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Universal conductivity in the boson Hubbard model in a magnetic field
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The universal conductivity at the zero-temperature superconductor-insulator transition of the
two-dimensional boson Hubbard model is studied for cases both with and without magnetic Geld

by Monte Carlo simulations of the (2+1)-dimensional classical XY model with disorder represented
by random bonds correlated along the imaginary time dimension. The effect of the magnetic Geld

is characterized by the frustration f From. the scaling behavior of the stifFness, we determine the
quantum dynamical exponent z, the correlation length exponent v, and the universal conductivity
o". For the disorder-free model with f = 1/2, we obtain z = 1, 1/v 1.5, and o'/o o= 0.52+0.03,
where cry is the quantum conductance. We also study the case with f = 1/3, in which we find

'o/og = 0.83 + 0.06. The value of o* is consistent with a theoretical estimate based on the
Gaussian model. For the model with random interactions, we Gnd z = 1.07 + 0.03, v 1, and

o/cry = 0.27 6 0.04 for the case f = 0, and z = 1.14 + 0.03, v --1, and o "/aq = 0.49 + 0.04 for
the case f = 1/2.

I. INTRODUCTION

Through recent experimental studies in various
two-dimensional systems, the presence of a zero-
temperature phase transition between the superconduct-
ing phase and the insulating phase has been convinc-
ingly suggested. ' The transition has been tuned by
changing parameters, such as the thickness of homoge-
neous Glms, the strength of charging energy in Joseph-
son junction arrays, the strength of disorder, or the
magnitude of the external magnetic Geld applied per-
pendicular to the two-dimensional systems. 6 We view
this transition as a boson localization problem, in which
electron pairs are treated as point bosons small on the
scale of the diverging phase correlation length near the
transition. This picture is certainly suitable in granu-
lar superconductors and Josephson junction arrays where
the electron-pair wave functions are well defined in each
grain and the superconductivity is obtained by the es-
tablishment of a long-range phase correlation among
them. Recently it has been proposed ' that even in ho-

mogeneous Glms, the zero-temperature superconductor-
insulator transition will be controlled by phase fluctua-
tions of the electron-pair wave function. The picture is
based on the assumption that below a mean-field temper-
ature, electrons form pairs but the true superconducting
temperature is lowered by the enhanced phase fluctua-
tions in low-dimensional systems. The size of the electron
pairs is finite at the transition. Hebard and Paalanen '

reported some evidence that in homogeneous films, such
as composite InO films, the magnitude of the super-
conducting order parameter is finite at the transition,
supporting the idea that the relevant fluctuations at the
transition are the long wavelength twists in the phase of

the pair wave function. We cannot rule out the possibil-
ity, however, that in these systems the transition might
possibly be induced by the vanishing of the magnitude
of the order parameter. We will make the assumption
throughout this paper that, below some characteristic
mean-field temperature, a fermionic gap forms &eezing
out the fermion degrees of &eedom. Below this tempera-
ture a bosonic (i.e., phase Huctuation) model is presumed
to be valid. Our simulations study the zero-temperature
quantum critical point. Real experiments are of course
carried out at Gnite temperature, but scaling of the data
can be used to demonstrate that one is probing the zero-
temperature quantum critical regime.

Based on the assumption that the transition is a con-
tinuous phase transition and that the phase fluctuations
of the superconducting order parameter give the pri-
mary contribution to the singular part of the &ee en-

ergy, scaling theories have predicted some universal prop-
erties of the transition such as critical exponents
and dimensionless combinations of critical amplitudes. 8

