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Variational treatment of retarded phonon-induced electron pairing
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To treat the phonon-induced electron pairing in a way which allows for vortex corrections and retar-
dation effects, we develop a method using a canonical transformation involving a variational function.
This method is expected to be useful for developing a unified theory for phonon-induced electron pairing
ranging between adiabatic and nonadiabatic behavior, or, respectively, between Copper-pair condensa-
tion in momentum space and bipolaron condensation in real space. To demonstrate the power of our
variational treatment we determine for a model pairing potential, involving a temperature-dependent en-

ergy cutoff c(T) as a variational parameter, the thermodynamical properties of the conventional
intermediate- and strong-coupling superconductors. Thus, we obtain results which compare well with

those obtained by solving the Eliashberg equations.

I. INTRODUCTION

The standard microscopic theory for superconductivity
has been developed by Bardeen Cooper, and Schrieffer
(BCS).' This theory was then generalized by Migdal and
Eliashberg (ME). ' Retardation and many-body effects
of the electron-phonon interaction were included to some
extent. In these theories only those electrons near the
Fermi surface form strongly overlapping Cooper pairs.
The coherence length go was such that gpkp 10 10,
where kF is the Fermi wave vector and kz ' the average
distance between two electrons. Thus all thermodynami-
cal and electrodynamical properties of the conventional
superconductors were determined rather well. ' This ex-
traordinary success of the BCS and ME theories relies on
the fact that co „/E~ &0.01 and that then vertex renor-
malization of the electron-phonon coupling can be
neglected (to „ is a characteristic phonon energy}. If,
however, the electron-phonon coupling gets stronger, the
adiabaticity of the coupling should break down due to the
so-called local-lattice instability and then rather than
Cooper pairs small polarons and bipolarons should form.
Theories for superconductivity involving small polarons
and bipolarons have been developed in which all elec-
trons in the Fermi sea pair with a short coherence length
of the order of go-10k+ ' (for smaller polarons) or small-
er (g&~0 for small bipolarons). ' These small polaron
and bipolaron theories do not yield the BCS theory in the
weak-coupling and to h/EJ; « 1 limit. Therefore it would
be interesting to develop a unified theory yielding both
8CS-type Cooper pair and bipolaron condensations.
Note that after the discovery of high-T, oxides and other
exotic high-T, materials such as doped fullerenes with
very short coherence length go, some authors argued that
superconductors with a size go for its pairs (to be of the
order of 10k+ ' and comparable to the average interparti-
cle spacing) exhibit behavior in between that of large
overlapping Cooper pairs (gokz&&1) and that of Bose
condensation of tightly bound bipolarons (g'okF-1). '

There are several papers dealing with the crossover

behavior between Cooper-pair and bipolaron condensa-
tion by using the negative-U Hubbard model or a two-
body model attraction potential. ' ' However, the im-
portant retardation of the electron-phonon coupling has
been completely neglected.

Here we present a theory of superconductivity due to
electron-phonon coupling which includes retardation
effects and is expected to yield in the weak-coupling and
tosh/E~ &&1 limit Cooper-pair condensation and to yield
for strong coupling also bipolaron condensation. Fur-
thermore, this theory is expected to work also in the
crossover regime. Using a canonical transformation to-
gether with a variational function, we determine the re-
tarded phonon-induced attractive electron interaction.
The variational function acts like a control parameter
regulating adiabatic or nonadiabatic behavior. To
demonstrate the usefulness of our approach, we use an
approximation for the variational function such that we
obtain an effective paring potential, similar to the one in
BCS theory, describing an attractive interaction between
electrons within an energy layer of width 2c(T) around
the chemical constant p. Here c(T) is a temperature-
dependent variational parameter to be determined such
that the free energy becomes minimal. Thus, taking c ( T)
to be of the order of the Debye energy boa, we calculate
various quantities and compare with results obtained by
using the Eliashberg theory. We show that for c -D one
might get bipolaron condensation (D = bandwidth of
electrons).

In Sec. II we outline our theory, in Sec. III we present
results, and in Sec. IV we give our conclusions. Details
of our analysis are given in the Appendix. We put %=1
and k~ =1.

