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Quantum dynamics of a fluxon in a long circular Josephson junction
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The dynamics of the fluxon in a long circular Josephson junction is studied. A bias charge across the

junction is shown to act like a gauge potential on the fluxon. The system is then quantized, and the ener-

gy levels of the fluxon are found to resemble those of a small capacity-dominated Josephson junction.
The quantized fluxon is shown to exhibit a persistent motion in analogy with the persistent current of
electrons in a metal ring threaded by a magnetic flux. This motion manifests itself in a voltage across the

junction. At finite temperatures the voltage is reduced by the thermal distribution of the fluxon s energy.
The dependence of the voltage on the ratio of the junction's circumference to the Josephson penetration

depth is examined.

I. INTRODUCTION

Following an extensive and fruitful study of manifesta-
tions of the Aharonov-Bohm (AB) effect in condensed-
matter electronic transport, some attention was recently
focused on a variation of that effect, sometimes known as
the Aharonov-Casher (AC) effect. ' While in the AB
effect an electron is split into wave packets that go
around flux tubes, in this variation flux tubes are split
into wave packets that go around charges. This variation
is considerably more complicated than the original one,
since the interfering object (the flux tube) is a many-body
excitation, whose mass, dynamics, and phase-breaking
mechanisms are far less understood than those of the
electron.

While these recent works have examined the AC effect
of vortices in a two-dimensional (2D) array of Josephson
junctions, in this paper we study the quantum dynamics
of a fluxon trapped in a single, long, effectively one-
dimensional circular Josephson junction (see Fig. I). In
particular, we examine the effect of an externally imposed
bias charge on that dynamics. We regard this bias
charge, created by a driven continuous external current,
as a controlled parameter. The phenomena we discuss
are manifested in the dependence of the junction's ener-

gy, the voltage across the junction, and the fluxon's veloc-
ity on this bias charge.

The classical dynamics of a fluxon in a Josephson junc-
tion is well understood. As long as the junction is
ideal (no dissipation or spatial disorder) the main effect of
the fluxon is to suppress dc Josephson effect, i.e., to dis-
able the transfer of net current without an accompanying
voltage. Dynamically, the equation of motion describing
the junction is the sine-Gordon equation. A trapped

fluxon is described by the one-soliton solution to that
equation. In the absence of an externally driven current
the fluxon moves at a constant velocity along the junc-
tion. An externally driven uniform current accelerates
the fluxon due to an exchange of momentum mediated by
the Lorentz force. This Lorentz force exerted by the
current on the fluxon is described, in Hamiltonian
description, as resulting from a time-dependent gauge po-
tential. The classical aspects of the fluxon's dynamics in
a circular junction have been studied experimentally.

In the work we report here, we consider the effect a
time-independent gauge potential has on the quantum dy-
namics of the fluxon. We find that the Hamiltonian
eigenstates and eigenvalues depend on the total "flux" as-
sociated with this gauge potential, i.e., the line integral of
this gauge potential around the junction. This "flux" is
proportional to the externally imposed bias charge across
the junction. The spectrum of the fluxon is then periodic

FIG. 1. The Josephson junction considered. Two concentric
superconducting cylinders are separated by a thin insulating
layer. The junction encloses a fluxon of magnetic field, formed

by a "solenoid" of current.
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with respect of the bias charge, with a period of 2e (e be-
ing the electron charge). The voltage across the junction,
given by the derivative of the energy with respect to the
bias charge, is 2e periodic too. The energy and voltage
periodicity with respect to the charge are similar to those
found for two-dimensional annulus-shaped arrays of
Josephson junctions. However, many of the details are
different.

The kinetic mass of the fluxon plays an important role
in the problem we discuss. We calculate this mass by ex-
amining the dependence of the fluxon's energy on its ve-
locity. We focus on the dependence of the kinetic mass
on the ratio of the junction's length L to the Josephson
penetration depth AJ. We find that the mass is L in-
dependent when L &)AJ. For typical values, it is much
smaller than the electron mass. When L «AJ the mass
becomes approximately proportional to L ' and in-
dependent of AJ. A short review of the fluxon's classical
dynamics, a derivation of its Hamiltonian, and a discus-
sion of its mass are given in Sec. II.

