = a~. Equation (57) is simply
invalid in this case.

The proposed approach, which we denote as the "spa-
tial variation of the critical current" method, is as follows.

J,'(p' —ta'), dt,t+ z' (73)

where

J,'(p' —ta')

f(p' —tn') W2 —o2= J, 1+ —arctan
7r o2 pl toI 2

(74)

WL, ——(a+p')/a', p' = (aR a'I )/2, an—d a' = (a&+a'I )/2
To the best of our knowledge there is no analytical solu-
tion to this integral and it has to be evaluated numeri-
cally. The procedure is further complicated by the fact
that the result includes diverging terms like those in Eq.
(57) which are not part of the desired solution.

It can be shown that the continuous part of the solution
of Eq. (73), which is the desired image current, can be
well approximated by the following function, so that the
current distribution in the "new sample" is given by

The additional transport current may Bow only in the re-
gions for which Jo„(z) ( J„where Js„(z) is the current
distribution &om the originally applied 6eld as given by
Eq. (17). We therefore may replace the "original sam-
ple" by a "new sample" in which J,'(z) = J, —Joz(z) is
the maximum available distribution for the Bow of the
transport current. We thus regard J,'(z) as the spatially
dependent critical current of the new sample. This criti-
cal current is shown in Fig. 11 by the solid curve. Hence,
we have reduced the problem of nonmonotonic experi-
mental conditions to the problem of piecewise monotonic
segments in which the final conditions of the previous
segment define the new J,'(z) of the next segment. The
procedure of Sec. VI has to be repeated now for the case
of spatial variation of the critical-current density.

For the fiux penetration from the right the associated
image current is given by twice the last term of Eq. (58),
since J,'(z) at the right edge is just 2J, (for a& ) a~ = a).
The left-side contribution is given by an integral similar
to that in Eq. (57),

r P —W&z& —a,
—a & z & —aL,I

I

+ arcsin + ~ —arcsin, " + vr + 2 arcsin ' —ai. z&aR
aIR(x(W,

where a = (a + a&)/2 and the value of the param-
eter b is adjusted to provide continuity of the current
distribution at z = —aL. The last two terms of the
current-distribution expression in the Geld-invariant re-

gion, —a& & z & aR, are the image current associated
with the generating current on the right edge, whereas
the remaining terms are the approximate nondivergent
part of the solution of Eq. (73).
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if aR ) a and —aL ( a. If either edge of the new
field-invariant region crosses the right edge of the origi-
nal field-&ee region a, Eq. (75) has to be modified. If
aR becomes smaller than a, we may continue to use the
same J,'(z) approach. However, in our particular case
it is more convenient to return to the "original sample"
since the current and field profiles become identical to
Eqs. (59) and (60) with the field-&ee region parameters
given by Eqs. (63) and (64). We may determine the con-
ditions for such a crossing by equating a of Eq. (15) to
a~ = p+ a determined &om Eqs. (63) and (64), which
gives
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FIG. 11. Calculated added current profiles J„'(z) in the
case of nonmonotonic application of a field, followed by the
application of a transport current in thin-film geometry. The
solid curve shows the spatial dependence of the available crit-
ical-current density after the initial application of the field

B = By. The rest of the curves show the added current pro-
files as IT is increased from 0 to 0.8I, . At IT ——I, the added
current distribution equals J,'(z). The delimiters at the top
show the position of the various parameters for the case of
B = By and IT ——0.8I, .

As in. the monotonic case the parameters a& and aI
(or a' and p') determine the magnitude of the uniform
field in the —aL ( x & a& region and the total current
carried by the strip. Since we require field invariance,
the first constraint on aL and a& is that the magnetic
field arising from J„'(z) be zero in the field-invariant re-
gion —al ( x & a&. The second constraint is that
the total current of the strip arising &om Jo„(z) and
J„'(z) be equal to the applied transport current. Since in
our particular case the current carried by Jo„(z) is zero,
this requirement reduces to the constraint that the in-
tegral of J„'(z) over the cross section of the film equals
IT. Using these conditions, al and a& can be readily
evaluated numerically. The resulting J„'(z) profiles are
shown in Fig. 11 for the various values of IT/I, . Fig-
ure 10(c) shows the profiles of the total current density
J„(z)= Jo„(z)+J„'(z) in the film, and the corresponding
field B,(z) is presented in Fig. 10(d).