II. THEORY

We start by using the Frohlich Hamiltonian

H g toq rbqrbqr+ g (ek p}dk~dk~
k, cr

+ —g g g„(b' q„+b„)dk+q dk-q'Y q'Y q'Y
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The operator dk (dk ) creates (annihilates) an electron
with wave vector k and spin 0.. e„ is the electron energy,
and p is the chemical potential. b (b ) creates (annihi-
lates) a phonon of the yth branch with frequency co

g is the electron-phonon coupling constant. In order to
determine the thermodynamical properties of supercon-
ductors from a variational method, we derive the corre-
sponding free energy Fusing Bogoliubov's thermodynam-
ical variational principle

F ( T) (Fo( T)= ——ln Tr[ exp( —
PHD ) ]

1

+Tr[exp( 13Ho
—)(H Ho )—]+pN, , (2)

with @=1/T, N, is the total number of electrons, and
where Fo is an upper bound of the free energy F ( T).
Here Hp is a trial Hamiltonian approximating the origi-
nal Hamiltonian H. %e introduce a unitary operator
exp[ —S(T)] and write

Ho=exp[ —S(T)]Hoexp[S(T)] .

We will use S(T) to introduce a variational function.
Then one can rewrite Fo(T) as

Fo(T)= —ln TrIexp[S(T)]exp( PHo)—exp[ —S(T}])
+Tr [exp[S ( T) ]exp( PHO )e—xp[ —S ( T)]exp[S ( T) ](H Ho )ex—p[ —S ( T}]]+pN,

1= ——ln Tr[exp( PHO ) ]—+Tr [exp( PH &
)(—H' —Ho ) ) +pN, , (4)

where

H'=exp[S(T)]H exp[ —S(T)] .

The unitary transformation in Eq. (5) is performed by us-

ing

S(T)= g g (bt br)5(—k+q, k)dj, + d„N„„
(6)

Here we introduce the variational function 5(k', k),
which is a function of the energies of the incoming and
outgoing electrons in the electron-phonon scattering pro-
cess. Note that Eq. (6) corresponds to the usual unitary
transformation yielding the effective attractive electron-
electron interaction. This is a generalization of an in-
complete Lang-Firsov transformation and accounts for
finite phonon frequency effects or retardation effects. De-
pending on the choice for the variational function, we
can describe the antiadiabatic limit (co~ ~ ) 5~1 and

the adiabatic limit (co~0) 5~0. The variational func-
tion measures the polaron effect, i.e., the amount of lat-
tice deformation caused by the electron. The effective
electron-electron attraction results from the response of
the lattice to the motion of the electrons, i.e, the nonadia-
batic part of the electron-phonon interaction (5%0).
Note that Fo(T) involves the Frohlich Hamiltonian and
not the reduced BCS Hamiltonian. '

The thermodynamical variational principle means that
the variational function introduced by the unitary opera-
tor exp[ —S ( T) ] should be adjusted so that Fo( T) reaches
a stable minimum. Note that the variational function is
only used for Hp, while all parameters in H remain 6xed.
Using now the transformation S ( T), we get

H'=H +H'+ [S,H ]+[S,H']+ —,'[[H,S],S]
+0(gqr ) .

Here we have used H =H +H', where H' describes the
interaction. The 6rst-order terms in the transformed
Hamiltonian H' are

H +[SH ) g g gqr(b q~+bqr)dk+q dk g gg 5(k+q k)(bt +b )dkt+ dk
p 1

+ —g g (Ei, —&k+q)5(k+q, k)(b q~ b)d„+ d„—
N q~ k~ ~q~

(7)

The variational function 6 can now be chosen such that
the first two terms in Eq. (7) cancel for the states k and
k +q within a range c ( T) around the Fermi energy. For
these states close to E~ giving low-energy excitations, the
response of the lattice is strong and described in the an-
tiadiabatic regime. On the other hand, for large excita-
tion energies the behavior is rather adiabatic, because the
response to the lattice is too slow to follow them. Corre-
spondingly, we take

1 if ~ek
—

p~ ~c(T), ~ek
—

p~ ~c(T),
5 k', k ='

0 otherwise .