Our study of the quantum mechanics of the fluxon is
detailed in Sec. III. Quantizing the Hamiltonian of the
fluxon, we observe that for an ideal junction the energy
levels and momentum values of the fluxon are quantized.
We show that this quantization is a quantization of the
number of Cooper pairs charging the junction. Then we
analyze the dependence of the Harniltonian on the bias
charge, and interpret this dependence as a persistent
motion of the fluxon around the ring. We draw the anal-

ogy between this motion and the persistence current of
electrons in normal and superconducting rings. The volt-
age response to an infinitesimal bias charge defines the ca-
pacitance of the junction, which is closely related to the
mass of the fluxon. We examine the dependence of this
capacitance on the ratio L/Az. We find that in the limit
L &&AJ the effective capacitance of the function is
different from its geometric capacitance. In the limit
L /AJ ~0 the effective capacitance approaches the
geometric capacitance. Then, the sole effect of the fluxon
is to shut off the Josephson dc effect.

Section IV deals with the smearing of the energy
dependence on the bias charge due to the thermal distri-
bution of the fluxon energy at finite temperatures. We
find that the effects we discuss are exponentially
suppressed by temperature, and that the characteristic
temperature is of the order of the spacing between con-
secutive energy levels. For experimentally accessible
values, this temperature is of the order of 10—100 mK.
We conclude in Sec. V by a few remarks about nonideal
junctions.

II. CLASSICAL DYNAINIICS AND MASS OF A FLUXON
IN A CIRCULAR JOSEPHSON JUNCTION

Consider a circular Josephson junction (see Fig. 1)
made of two superconducting concentric cylinders
separated by a thin insulating layer. The width of the
cylinders is much larger than both A,L, the London
penetration depth, and d, the width of the insulating lay-
er. We assume that the dielectric constant and the per-
meability of this layer are both equal to 1 (in cgs units).

where p is the dimensionless parameter

,2 Qu~dP:—16m
Ac h,

(2)

For the clarity of the expressions, the x dependence of
both o and n is suppressed. The first term in the Hamil-
tonian is the electrostatic, i.e., capacitive, energy, the
second term is the magnetic, i.e., inductive, energy, and
the third term is the Josephson energy. The equation of
motion derived from the Hamiltonian (1) is the sine-
Gordon equation,

8— 8„+Jzsin8= 2eo,1 fi -. 1 Ac
(3)

4m 2ed 4m 4eA, L

where Jz—= (1/4n)(Pic /4ekI )(1/Az). This equation of
motion is nothing but a continuity equation for the elec-
tric current. The external bias-current density 2eo. is
split into there parts. JzsinO is the Josephson current
flowing across the junction. (1/4m)(A'8/2ed) is
the displacement current charging the junction.

Nevertheless, since the electric field goes to zero at the
edges of the insulating layer, while the magnetic field
penetrates inside the superconductors to a distance A,l,
the speed of light in the junction, c, is different from the
speed of light in vacuum c, c —=cQd/2AL (we approxi-
mate everywhere 2A,L+d =2k,r). The strength of the
Josephson coupling between the two superconductors can
be characterized by any one of the following two parame-
ters: JJ, the critical Josephson current density, and AJ,
the Josephson penetration depth. Below we remind the
reader of the interrelations between the two. The height
of the junction h, is much smaller than AJ, but much
larger than A, L . Thus, the ring is effectively one-
dimensional, i.e., the phase difference between the two su-
perconductors is approximated to be independent of z.
We denote the polar coordinate (the only relevant dimen-
sion) by x. The circumference of the ring is denoted by
L.

In Hamiltonian description the junction is
characterized by the field 8(x), 8(x)=$2(x) —Pi(x)—(2e/Ac) j, A de (where Pi z are the phases of the two

superconductors, and A is the electromagnetic vector po-
tential), describing the gauge-invariant phase difference
between the two superconductors, and its conjugate field
Rh, n(x). The field n(x) describes the two-dimensional
number density (number per unit area) of Cooper pairs on
the two sides of the junction. The magnetic field in the
junction is directed in the z direction (neglecting edge
effects), and is given by ($0/4@i,L )8„.In the presence of
a uniform bias-charge density, denoted by 2eo. , the elec-
tric field is 8ne[n (x)+cr] The H. amiltonian of the junc-
tion is then given by (unless otherwise stated, all integrals
are one dimensional, taken from x =0 to x =L),

h
H= f&dx=h—c f p' '

(n —o)'
2

+ —8„+ (1—cos8) .dx,1 1 2 1

p' 2" A'
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(I/4n)(Re /4ekL )8~ is the diff'erence between the in-
ductance current (flowing along the junction) to the right
and to the left of the point x (See Fig. 2). Since the junc-
tion is circular, the phase di8'er ence satisfies
8(x)=8(x +L)+2a m, with m being an integer. A single
fluxon enclosed in the junction is described by the solu-
tion to Eq. (3), with m = l.