As in the case of slab geometry, Eq. (75) holds only

At low fields, such that arcsinh(B /By) ( 1 or B /By (
0.88, a& crosses a if the current is raised above a value

determined by Eq. (76). At high fields, a'L will be the
one that passes a at high enough transport current. If
B~/By = 0.88, both edges of the new field-invariant re-

gion merge at z = a = W/~2 at IT ——I, . Note that
once Iz /I, exceeds the condition of Eq. (76), the current
distribution is given by Eq. (59) only in the low-field
case. Figures 10(c) and ll present the current distribu-
tions for the particular case of B /By ——1, only slightly
higher than 0.88, which is the reason for not observing
the crossing for the presented IT /I, values. In this case
—al crosses a at IT very close to I„as can be seen in
Fig. 10(d) by the fact that the field profile at IT /I, = 1.0
intersects the original profile to the right of x = a.

In order to derive the current distributions for the high-
field case when —aL & a, we must continue to use the
J,'(z) approach as described above. The approximation
to the solution of Eq. (73) as given in Eq. (75) works
poorly, however, for the case of B /By ) 1. On the
other hand, in this case, J,'(z) can be well approximated
by a third-order polynomial. In this approximation Eq.
(73) can be solved analytically as described in the Ap-
pendix. Figures 12(c) and 12(d) show the resulting total
current and field profiles for B /By = 2.0 and various
transport currents. It is interesting to compare, for ex-
ample, the IT /I, = 0.9 current and field profiles in the
thin-film strip as shown in Figs. 8, 10, and 12. In all
three cases the generating currents on both sides of the
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FIG. 12. Calculated critical-state behav-
ior for the nonmonotonic application of a
field followed by the application of a trans-
port current. The current-density and mag-
netic-Sux-density profiles for slabs are shown

in (a) and (b), and the corresponding profiles
for films are shown in (c) and (d). The solid
curves show the profiles after the initial ap-
plication of the magnetic field B = 0.6B,
or B = 2By with no transport current. Ar-

rows indicate the progression of the subse-

quent profiles as the transport current IT is
increased.
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field-invariant region are basically the same. However,
the associated image currents are very diferent. This is
the result of the presence of trapped flux in the field-
invariant region. In the monotonic case of Fig. 8 the
trapped fiux is zero, and B,(z) = 0 in the field-invariant
region in Fig. 8(d). In the nonmonotonic case of Fig. 10
the new field-invariant region partially overlaps the orig-
inal vortex-&ee region, and therefore only the right side
of the field-invariant region includes trapped vortices, as
seen by the field profile in Fig. 10(d). In Fig. 12 at
IT/I, = 0.9 the entire field-invariant region encapsulates
trapped flux. The image current derivation as proposed
by Norris is correct only if there is no flux trapped in
the Geld-invariant region. The results of Secs. II —VI
were obtained either for the case of zero trapped flux or
for cases where superposition could be used, such that
the superimposed generating currents are equal to 6J,.
As shown above, in the general case, the J,'(z) approach
has to be used instead.

As a final example of this technique, we analyze the
no~monotonic case in which a transport current is driven
first through a thin-film strip and then an additional
magnetic field is applied. The initial transport-current
distribution JIi„(z) is given by Eq. (27) and shown by
the solid curve in Fig. 13(c). When the magnetic field

is applied, positive generating currents flow at the left
edge of the film, whereas negative generating currents
flow on the right edge. Therefore, as a general rule in the
nonmonotonic case, we have to introduce a new critical-
current density for positive generating currents, JI'(z) =
J, —Jo„(z), and a new negative critical-current density
for negative generating currents, J, (z) = J, + Jo„(z),
which are not equal, as shown by the two solid curves in
Fig. 14. We now have to find the image currents associ-
ated with each of the new generating currents. At fields

low enough such that a& & a the negative image current
of the right edge is twice that of the last term of Eq.
(58) since the generating current is uniform and equal to
—2J, . To obtain the image current associated with the
left edge we again have to integrate Eq. (73) but with
JI'(t) given by

2 S'2 —a2
J,"(p' —ta') = J, 1 ——arctan

7r o2 (pl tel )
2

W

(77)

Since we are interested only in the continuous terms, the
solution can be well approximated (up to IT/I, 0.8)
by

0

J, 1 —2 arctan

—W(z& —a,
—a & x ( —aL,I

y'LJ—

—arcsin (++a—a )(W+a —a)—a + arcszn (~-j ')(W+a'-a)-a"
a (W+a y„-a-~) ay (W+a'„—a—z)

(+—p )(W—p )—a—Ã —2 arcsln, (w )
, —2J„

—aL, (z(aR,
alR&~(W,

(78)

where the parameter b is used to provide continuity of
the current at z = —a&. The resulting J„'(z) profiles are
shown in Fig. 14 for the various B /By ratios. Fjgure
13(c) describes the total current distribution in the sam-
ple, and the corresponding field profiles are shown in Fig.
13(d).