In particular, the conductivity at the zero-temperature
superconductor-insulator transition has been predicted
to be a universal number, which is analogous to the
universal jump of the superfluid density at Kosterlitz-
Thouless transition. Experimentally measured values of
resistivity (or resistance per square) at very low tempera-
ture in the vicinity of the superconductor-insulator tran-
sition are close to the quantum resistance, ' Bg
h/(2e), in various systems, even though no consensus
concerning whether the temperature is low enough to
reach the critical regime and whether the measured val-

ues are truly universal (i.e., independent of material pa-
rameters) has emerged yet. Theoretically a model of
interacting bosons moving in the presence of disorder
has been proposed to capture the appropriate univer-
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sality class. ' Considerable theoretical effort has been
devoted to the study of the phase transition in this
xnodel by Monte Carlo simulations20, 2x and by renor-
maliz ation group calculations. ' Also the universal
conductivity was calculated in the various versions of
the model through different techniques. ' ' Even
though those calculations support the existence of a fi-
nite critical conductivity at the transition, the calculated
values are either inconsistent among different studies or
a factor of 2—3 away Rom experimental values. So far,
theoretical studies mostly concentrated on the case with-
out magnetic field. Here we want to study the phase
transition and the universal conductivity in an interact-
ing boson model in the presence of an external magnetic
field. We also consider the effect of disorder given in the
form of a short-range repulsive randoxn interaction.

This zero-temperature phase transition can be under-
stood by adopting the charge-vortex duality picture.
Near the transition, vortices and antivortices are induced
by quantum Quctuations. In the superconducting state,
delocalized bosons condense whereas vortices are local-
ized, yielding no dissipation. On the other hand, in the
insulating phase, bosons are localized and vortices con-
dense. According to this scenario, at the superconductor-
insulator transition both bosons and vortices are ex-
pected to be mobile, yielding a finite conductivity be-
cause the motion of charged bosons carries current while
that of vortices produces voltage. The external magnetic
Geld changes the density of vortices and breaks time re-
versal symmetry of the vortex distribution thereby mod-
ifying the universality class.

In this work, we study the transition in a "phase-only"
model. Here we argue that Quctuations of the magni-
tude of the superconducting order parameter are irrele-
vant near the transition because they cost more energy
than the Quctuations of the phase. This picture implies
that there are coarse-grained boson islands in which lots
of bosons condense to have well-defined phase angles lo-
cally. These islands are connected through interisland
hopping. In this picture the phase angle is the only dy-
naxnical variable and the number operator and the phase
operator are conjugate variables. The transition is de-
termined by the competition of the density Quctuations
and the phase angle Quctuations. Strong disorder and
interactions in general suppress the density Quctuations
locally and cause more Quctuations in phase angle. The
external magnetic field causes a &ustration in the phase
couplings in this model.

As we show below, one can avoid the problems of com-
plex phase factors associated with the magnetic field by
adopting a phase representation. However we also want
to consider the effect of random disorder. Unfortunately
disorder generates complex weights in the phase repre-
sentation and is normally treated in a boson world-line
repxesentation xo, ll, 20,21 To circi&mvent this difhculty we
introduce a new universality class having disorder in the
form of a random Hubbard U on each site. This class
of models maintains particle-hole symmetry on each site
and can be treated in the phase representation.

More explicitly, we consider a lattice boson Hubbard
model with random on-site interaction:

& = ) U;(n; —no —p)' —) (t;,btb, + t, ,btb;), (1)
('~)

where b; (b, ) is the boson annihilation (creation) operator
at site i, n; is the boson number operator at site i, U, is
the interaction between bosons at site i, t;~ is the nearest-
neighbor hopping matrix element, and no + p (no is an
integer and —1/2 & p & 1/2) is the parameter which
determines the average background boson density. In
the presence of an external magnetic field, we have

iA;qt,~
——toe' (2)

2x
A;; = A(x). dx,U

where 40 is the fiux quantum and A(x) represents the
vector potential. When there is a well-defined phase an-
gle 8; at each sitei,

(4)

and

b; = canoe' *

if no )) 1. The model then reduces to the quantum rotor
model

'R = ) U;(n, —p) —) Jcos(8; —8i —A;, ),
(ij)

(6)

where J = 2noto. Here we have shifted n; —no
n; When p. = 0, we have the corresponding (2+1)-
dimensional classical action, 8[8], defined by

Z = Tt'~g~e = TE'~e)e

which is obtained by the path integral transformation28

8[8] = —) [K (i) cos(A 8„)+ K cos(6 8„)

+K cos(b,„8„)],

2~f = A;~ + A~g + Ag) + Ah.