The variational parameter c ( T) is a temperature-
dependent energy cutoff and should be of the order of the
phonon energy. The third term on the right-hand side of
Eq. (7) includes a factor (Ek Ek+q), and so it is approxi-
mately zero when both ek and uk+ are within a layer of
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width 2c ( T) near the Fermi surface. Then
[H'+ [S,H ]] can be neglected. The second-order terms
in the equation for H' are given in the Appendix. Note
that the residual term in Eq. (7) resulting from states
away from E~ in the adiabatic regime [5(k+q, k)=0]
contains the possibility of change-density waves corre-
sponding to (ck+q ck )%0. We will not consider such
states here. Now, keeping only terms which renormalize
the kinetic energy and the Cooper pairing contribution,
we get H'=Ho, with

H0 =g 0)qybqybqy+ g(ek p)pk—dk~dk~

with

~k g Vk', k ~ k'td —k'J ~

k'

Now, with these results and neglecting all terms of
higher order than ggy one gets

F0( T)=E0 ——g in[1+exp( p')/ E—k+ bk }]2

k

—g QE„'+a'„
k

qy k, a

—g Vk k(dk&d k~dk tdk &+H. c. ) .
k

(9)

2

+—g tanh Q—Ek +b, k
P 2

k QE2+5

Here pk is the energy-dependent renormalization factor
resulting from the polaron effect and is given by

2

pk =1——g [2n (co )+1]5 (k +q, k), (10)
N co

with n (co)= I/[exp(Pco) —1], and the interaction poten-
tial is given by

2'
Vk k

=—g 5(k', k) .
q

Note that Ho is different from the reduced BCS Hamil-
tonian' due to the renormalization factor pk. Further-
more, both the kinetic energy and interaction Vk k are
affected by the variational function 5(k', k), e.g., by the
cutoff c ( T). Vk. k is illustrated in Fig. 1. While it has the
same form as in BCS theory, the cutoff c(T) may differ.
Using the mean-field approach, Eq. (9) can be rewritten
as usual:

HO g ~qybqybqy+ g(~k P)pkdkedke
q, y k, q

—
A, 'N(0)c N,

where N is the total number of cells, Eo is a constant, and

Ek =(Ek p)pk. The gap equation is given by

= 1
~k Vk', k2N k,

' QE2+g2
tanh —QEk. +b, k.

(12}

Note the nonperturbative properties of the superconduc-
tivity theory (e.g., the exponential dependence of the gap
function on the coupling is hidden in this equation}. Us-

ing for simplicity and also for comparison with other re-
sults an Einstein model for the phonons (gqy=g0,
coqy

=co0), p„becomes

1 —
A, '[2n (co0)+ 1]c(T)/F00 if Irk

—pI c( T),
1 otherwise,

k='

(13)
where A, '=2g0N(0)/co0 and N(0) is the bare electron
density of states at the Fermi surface. Then Vk. k is given

by

—g(hkdktd k&+H. c. ),
k

2 2

5(k', k} .
COO

(14)

The effect of a direct Coulomb repulsion' can be includ-
ed by rewriting Eq. (14) as

2g0
Vk. k

= 5(k'k) —U,
Ct)p

where U involves a cutoff D different from c (T}. D is of
the order of the Fermi energy. With this form for Vk. k,
the gap function becomes

I
e'k —p I

~ c ( T),
c(T) & Irk —PI ~D .

-C(T) p QT)
Substituting Eq. (15) into Eq. (12) and Eqs. (A9) —(A13),
we get

FIG. 1. Effective potential V(ek, ek ) for phonon-induced at-
traction of two electrons with energies ek and ek and opposite
spin. c(T) and p denote the variational cutoff parameter and
chemical energy, respectively.

c(T) 1
de tanh —Qe p +b,0g' —p* 0 +~2 2+ g2 2

(17)
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Pp

1+poln[D /c ( T) ]
(18) When p, (0)/(A, ' —p') »1, Eq. (22) reduces to (in BCS

weak-coupling theory)

where go=UN(0). With this, we have now completed
the determination of Fo(T) [Eq. (11)]. Note that to ob-
tain a stable minimum of the free energy I p we have to
adjust the variational parameter c(T) at each T.