cosh(B~/By) ) 1

1 —2 IT I, 2' (79)

As the field is increased, the right edge of the field-
invariant region a& approaches the edge of the original
field-&ee region a and passes it when
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FIG. 13. Calculated critical-state behavior
for the nonmonotonic application of a trans-
port current followed by the application of a
magnetic Beld. The current-density and mag-
netic-Sux-density pro6les for slabs are shown
in (a) and (b), and the corresponding profiles
for Slms are shown in (c) and (d). The solid
curves show the pro6les after the initial ap-
plication of the transport current IY ——0.2I
for slab geometry and IT = 0.6I for Slm
geometry in the absence of an applied field.
Arrows indicate the progression of the subse-
quent pro61es as the applied Seld is increased.
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case of nonmonotonic application of transport current fol-

lowed by the application of a magnetic Geld in thin-Glm

geometry. The solid curves show the available criti-

cal-current-density profiles for generating currents Sowing in

the positive y direction, J, (z), and in the negative direction,

J, (z), following the initial application of IT = 0.6I . The
remaining curves show the added current profiles as B is

increased &om 0 to 2.5By.

which haPPens at B /By 2 in the case of Fig. 14.
From this point on the total current distribution, J„(x) =
Jos(x) + J„'(z), becomes identical to that of the mono-
tonic case described by Eqs. (67), (63), and (64) because
no more trapped Qux remains in the field-invariant re-
gion, as seen in Fig. 13(d). If the original transport
current IT is larger than I,/~2, on the other hand, the
left edge of the new 6eld-invariant region reaches z = a
at high enough fields that trapped vortices exist in the
entire 6eld-invariant region. In this case a better approxi-
mation may be obtained by an even-power polynomial fit
of Jj'(x) using the procedure outlined in the Appendix.

To our knowledge, no experimental results in the con-
figuration of a nonmonotonic application of Geld and cur-
rent have been reported. Conduction of such experiments
should be possible using magneto-optic or Hall-sensor
techniques.

VIII. SUMMARY

We have presented a general approach for the descrip-
tion of current and field profiles in a type-II supercon-
ducting thin-film strip carrying a transport current in the
presence of applied fields. As the 6elds or currents are
changed, vortices penetrate (or exit) through the edges
of the sample, thus defining Qux-penetrated regions next
to the edges and a 6eld-invariant region in the central
part of the strip. In the lux-penetrated regions the mag-
nitude of the current density equals the critical-current
density J . In the 6eld-invariant region we find a con-
tinuous distribution of currents that may vary in density
from —J, to J, in. sharp contrast to the behavior when
the Bean model ' is applied to an in6nite slab.

If the entire 6eld-invariant region is vortex &ee, we

have shown that the method proposed by Norris for cal-

culating the transport currents can be extended to treat
the efFects of an applied field. In this method the im-
age currents in the field-invariant region, calculated by
use of conformal mapping, take into account both the
generating currents in the Qux-penetrated regions and
the changing width of the field-invariant region. We also
presented some additional cases, including an alternating
Geld in the absence of a transport current, an alternat-
ing current with no applied 6eld, and the simultaneous
monotonic application. of 6eld and current, which also
can be calculated by use of superposition and symmetry
arguments. However, a general nonmonotonic situation
cannot be adequately described in this manner because
the presence of trapped Qux in the Geld-invariant region
severely complicates the determination of the image cur-
rents induced by the generating currents.

Our novel approach for solving the nonmonotonic case
is based on dividing the time sequence of the applied field
and current into a series of monotonic segments. The
final current distribution of each time segment, Jo„(z),
determines the remaining current-density distributions,
Jg(z) = J,—Jo„(z) and J,"(x) = J,+Jo„(z), available for
screening of the deviations in the applied field or current
in the next segment relative to the 6nal conditions of the
previous segment. The additional image currents of the
new segment are now calculated using the new effective
spatially varying critical currents J,"(x) and J,"(x). Two
particular cases, transport current applied after magnetic
field and Geld applied after transport current, are solved
in detail in order to demonstrate the feasibility of the
technique.

The obtained results have important consequences on
the interpretation of experimental data. In a thin 61m
the flux penetration depth is a nonlinear function of the
applied field and applied transport current in contrast to
the slab geometry. This has a profound effect on the dc
magnetization behavior, including the apparent 6rst pen-
etration, as well as ac response and losses. In addition,
the fact that there is a continuous nonuniform current
distribution in the sample at any 6eld or current should
have a signi6cant efFect on the relaxation behavior as well

as I-V characteristics. In particular, if the applied 6eld
or transport current is slightly reduced, the resulting cur-
rent distribution becomes less than critical in most of the
volume of the film, which thereby drastically reduces the
relaxation rate, as recently observed.