This model is equivalent to a model high-T supercon-
ductor with columnar defects along the magnetic Geld

where i and w denote position on the spatial plane and
the (imaginary) temporal axis, respectively, r E (i, r) is
a point in the (2+1)-dimensional lattice, and b, 8„
8„+- —8„, 4 8„=8„+- —8„—A„+- „, etc. K (i) is the
coupling parameter along the (imaginary) temporal axis,
depending only on the spatial position. Here we restrict
the xnodel to the particle-hole symxnetric case p = 0,
since otherwise the action is complex. The randomness
of U; in Eq. (6) is transformed into the randomness of
K . The frustration f of the model is defined by the
summation of the phase change around each plaquette
so that
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recently studied by Lee, Stroud, and Girvin.
In Sec. II, we describe the properties of the model, in-

cluding scaling hypotheses necessary to analyze the nu-
merical data. VVe then study the pure model, in which
K (i) = K, with frustration f = 1/2 and f = 1/3 in Sec.
III. A random-U model where K are random numbers
bounded by 0 ( K /K ( 2, with &ustration f = 0 and

f = 1/2 is also studied. Section IV is reserved for the
conclusions.

II. PROCEDURE

The phase transition of the model defined in Eq.
(8) is studied by Monte Carlo simulations. The two-
dimensional T = 0 quantum path integral has been
mapped onto the (2+1)-dimensional classical &ustrated
XY model with random bonds in the third direction. We
use the standard Metropolis algorithm with local moves
of single-angle variables. The angles were discretized into
4000 steps so that Boltzman factors for moves could be
precomputed. The number of Monte Carlo sweeps used
in each case is discussed further below.

We take simple cubic (2+1)-dimensional lattices whose
sizes and aspect ratios are systematically changed to fit
data using finite-size scaling. Periodic boundary con-
ditions are imposed and the ordinary Landau gauge is
used for the phase change due to the magnetic field. We
change the coupling strength parameter K to tune the
transition of the model.

The stifFness to a twist at the boundaries is measured
to find the transition point and the critical exponents.
The stifl'ness along a spatial direction is proportional
to the superBuid density, and has a finite value in the
super8uid phase but vanishes in the insulating phase.
In a finite-size system, however, it; vanishes smoothly
and there is a residual superQuid density at the tran-
sition point, whose magnitude depends on the size of
the system. From the size dependency, therefore, we
can use standard finite-size scaling analysis 3' to find
the scaling behavior by changing the system size while
keep the same geometry of the system. Since the model
is anisotropic in the presence of the correlated disorder
along the imaginary time dimension or the &ustration in
the spatial planes, the diverging behaviors of correlation
lengths near critical point are not isotropic in general,
but they are related through the dynamical scaling hy-
pothesis

(10)

where z is the quantum dynamical exponent. This im-
plies that in order to simulate the model to find the
asymptotic scaling in a finite-size system in which cor-
relation lengths are limited by the size of the system, we
need to take lattices with

I. = A,I
where A, is the aspect ratio, and I and I are the sizes in
the spatial directions and in the imaginary time direction,

respectively. In this work, we use lattices with I = I„=
L and L which is determined by Eq. (11).

In order to determine the difFerent sizes of lattice with
the same aspect ratio, therefore, information about the
value of z is prerequisite. For the pure boson Hubbard
model with the particle-hole symmetry, it is known that
z = l.is Quenched disorder or long-range interactions,
which alter the diverging behavior of correlation lengths,
will change z. ' For the model we are considering, we
expect that impurities hinder the correlation along the
spatial directions so that the correlation length along the
spatial directions will diverge more slowly than that along
the imaginary time direction. This certainly implies that
z ) 1. The microscopic particle-hole symmetry property
of the model [0/i08~ ~ 8/i 88~ —in Eq. (6)] implies that
the occupation of the lowest delocalized eigenstate (i.e.,
the mobility edge state) does not change the total number
of particles at the brink of the superconductor-insulator
transition. Since the compressibility has a form

(z—d (12)

this condition implies that z ( d where d is the spatial
dimension. Thus the model is difFerent &om that with
random on-site chemical potential with a short-range in-
teraction, where it is expected the compressibility of the
system is finite even at the transition and z = d. For the
model we consider, therefore, we expect

1(z &2.