From Fo(T) we determine all thermodynamical quanti-
ties. The results of such a determination are the follow-
ing. First, for T =0 we find in the normal state (ho=0),
for the cutoff parameter,

p, (0)
50(0)=2c,(0)p, (0)exp

A,
' —p* (25)

Second, for T~T„b,(T)~0, and then T, is determined
by [see (A23) and (A24)]

c(T ) 1 p(T, )e= f de tanh
0

c„(0)=2coo/3

and, for the free-energy,

(19)
c(T, )

p( T, ) = 1 —
A, '[2n (coo) + 1]

Fo(0)„=—4N(09, 'a)o/27 . (20)

These results indicate that even for the normal state (n)
the cutoff is a finite quantity and leads to a renormalized
density of states,

N(0)~N(0)/p„.

For the superconducting state (b,a%0},we have [see (A19)
and (A21)]

C00

When c(T, )p(T, )/T, »1, the integral in Eq. (26) can be
done analytically and we get a similar result as in the
BCS weak-coupling theory:

p(T, )
T, =1.134c(T, )p(T, )exp

p
(28)

Third, for the general case 0& T & T„we have, for the
normal state [ho( T)=0] [see (A26} and (A27)],

p, (0)
ho(0) =c,(0)p, (0) sinh

p
c,(0)

p, (0)= 1 —
A,

'

COp

(22)

(23)

Fo( T)„= N (0)(1—
A, ')c„(T)—N (0)c„(T)p„(T)

D E4TN(0) f —de ln 1+exp
c„(T) T

and the equation determining the cutoff c, ( T) [see (A22)]:
c„(T) p„(T)e

4TN(0—)f dain 1+exp
0 T

c, (0) p, (0)
2(1—

A,
'
}— 2 —3A,

' coth
C00 p

A. 'bo(0) ho(0)p, '
cooc, (0)p, (0)(A, ' —p" ) c, (0)(A, ' —p')

=0.

(24)

c„(T)
p„(T)= 1 —

A, '[2n (coo) + 1]
Q)p

(29)

(30)

For the superconducting state, we find [see Eqs. (A28),
(A29), and (A30)]

c,(T) 1de'
P Qe '(T)+b (T)

tanh Qe p, —(T)+EOT) (31)

Fo(T)s, =N(0)(1 —
A, ')c, (T)—N(0)c, (T)+c,(T)p, (T)+ho(T)

bo(T) c, (T}p,(T)+Qc, (T}p,(T)+50(T)—N(0)N (0) ln
p, (T) 0

b.o( T} D
+N(0) 4TN(0) f dain—1+exp

p c, ( T) T

c, ( T)
4TN(0) f d—@in 1+exp

0

Qp~(T)e +b,o(T)
T

(32)

c,(T)
p, ( T)= 1 A'[2n (coo )—+ 1,]

COp

(33)
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Note again that the variational parameters c„(T) and

C, ( T) must be determined by minimizing FD( T)„and
F0( T)„respectively.

These results are now used for numerical calculations
of the gap function, the critical magnetic field, and the
specific heat.

III. RKSUI.TS

To check the validity of our approach, we compare for
conventional intermediate- and strong-coupling super-
conductors our results obtained by using the formulas
given in Sec. II with those obtained by solving the Eliash-
berg equations. Since we choose D/boa))1, we refer to
the adiabatic limit. The numerical results shown in Table
I were calculated by using A,

' and the corresponding p' as
input parameters. Note that these are not variational pa-
rarneters and are chosen such that the observed T, is ob-
tained in deriving HD. (For the ratio D/boa we take 100
in all calculations. ) The ratio T, /co0 [as well as

25 (0 0) /T] is a measure of the coupling strength. The
BCS weak-coupling limit corresponds to T, /coo~0.
Note that the critical field H, is related to the condensa-
tion energy H, ( T) ISn =F0(T)„—F0( T), . (The BCS
value of this ratio is 0.168.} The normalized jump in the
specific heat at T, is given by

b,C ( T, ) /C„( T, ) = [C, ( T, ) —C„(T, ) ]/C„( T, ),
where

8 F0(T)
C(T )= — T

C B2T2

(the BCS value is 1.426). a denotes the isotope
coefficient. Note that when p*=0, we can see from Eqs.
(25) and (26) that the only independent parameter is A,

'

and the phonon energy co0 can be used as an overall ener-
gy scale. So the dimensionless variational parameter
c(T)/co0 and critical temperature T, /co arQe functions of
A,

' only. Thus we get for the isotope coefficient a=0.5.
When p'&0, our numerical results show that a(0.5.
For comparison we show also the results obtained by
Carbotte and co-workers and Wolf and Noer by solving
the Eliashberg equations. ' Note that co&„ is given by

a F(co)
lnco&„=2 de lnco .