The method of "spatial variation of critical current" in-

troduced in Sec. VII for solving the nonmonotonic cases
can be directly applied to situations in which the real
critical-current density is nonuniform. Such nonunifor-

mity of J may arise Rom defects, Beld dependence of the
critical current, edge pinning, or nonuniform thickness of
the thin film. In addition, although the presented anal-

ysis describes the current and field distributions in thin
films, the obtained results may provide important insight
into the behavior of thicker samples, such as single crys-
tals of high-T superconductors, which in perpendicular
fields are geometrically more similar to thin films than
to infinite slabs. Finally, our analysis should be applica-
ble to the calculation of ac losses in the Qat 6laments of
multifilamentary Bi2Sr2Ca2CusO /Ag composite tapes.
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In the final stages of preparation of this manuscript we

received a report by Brandt and Indenbom, who used
similar methods to solve a number of the same problems
treated above in Secs. II—VI. To the extent that the
treatments overlap, our results are in general agreement
with Ref. 25 except for a few minor differences in nota-
tion. Our work, howe"er, contains a number of solutions
not obtained in Ref. 25, in particular the general case
when the field and transport current are applied in any
sequence (Sec. VII).
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APPENDIX

A nonmonotonic change of applied field or current gen-
erally results in a new Bux &ont penetrating into the
sample and a new field-invariant region. In order to de-
termine the resulting distribution of current in thin-film
geometry, it is necessary to determine the integral of Eq.
(73) for the left edge of the sample and a similar inte-
gral for the right edge. In the particular nonmonotonic
case in which the sample is first exposed to a magnetic .

field and the transport current is next applied, the result
given by Eq. (75) is a good approximation for relatively
low field values such that B /By & 1. At higher fields a
more accurate result is obtained by use of the following
polynomial approximation for J,'(z):

w—
J'(z) = J, 1+ —arctan ~—

z (W a2 —zz ]
J,(l + )Vz+ vz ), —a & z & a, (A1)

where the parameters )}) and v are chosen to obtain the best fit in the range —a & z & a. For such a polynomial Eq.
(73) can be calculated analytically. At low transport currents such that —a'L & a, the resulting continuous current
distribution is given by

'0,
2 z W~ —a~J, 1 + —arct»

—W(x& —a,
—a(x & —aL,I

J„'(z) 2 I

—ga'a —(a —p'}«I (p+ «p" + «a'r/2+ «p'*+ «a')» 2+

y«(a/2 —2p'/2 —a) i/(p' -i a)r —a'r) + a+ 2 are«in iw — i

, 2J„

—aL+x(aR

(A2)

where the last two terms of the expression in the Geld-invariant region —aL & x & a& are the result of the image
current associated with the constant generating currents, 2J, at the right-edge of the Glm.

At higher transport currents such that —aL ) a we may write Eq. (73) in the form

(P —22)/r2 gt2 ] (P +22)/22

2 dt+
2rgl —Z'2 ('—)/'

vt2 —1J'(p' —ta') dtt+ x' (A3)

Keeping only the continuous terms and adding the right-edge current we obtain
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J,(*) = &

J, 1 + —arctan

2J„
I &2

(1 + rex + vx ) arcsin (
7r a'(x —a) a'(~+a)

I2—Qa'2 —(x —p')2 (rI+ vp' + va' /2+ vp'x+ vx ) ln

+v(a/2 —3p'/2 —z) g(p' + a) 2 —a'2 + v(a/2 + 3p'/2 + z) g(p' —a) —a'

—W(x & —a,
—a&x(a,
a &x& —aL,

(A4)

+2m —2 arcsin * " " + + 2 arcsin * ",a'(x —a) a'(W —~)

, 2J„

—aL (X&aR,
a~&z&R',

The aL and a& can be readily obtained numerically by
requiring that the field arising Rom J„'(z) in the field-
invariant region be zero and that the total current aris-
ing from J„'(z) be equal to IT. In a more general case,
in which Jo„(z) is determined by a monotonic increase
of the 6eld and current to some value B q and IT q, and

I

J„'(x) is determined by some nonmonotonic direction re-
versal and subsequent monotonic approach to B 2 and
ITg, the a& and a& are obtained &om the condition that
J„'(z) carries a current of IT 2

—IT i and produces a field
of B q

—B 2 in the new 6eld-invariant region.
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