Due to the lack of the information about an exact value
of z for the model we are studying, we have tried several
numbers for z. We also find z by directly measuring
the correlation functions. The correlation functions along
one spatial direction, say x, and along the imaginary time
direction have asymptotic behavior

at the transition point, respectively, where y = d —2 +
z + il and y = (d —2 + z + il)/z. The value of z is
obtained &orn z = y /y . However in finite-size systems
with periodic boundary conditions, instead of Eq. (14)
we use the form

(15)

where C~ and C are fitting constants. The results are
discussed in the next section. Also one might expect the
magnetic field perpendicular to the two-dimensional sys-
tem to change the exponent z. We find that the external
magnetic field has little efFect on z for the pure model
and only weakly changes z in the random-U model. We
have no rigorous argument for why this should be so in
the presence of disorder. However, for the disorder-kee
case we present in the next section a simple argument
motivating this result.

The frequency-dependent stifFness is given by



49 UNIVERSAL CONDUCTIVITY IN THE BOSON HUBBARD. . . 9797

Pg (ted ) III. RESULTS

1
[K„(e„)h„„—K„K„(J„'(i(u„)J„(i(u„))

Z Q T

+K~K-(J,*('~-))(J-(t~-))j-s (16)

with

~ = ) cos(E~e„) (17)

and

J„(i(u„)= ) sin(6„8 )e' "

p (0) = p (tL /", L /I'),

where t = K —K' (K' is the critical coupling), v is the
correlation length critical exponent (( t ), and p is
a universal scaling function. Near the transition,

L p (0) = p (O, L /L')+AtL /" + (20)

where p (O, L /L') is a universal number, and A is
a nonuniversal constant. Similar behavior holds for
(L2/L )p (0). We use these properties to find the tran-
sition point, the quantum dynamical exponent, z, and
the critical exponent, v, in the next section.

The conductivity is obtained through the Kubo
formula

where the &equency ~„ is the wave number in the 7' di-
rection. In Eq. (16), (. ) represents the thermal average
and [ ~

j „s represents the ensemble average over the im-
purity configurations. In this work, the contribution of
the last term in Eq. (16) drops out because Lf is an
integer in the pure model or because there is vortex-
antivortex symmetry (i.e., f = 0 or f = 1/2) in the
disordered model.

The finite-size scaling ansatz for p (0) is given byis

A. Pure model with f = 1/2 and f = 1/3

First, we consider the case of the pure boson model
with &ustration. We first have to check if the transition is
first order or continuous in this case, because the scaling
argument which supports the universal conductivity is
based on the assumption of the continuous transition.
A recent Monte Carlo calculation of the case f = 1/6
on a triangular lattice suggests that the transition is 6rst
order. We use the Lee and Kosterlitz method to check
the nature of the transition at larger values of f Figu. re 1
is the probability distribution of energy, p(e), for f = 1/2
and f = 1/3, where p(e) = e ~@/Tr&@le ~@ and e is
the energy per volume. If the transition is 6rst order,
we expect a double-well-type curve, in which an energy
barrier between the two wells separates two phases. In
6nite systems, the energy barrier might be disguised by a
6nite-size effect that will be reduced as the size of system
increases so that the energy barrier increases as the size
of system increases. We do not have any energy barrier
increasing as the size of the system increases, and the
result supports a continuous phase transition for both
f = 1/2 and f = 1/3.

Figure 2 shows the scaling behavior of L p (0)
and (L2/L )p (0) for the pure (2+1)-dimensional XY'
model with frustration f = 1/2 for systems of differ-
ent sizes. We have taken averaging steps over 400—
600 blocks which contains 1000 measurement sweeps af-
ter 2000 thermalization sweeps. We assume that z = 1,
which is supported by the correlation function calculation
(see Fig. 3). The curves cross around K' = 0.707+0.001.
The slopes of the curves give us information about the
correlation length critical exponent v. The inset of Fig. 2
is the finite-size scaling of L p (0) with respect to the
single variable (K K')Li/". W—ith 1/v = 1.5+0.3, good
scaling is obtained. This value of v is very close to v
in the un&ustrated three-dimensional XY model. The