0 N

The values T, /~&„correspond to our values T, /co0.
While we get in general good agreement even for the
strong-coupling superconductor Pb, there is a notable
disagreement in the case of Hg with the strongest cou-
pling. We expect this disagreement to result from (a} our
use of an Einstein model for the phonons, which does not
properly take into account lower-energy phonon modes
and which are known to be important, ' ' and (b) from
our neglect of higher terms in the electron-phonon cou-
pling in deriving Ho.

In Fig. 2 we show results for the normalized gap func-
tion 50(T)/b, 0(0) as a function of the reduced tempera-
ture t =T/T, . The deviation from the weak-coupling
BCS results is obtained correctly. However, the devia-
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0.8—
~.(T)

h.(0) 0 6

0.4—

I I I ) I I tion in the strong-coupling case (curve 10) may be too
21,22

In Figs. 3 and 4 the deviation function for the critical
magnetic field,

H, (T)
D(T) = —(1—r2),

H, (0)

0.2—

0 l I ) I ) I

0 0.2 0.4 0.6 0.8
TlTc

FIG. 2. Dependence of the normalized gap function
Ap(T)/kp(0) on the reduced temperature T/T, . The dashed
line is the result of BCS theory; the curves 3, 7, and 10 refer to
the corresponding set of input data given in Table I and used for
the numerical calculations.

is given. %'e show for comparison also the results by
Carbotte and co-workers. ' ' Again, good agreement
is obtained, except for the case of Hg (curve ll). The
reasons for this were discussed already.

Regarding the renormalized density of states in the
normal state of the electron-phonon coupling system, we
remark the following. As was pointed out in Sec. II, near
the Fermi surface within a layer of width 2c„(T) the den-

sity of states is renormalized as N(0)/p„(T) [and
N( 0) lp„( T)) N(0)]. In Fig. 5 the important renormal-
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FIG. 3. (a) Deviation function D(t) for the critical magnetic

field as a function of T =(T/T, ) . The dashed line is the result

of BCS theory. The numbers refer to the set of input data given

in Table I and used for the numerical calculations. (b) The re-

sults for the deviation function D(t) obtained by solving the

Eliashberg equations for several intermediate- and strong-

coupling superconductors. [see Carbotte and co-workers (Refs.

5, 18, and 19)].

0 0.2 0.4 0.6 0.8 1

FIG. 4. (a) Deviation function D(t) for the critical magnetic
field as a function of t =(T/T, )' for two sets of input data (see
Table I). (b) The results of Carbotte's and co-workers for the
deviation function D(t) obtained by solving the Eliashberg
equations for NB (dashed line) and Nbp 75Zrp 25 (solid line).
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FIG. 5. Renormalization factor 1/p„(T) as a function of
( T/T, ) or several sets of input data (see Table I).

ization factor 1/p„(T) is given as a function of (T/T, ) .
Obviously, all curves are straight lines and can be put
into the form

1/p„( T)= 1 Ip„(0)+ 2 ( T/T, ) (34)

where A is a numerical factor. Note that this renormal-
ization factor for the density of states at the Fermi sur-
face corresponds to the Eliashberg renormalization func-
tion

2
1Z„(re=0, T)=1+1+ X — IT3 N

(35)

with

1 oo QFN
{36}

Obviously, the temperature dependence of the renormal-
ization factor 1/p„and Z„ is the same. Note that the
temperature dependence of p„(T) comes mainly from the
temperature dependence of the energy cutoff c„(T). This
is a remarkable success of our approach. Contrary to
c„(T), which is an increasing function of temperature
T & T„c,( T) is always a decreasing function of T

In Fig. 6 we present results for the variational cutoff

parameters c„(T) and c, ( T), using A,
' =0.465 and

p' =0.119. The decrease of the cutoff c, ( T) with increas-
ing temperature means that the phonon-induced attrac-
tion between electrons becomes less and less effective due
to thermal fiuctuations. Furthermore, since c,{T})c„(T)
for T (T„one gets

1/p, (T)) 1/p„(T) when T& T, .