In the absence of a bias current, i.e., when o.=0, the
solution of Eq. (3) describing a fluxon trapped in the junc-
tion moving in a velocity v «c is,

~l I

)

~ I I I ~ I ~ I

sinI I [8(x,t) —m]] =sn
x —X —vt0

kA~
(4) 0—

I

-0.4 -0.2 0 0.2 0.4
x/L,

where sn(z} is the Jacobi elliptic function and k is impli-
citly given by the complete elliptic integral of the first
kind (see, for example, Ref. 10)

L/AJ =2kE(k) .

The parameters Xo and v describe the initial position and
velocity of the fluxon, respectively. In the limit L )&A&
(long junction), the phase changes from 0 to 2n along a
narrow strip of length AJ, and is approximately constant
everywhere else. The magnetic and electric fields are
nonzero only within that strip. In that limit Eq. (4) can
be approximated by the solution for an infinite junction,
namely,

8=4 tan ' exp
x Xo vt

AJ
for L»A~ . (6)

In the limit of L «Az (short junction}, the phase
changes almost linearly along the junction, i.e.,

x Xo vt
for L «A& .

1„(x) (x+dx)

x( J sine

2x( )
/

(x+4x)

FIG. 2. Distribution of currents in the junction.

The magnetic and electric fields are then spread uniform-
ly along the junction. The solutions of Eq. (3) for three
values of L /Az are presented in Fig. 3.

The equation of motion (3) is not solvable for a general
d . However, for the purpose of studying the dynamics of
the fluxon, this solution is not essential. Rather, it is
sufficient to derive and study the equations of motion
(and, consequently, the Hamiltonian) for X, a collective
coordinate describing the position of the fluxon, and for
P, its conjugate coordinate, describing the fluxon's

FIG. 3. One-fluxon solutions of circular Josephons junctions
of lengths 10AJ, 5AJ, and 2AJ.

momentum. The introduction of collective coordinates
to describe the motion of topological solutions of the
sine-Gordon equation has been studied extensively in the
past, and we now review it shortly. '" ' The main as-
sumption taken when the description of the junction by
the fields n, 8 is replaced by a description in terms of two
variables P,X is that the time evaluation of the fluxon's
field configuration is of the form 8(x —X(t)). Within
this approximation, the fluxon is a rigid body, whose
shape does not change when it moves. A Newtonian
equation of motion for X ( t) can be obtained by substitut-
ing this assumed form for the field configuration in the
sine-Gordon equation [Eq. (3}], multiplying the sine-
Gordon equation by 8„,and integrating over x. The re-
sulting equation is

MX= 2' Q
L 2e'

where the kinetic mass of the fluxon, M, is given by

Ah,M= f8„dx,
4m(2e} d

(8)

(9)

fi h,M= — for L»A& .~ (2e) dA~
(10)

and Q =2eoLh, is the total bias charge on the junction.
The right-hand side of the equation of motion (8) is the
force acting on the fluxon. This force is independent of
the detailed structure of the fluxon. It depends only on
the total external current Q and on the topological charge
of the fluxon. The microscopic origin of this force is the
Lorentz force. The mass of the fluxon, appearing on the
left-hand side of Eq. (8), is, obviously, independent of
X(t) As seen in Eq. . (9), it is proportional to the energy
stored in the magnetic field of the fluxon. As such, the
mass depends on the details of the field configuration, and
in particular, on the ratio L/AJ. For a long junction
(L »Az) the magnetic field is independent on L, and so
is the mass. Substituting the field configuration for that
case, Eq. (6), in the expression for the mass (9},we find
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For typical values, this mass is much smaller than the
mass of the electron. For a short junction the magnetic
field is L dependent, and so is the mass, given by

Rh,M= fo L A
(2e) dL

1 2MQ
fluxon 2~ L 2e

(12)

This Hamiltonian deserves a few comments. First, it in-
cludes only the part of the energy relevant for the
fluxon s dynamics. This part is the electric, capacitive
energy. The rest energy of the fluxon, composed of the
magnetic and Josephson contributions, does not affect the
dynamics, and therefore is not included. Second, the
equation of motion P =0, derivable from this Hamiltoni-
an, is a consequence of the translational invariance of the
problem, and is, of course, exact. Third, the collective
coordinates X and P can be represented in terms of the
fields 8,n Their .representations are given by

and

X= fx8„dx=1

p= —irih, f n8„dx .