I p (t~ )cr„„=2mcrq lim
w~ —+0

(21)

where crq = (2e)2/h. It is a (scaling) dimensionless quan-
tity and has a universal value at the transition. In prac-
tice, however, the finite-size contribution, which gives the
residual superBuid density, must be subtracted to 6nd the
universal behavior of the conductivity at the transition.
Because of the &equency dependence and the 6nite-size
contribution, we expect the conductivity has a scaling
form

bg0

20—

f=1/2

12
5

(22)
crq o.q q ~o ur„L~ )

where ~0 is a given &equency such as the ultraviolet cut-
off frequency. We set uo ——2z/a in this work, where a
is the lattice constant. We take the parameter o. which
gives the smallest deviation among the interpolated scal-
ing curves for the di6erent size systems.

10
0.6 0.8 1.0 1.2 1.4

FIG. 1. Probability distribution of energy in Monte Carlo
simulation of the pure boson model for the case with f = 1/2
and f = 1/3 for different size systems indicated in the figure.
The absence of an energy barrier separating two phases shows
that the transition is continuous.
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FIG. 2. Finite-size scaling behavior of L p, (0) and
(L /L )p (0) for the pure (2+1)-dimensional XY model
with f = 1/2. The transition point determined from these
crossing curves is K' = 0.707 6 0.001. Inset: The scal-
ing behavior of L p, (0) with respect to the single variable
(K —K')L ~". Here we use K' = 0.7068 and 1/v = 1.5.

I
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FIG. 4. Finite-size scaling curves of o'(iu„)/op for the pure
(2+1)-dimensional XY model. From the top, the sets of
curves represent the interpolated curves for K = 0.704, 0.706,
and 0.708, respectively, obtained for diferent size systems.
Here we choose a = 0.68, 0.61, and 0.48, respectively. From
these curves, the dc conductivity is determined by the value
at ~„/~0 —a&so/(~„L ) = 0. The universal conductivity ob-
tained at the transition point is n'/oq = 0.52 + 0.03 in this
case.

scaling behavior of the conductivity is shown in Fig. 4.
From these curves, we obtain 0'/oq = 0.52 + 0.03. The
error range is mostly due to the uncertainty in the crit-
ical coupling, K*. Compared to the unkustrated case
where a*/trq = 0.285 6 0.02,is the universal conductiv-
ity for the case f = 1/2 is almost doubled. This re-
sult was predicted by Granato and Kosterlitz based on

0.5

0.8

0, 1—

10

FIG. 3. Spin-spin correlation function of the pure (2+1)-di-
mensional XY model along one spatial axis, say x, and along
the imaginary time axis for frustration f = 1/2. (x) and

(+) represent actual data points and the solid lines rep-
resent the interpolated curves. Because of the frustration
the spin-spin correlation function along a spatial axis oscil-
lates slightly. The interpolated curve of G (r) is the corre-
lation function for spins separated by even numbers of lat-
tice constants. The parameters used in the interpolation are
C = 0.4495, y = 1.071, C = 0.5341, and y = 1.075. From
the ratio of y and y„, the dynamical exponent is determined
to be z 1.

a picture of coupled XY models. For the fully frus-
trated case (f = 1/2), there are two degenerate ground
state configurations. Thus when we construct an effective
Ginzburg-Landau action, we need two complex fields (or
two species of bosons) fluctuating around each ground
state configuration. If we neglect the couplings between
fields, we have the Gaussian model. The universal con-
ductivity is proportional to the number of boson species
in the Gaussian model. Since the I/¹xpansion calcula-
tion of the universal conductivity 3 supports the notion
that the Gaussian model is good as a first approximation,
the universal conductivity of the fully frustrated case will
be estimated to be doubled compared to the un&ustrated
case. Our calculation supports this conjecture. Further-
more one sees that at the Gaussian level, while the con-
ductivity is doubled, the exponent z is unchanged. This
is also consistent with our observation.