This is different from Eliashberg theory, ' where

Z, (co =6,o, T =0) & Z„(a)=0, T =0) .

(37)

(38)

IV. CONCLUDING REMARKS

Here Z, (co=A, OT =0) is the renormalization factor at
the gap edge in the superconducting state at T=0. As
was shown by Scalapino in the case of a retarded
strong-coupling, the correction of the condensation ener-

gy with respect to BCS weak coupling arises primarily
from the difference between Z„(co) and Z, (co) and is ap-
proximately given by

N(0)Re J dco[Z„(co) Z, (co)]—co . (39)

As discussed by Scalapino, the net effect of retardation is
to lower the condensation energy below the BCS value
since this correction should be negative. Using the ap-
proximation Z„(co)=Z„and Z, (co)=Z„where Z„and
Z, are constants, it follows that Z, &Z„, consistent with
our result. So we conclude that our p, (p„ is correct and
accounts correctly for a retardation effect.

As a further demonstration of the validity of our ap-
proach, we calculate the condensation energy at T =0 for
the strong-coupling case Pb. This renormalized density
of states at the Fermi surface, N'(0}, which is equal to
N(0}/p„(0) in our theory, can be obtained from a
specific-heat measurement y =—2m k&N'(0). ' One gets
N*(0)= l. 35 X 10 erg/cm and a condensation energy
of 2.68 X 10 erg/cm using the experimental result

T, =7.2 K. The experimental value obtained from
critical-field measurements is 2.56X104 erg/cm . The
BCS result is —,'N'(0)60=3. 10X10 erg/cm, and the re-
sult obtained by solving the Eliashberg equations is
2.49X10 erg/cm . Again, we find reasonable agreement
between our result and the experimental one.

1.0

0.9
c(v)

0.7—
c, (T)

c„(T)

0.5
0 0.2 0.4 0.6

I

0.8 1.0

FIG. 6. Energy cutoff variational parameters c„(T) and c,( T)
as functions of T/T, for A, '=0.465 and 1M*=0.119.

We have proposed a simple approach based on a
canonical transformation and variational principle to
determine the properties of the conventional supercon-
ductors. The resultant pairing potential includes retarda-
tion effects and is similar to the BCS one, but involves a
temperature-dependent cutoff. The temperature-
dependent cutol' c,(T) takes care of the fact that the
phonon-induced attraction between electrons is not in-
stantaneous, but retarded, and should be afFected by the
thermal fluctuations of the quasiparticles. This retarda-
tion effect causes the renormalization function to be
different for the normal and superconducting states,
which lowers the condensation energy. The generally
good agreement between our numerical results and those
by Carbotte and co-workers obtained by solving the
Eliashberg equations is likely due to including such retar-
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and the electron-electron interaction is strong enough, bi-
polarons form and they can condense into the superQuid
state at a lower temperature. ' Thus we obtain within
our approach also the Bose condensation of bipolarons.
Note, of course, that the above transformation yields a
different Hp for the bipolaron case. '

Since, as shown, our canonical transformation includes
both limits co/eF »1 and co/e~ &&1, one should expect
our approach to be applicable also for the intermediate
case m- e~. It would be interesting to determine H p also
for this crossover region.

%e have neglected all higher-order terms in the cou-
pling constant in performing the unitary transformation.
If T, /cop is large, the higher-order terms may play a role
and should be include. d Also, it would be interesting to
use different forms for the variational function 5(k', k).
Our choice for 5(k', k) was only for simplicity and for a
comparison with previous results. Keeping a k', k depen-
dence of 5(k', k), one could give different phonons a vary-

ing weight, and by varying 5(k', k ) between 0 and 1, one
may account for the amount of lattice deformation which
follows the electrons.

dation effects. Our results show that the thermodynami-
cal properties of the conventional superconductors are
mainly determined by the ratio T, /cop. This conclusion
agrees with that by Carbotte.

The physical meaning of the coupling constant A.
' in

our work is different from A, in the Eliashberg theory.
Our k' has to be considered as a bare coupling constant.
It is determined by ( T, /coo). Comparing our formula for
the gap function b,o(0) with that of the BCS theory
(bo(0) —1/sinh[ —(A, —Icc ) ']},we find the relationship

A, =A, '/p, (0)=A.'/[ I —
A, 'c, (0)/coo] .
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APPENDIX: DETERMINATION
OF THERMODYNAMICAL FUNCTIONS

As an example, for A, '=0.465 (to mimic Nb), we get
A, =0.71 [c,(0)=0.739] and for A, '=0.547 (to mimic Pb)
we get A, =1.06 [c,(0)=0.887].

In this work we have presented numerical results for
the adiabatic case, co „/EF « 1. Note that in the
Migdal-Eliashberg theory it is very difficult to take into
account the vertex renormalization of the electron-
phonon coupling, which is necessary if co~„/EF is not
small. ' However, our treatment, canonical transforma-
tion, can be extended to the nonadiabatic case where

cosh/EF is not small and where bipolaronic formation is

expected. It is well known that when coo/t »1, the so-
called antiadiabatic limit, the electron-phonon interac-
tion becomes instantaneous and H can be transformed to
the negative- U Hubbard model. (t is the nearest-
neighbor electron hopping integral. ) This can be seen by
putting the variational function 5(k', k ) = 1, for all E'k, 6k, '

which implies the energy cutoff c =D (D =bandwidth).
Thus, using again a single Einstein phonon, one has

H'=exp(S)H exp( —S),

S= g (b; b;}d; d;—
COp

Here S becomes the usual canonical transformation in the
antiadiabatic limit for the (Holstein) model Hamiltonian

H= gcoob;tb; — Q td;t d + +go(b; +b;)d; d;
1, 0'

Here go is the coupling constant. If then U= —2go/coo
I

Here we give mathematical details of the analysis per-
formed in Sec. II. The upper bound of the free energy is

Fo(T)= ——ln Tr[exp( PHO)]—1

+Tr[exp( 13HO)(H' H—o)]+p&, —. (Al)

Here Ho is given by Eq. (9) and involves the variational
cutoff parameter c ( T). H' is the transformed Hamiltoni-
an [Eq. (7)]. The second-order terms in H' can be col-
lected as follows:

q, y q', y' b,f, k, k', ~ qy q'y'

X5(k +q, k)5(k'+q', k')[dk+ dk 5k +q k dk +q dk 5k+q
—
k ]

+ g g g (b" b)(b" ~ b—.[25(k +q—, k)
q, y q', y' b,f, k, k', qy

—5(k +q, k)5(k'+ q', k') ] )

[dk +qcrdk'a5k'+ q', k k'+ q'edku5k +q, k' ]

[25(k+q, k) 5(k+q, k)5(k' —
q, k')]dkt+ dk dkt — .dk

q, y k, o. bfk', o'
(A2)

Here 5k +q k is the Kronecker 5 symbol. Substituting Ho and H' into Eq. (Al) and omitting all terms of higher order
in gqy, we get, as an upper bound of the free energy;
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Fo( T)=Eo ——g in[1+exp( P—'))/ Ek+b k )]—g '))/Ek+ 6 k
2

k

+—g1

2 „~E2+g2 tanh Q—Ek+b, k
—

A, 'N(0)c N, (A3)

where @=1/T, N is the total number of cells, Ep is a con-
stant, and

E„=(e„p,}p— (A4)

Here the renormalization factor p„ is given in Eq. (10).
For the sake of simplicity, we assumed an Einstein model
for the phonons: g r=go and (p r=p)o. In deriving (A3)
we have used

c( T) 6p
5) =Pp d6' tanh —Qe p +b,()

o Qpp2+ g2 2

p—p f de
'

tanh QF. p—+6,
c(T) Qe2 2+g2 2

1

(A10)

2

, [2n((0o}+1]5(k+q, k)(e„+~—)M)=0 .
qy No

(A5)

This is true because (Ek+& )M ) is an odd function.
The gap function 6k is determined by minimizing

Fo( T). Thus

6k=
N g V(k', k)(d k.gdk t)
1

k'

c 1
dE

p p Qe +6
tanh Qe p +—b,()

(Al 1)

(A12}

and

where (Mo= UN(0). For cP»1, one gets then the solu-
tions

g V(k', k) tanh QEk. +h—k
k' QEk +5k.