We also study the case with f = 1/3, obtaining that
K* = 0.841 + 0.03 and a*/aq = 0.83 6 0.06. Again z

is assumed to be 1, which is consistent with a calcula-
tion of the correlation function, and we find I/v = 1.5.
The universal conductivity in this case is approximately
tripled compared to the unfrustrated case, which is con-
sistent with the existence of three different ground state
configurations.

B. Random-U model

For the (2+1)-dimensional XY model with random
correlated bonds in the imaginary time direction, we have
tried several values for the quanta~ dynamical exponent,
z. Since the lattice sizes along the imaginary time direc-
tion determined by Eq. (11) are in general noninteger
numbers, we adjust the aspect ratio to make the lattice
sizes as close to integers as possible. More than 1000 dis-
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order configurations are taken near the transition. For
each disorder realization, 2000 thermalization sweeps and
1000 measurement sweeps were used. Statistical errors
are dominated by fiuctuations between different disor-
der realizations rather than by thermal Buctuations for a
given disorder. Hence we found it useful to increase the
number of disorder realization at the expense of shorter
thermal averaging times.

FIG. 5. Finite-size scaling behavior of L p (0) and

(L /L )p (0) for the (2+1)-dimensional XY model with cor-
related random bonds along the imaginary time axis. The
data points for the systems with nonintegral size are obtained

by the linear interpolation of the data obtained for systems
which have nearby integer sizes. The transition point deter-
mined from these crossing curves is K' = 0.4465 6 0.025.
Inset: The scaling behavior of L p (0) with respect to the
single variable (K —K')L' ". K' = 0.4465 and 1/v = 1.0
are used.

5 I

-0.2 0.0 0.2 0.4
s)„/a), —a~0/(u)„L, )

FIG. 7. Finite-size scaling curves for the resistivity,

R(iu„)/Rg, for the (2+1)-dimensional XY model with ran-

dom bonds correlated along the imaginary time axis. From
the top, the sets of curves represent the interpolated curves
for K = 0.440, 0.445, 0.4475, 0.450, and 0.455, respectively.
We choose a = 0.88, 0.55, 0.39, 0.28, and 0.16, respectively.
The universal conductivity determined from these curves is

n*/og = 0.27 + 0.04.

1.0 I I I I I I I

Ll I I I I I I I I I I I I I I I I IL

0.5—

3 0

When f = 0, we have the best scaling behavior near
z 1.07. Figure 5 shows that, in this case, the scal-
ing curves of L p (0) and (Lz/L )p (0) for systems
with the sizes of 10 x 10 x 9.070, 12 x 12 x 11.023, 14 x
14 x 13,and 16 x 16 x 14.997 cross around a transition
point K* = 0.4465 6 0.025. Since the stiffness depends
weakly on the aspect ratio, these curves were obtained by
linear interpolation of the data from the systems which
have sizes corresponding to the nearby integers. Here
the aspect ratio is A, = 0.772. For significantly dif-

0.5 i

)

0.2—

08 10.

CO

0,6—

—2.5

C)

2.0

0.1— 0.4— 15
0.905
3.
5.138

0.05—

10

0 2
0.67 0.68 0.69

K
0.70

0

FIG. 6. Spin-spin correlation function of the (2+1)-di-
mensional XY model along one spatial axis, say x, and
along the imaginary time axis. (x) and (+) represent ac-
tual data points and the solid lines represent the interpo-
lated curves. The parameters used in the interpolation are
C = 0.2865, y = 1.054, C = 0.2975, and y = 0.994.
From the ratio of y and y, the dynamical exponent is de-
termined to be z 1.06.

FIG. 8. Finite-size scaling behavior of L p (0) and
(Ls/L )p (0) for the (2+1)-dimensional XY model with cor-
related random bonds along the imaginary time axis with
frustration f = 1/2 in the spatial plane. The transition point
determined from these crossing curves is K = 0.6875+0.025.
Inset: The scaling behavior of L p (0) with respect to the
single variable (K —K')L ~". K' = 0.6875 and 1/v = 1.0
are used.
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FIG. 9. Finite-size scaling curves of the resistivity,
R(r'u„)/Rq, for the (2+1)-dimensional XY model with ran-
dom bonds correlated along the imaginary time axis with

f = 1/2. From the top, the sets of curves represent the inter-
polated curves for K = 0.670, 0.680, 0.685, 0.6875, 0.690, and
0.695. We choose o. = 0.40, 0.35, 0.30, 0.27, 0.24, and 0.20, re-
spectively. The universal conductivity determined from these
curves is o'/oq = 0.49 6 0.04.