(A6)

V(k', k) = 5(k', k) —U,
2gp

COp
(A7)

where U is a phenomenological parameter introduced in
order to. take into account the effect of the Coulomb
repulsion. ' As a consequence of the assumed form of the
variational function 5(k', k) [see Eq. (5)], the gap function
has the form

Here V(k', k) is the effective electron-electron interac-
tion,

Pp

1+p pin [D /c ( T) ]

At T =0 one finds

c
dE'

1

g' —p+ p Q 2 2+g2

Fo(0)= —g QEk+ b k
k

~k+—g —
A, 'N(0)c N .

2 „gE2+g2

(A13)

(A14)

(A15)

leak )Ml ~c(T),
c(T) & irk —

)Ml D. —(A8)

Fp(0)„=—N(0)A, 'c 2(0)[1—c„(0)/p)o] . (A16)

The remaining integrals can be easily performed. For the
normal state ( ho =0), we have

Here D is the higher-energy cutoff (bandwidth), which is
of the same order of magnitude as the Fermi energy. The
parameter c ( T) is obtained by minimizing Fo( T). Then,

c„(0)=2p)o/3 (A17)

Obviously, after minimizing Fo(0) with respect to c„(0),
we get for the cutoff

c( T) 5p
ho=(A,

' —
(((,o)f dep+22+g2 and

Fo(0)= 4N(0)A, 'p)p/27 . — (A18)

For the superconducting state (kp+0}, we have

and

—
pp f d e tanh —Q@2+Q2)

c( T) +&2+g2 2
1

(A9}

and

p, (0)
ho(0) =c,(0)p, (0) sinh

p
(A19)
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Fo(0)=N (0)(1—A. ')c, (0) for determining c, (0). For T~ T„b,( T)~0, one finds

with

p, (0)—N(0)c, (0)p, (0)coth
p

(A20)

(A21)

c,(0)
2(1 —X') — 2 —3A,

'

C00

p, (0)
coth

p

I,'6()(0)
+

eeoc, (0)p, (0)(A, ' —p" )

hp(0)p =0
c, (0)(A,

' —(u* )

c, (0)
p, (0}=1—A,

'

C00

After differentiating Fo(0), with respect to c,(0), we get
with

c(T ) p(T, )~
dE tanh

A,
' —(M* o p( T, )e 2T,

c(T, )

p( r ) = 1 —
A, '[2n (coo) + 1]

c

(A23)

(A24)

This determines T, . At T, the free energy is given by

I

Fo(T, )=N(0)(1 —A.')c (T, )
—N(0)c (T, )p(T, )

—4T,N(0) f dain 1+exp
C c

~(r, ~ p(T, )e
4T,N(—0)f de ln 1+exp

0
C

Again, c( T, ) is determined by minimizing Fo( T, ).
For the general case of 0 & T & T„we have, for the normal state,

(A25)

Fo( T„)=N (0)(1—
A, ')c„(T) —N(0)c„(T)p„(T) 4TN (0)f— de ln 1+exp

n

c„(T) p„(T)e
4TN(0) f— dain 1+exp

0 T

with

c„(T)
p„(T) = 1 —

A, '[2n (coo) + 1 ]
C00

Furthermore, for the superconducting state, one gets

(A26)

(A27)

and

j c (T) j
dE

P Qe '( T)+b '( T)
tanh Qe p, ( T)+ho( T—) (A28)

b()(T) c, (T)p, (T)+Qc, (T)p2(T)+b()(T)
Fo(T), =N(0)(1 —

A, ')c„(T) N(0)c, (T)+—c, (T)p, (T)+ho(T) —N(0) ln
ps T 0

c, ( T)
4TN(0) f —dEln 1+exp

0

V p,'( T)
'a+& (oT)

T

with

~o(T D
+N(0} 4TN(0) f de—ln 1+exp

p c (T) T
(A29)

c, (T)
p, ( T)= 1 —

A, '[2n (coo)+ 1]
COp

(A30)

c„(T)and c, ( T) can be determined by minimizing Fo(T)„and Fo(T)„respectively, Unfortunately, these equations can-
not be solved analytically.
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