ferent z, either we cannot obtain the crossing behavior
at all or L p (0) and (L2/L )p (0) cross at different
points. The error bound for the number z, which gives
good scaling, is roughly z = 1.07+ 0.03. A slightly larger
number was obtained by Lee et at.29 in a similar model
at f = 1/4, however their error bound is too big to
meaningfully compare the numbers. The value of z is
also consistent with the direct calculation of correlation
functions as shown in Fig. 6, where we find z 1.06.
The value of v = 1.0+ 0.3 is obtained from the scal-
ing curve shown in the inset of Fig. 5, where the error
bound is the rough range for good scalings. In Fig. 5,
we used 1/v = 1.0 and K' = 0.4465. This number for
v is consistent with the simple extension of the Chayes
lower bound condition ~ for the model with correlated
disorder, which tells us that v & 2/d where d = 2 is the
number of dimensions in which the disorder occurs. The
error bound on v obtained in this fitting, however, is too
big to confirm the condition for this model. Figure 7
shows the curve of the resistivity for different couplings.
Here we plot the resistivity instead of the conductivity.
In a disordered boson model, Sgrensen et al. ~ could fit
their resistivity data in a Drude form. Even though our
data expressed in the form of resistivity are not fit in
a Drude form, better scalings are obtained Rom them
than those obtained from the corresponding conductiv-
ity data. The curves are obtained &om system sizes
10 x 10 x 9, 12 x 12 x 11,14 x 14 x 13, and 16 x 16 x 15.
Since the errors caused by the uncertainty of the critical
coupling are dominant compared with those caused by

the uncertainty of z, we use systems with nearby inte-
ger sizes. From those curves, we determine the universal
conductivity of the model: o'/oq = 0.27 6 0.04.

With frustration f = 1/2 in the spatial planes of the
model, we have z = 1.14 6 0.03, K* = 0.6875 + 0.025,
v = 1.0 6 0.3 (see Fig. 8), and o'"/oq ——0.49 + 0.04 (see
Fig. 9). Again, the error bound on the values of z and
v are the rough range for good fitting. The correlation
function calculation gives z —1.17. The universal con-
ductivity in this case is also approximately doubled com-
pared with the unfrustrated model. This means that the
type of disorder we consider does not wash out the mag-
netic length. As for the critical coupling, even though
the shape of the lattices used are slightly different in
the simulations with and without randomness along the
imaginary time axis, the critical coupling is consistently
suppressed in the disordered case. This result is con-
sistent with the recent simulation of a model high-T,
superconductor with columnar defects along the c axis,
where the T, is increased because of the vortex pinning
effect due to the random disorder.

IV. CONCLUSIONS

We have calculated the universal conductivity for a
random-U boson Hubbard model. For the fully frus-
trated (f = 1/2) pure system, we obtain o/oq = 0.52 +
0.03. The conductivity is almost doubled, as predicted
by Granato and Kosterlitz, compared with the unfrus-
trated system. For f = 1/3, we find o/oq = 0.83 6 0.06
so that the conductivity is approximately tripled. The
phase transition in the above two cases is continuous,
and we find z = 1 and 1/v —1.5. For the disordered
case, we study the model for f = 0 and f = 1/2. We ob-
tain the quantum dynamical exponents z = 1.07 6 0.03
and z = 1.14 + 0.03, respectively. The critical exponent
1/v = 1 is obtained, the value of which is consistent with
Chayes lower bound condition. The universal conduc-
tivity is o/crq = 0.27 6 0.04 and o/oq = 0.49+ 0.04 for

f = 0 and f = 1/2, respectively. Disorder in the model
has little effect on the value of the universal conductiv-
ity (at least at f = 1/2). Also it does not wash out the
length scale set by the frustration, although the critical
exponents are changed.
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