(13)

(14)

As seen from Eq. (13), X is the "center of mass" of the
fluxon, and P is the total momentum of the field. The na-
ture of P is better understood by noting that the electric
field E =8ne( n —cr .

) and the magnetic field
B =($0/4m. k,r )8„.Substituting these expressions into
Eq. (14), we observe that the field momentum P is a sum
of a contribution associated with the electromagnetic
field,

P= fEXBd x,
4~c

(15)

and a contribution associated with the bias charge,
(2M/L)(Q/2e) Thus, the. conservation of the fiuxon's
momentum implies the suppression of the Josephson dc
effect: any change in the bias charge, i.e., any charging
current, has to be accompanied by a change in the elec-
tric field. The position X and momentum P given by Eqs.
(13) and (14) do satisfy the canonical commutation rela-
tions.

III. QUANTIZATION OF THE FLUXON'S DYNAMICS

In this section we approximate the quantization of the
field theory defined by the Hamiltonian (1) by a quantiza-
tion of the effective one-particle fluxon Hamiltonian (12).
We first discuss the results originating from this approxi-
mation, and later discuss its limits of validity.

i.e., it diverges as L
As seen in Eq. (8), the uniform (x-independent) exter-

nal current exerts a uniform force on the fluxon. As
such, this force has to result from a time-dependent
gauge potential. The Hamiltonian giving rise to this
equation of motion is therefore

2

1 2M
E~ = (2eN —Q)

2eL
(16)

where N is an integer. This form of the energy suggests
an interpretation of the integer N as the number of Coop-
er pairs changing the junction, and of the quantity
C,z= (2eL—/2M) M as the junction's effective capaci-
tance. The quantization of momentum eigenvalues is,
therefore, the statement that only an integral number of
Cooper pairs can tunnel across the junction and charge
it. The conservation of momentum, valid only for an ideal
junction, is the well-known statement that in an ideal
junction enclosing a fluxon there is no matrix element for
tunneling of Cooper pairs, i.e., the Josephson effect is

suppressed. Below we comment on the way this state-
ment is invalidated in the presence of weak disorder. The
spectrum (16) of the fiuxon's Hamiltonian is manifestly
periodic with respect to the bias charge Q, with the
period being 2e. The voltage across the junction is
dE&/dQ =(I/C, ir)(2eN —Q), and is proportional to the
expectation value of the velocity of the fluxon, given by
(L/2M)(dE&/r}N) The b. ias charge then induces a
motion of the fluxon around the junction, and this
motion manifests itself in a voltage across the junction.

The effective capacitance of the junction, being propor-
tional to the mass of the fluxon, depends on the ratio
L/Az. Using the expressions for the mass [Eqs. (10) and

(11)j we find that the effective junction capacitance is
identical to the geometric capacitance Lh, /4ndfor a.
short junction (L «AJ ), but difFers from it for a long
junction (L )&A@ ). In the latter case the effective capaci-
tance is given by L h, /2n d AJ This diff. erence deserves

an elaboration: for short junctions, the sole effect of the
fluxon is to turn off the Josephson coupling. The junction
then becomes a capacitor. The charging is uniform along
the junction, and so are the electric and magnetic fields.
Therefore, the effective capacitance is the geometric one.
The long-junction case is more interesting. The presence
of the fluxon shuts off the Josephson coupling, and makes
the junction a capacitor. However, as described in Sec.
II, the charging occurs in a region of order AJ around the

moving center of the fluxon, so, electrostatically, a mov-

ing fluxon is a moving capacitor. Since the charging of a
quantized fluxon is done by an integral number of Cooper
pairs, we conclude that a quantized fluxon behaves elec-
trostatically like a small tunnel junction with a unit

charge of 2e. The quantized Josephson junction can be
thought of, therefore, as a small tunnel junction moving
in a circle with a momentum proportional to the number
of unit charges that have tunneled across it.

In the presence of weak spatial disorder the fluxon's
momentum is not conserved, i.e., Cooper pairs can tunnel
across the junction. The energy levels given by Eq. (16)
are a set of parabolas, each centered at an integer multi-

The quantization of the fluxon Hamiltonian (12) is, of
course, straightforward. The Hamiltonian commutes
with the momentum operator. The eigenstates of the
momentum operator are plane waves, with a discrete set
of eigenvalues. The energy spectrum is discrete, too, and
is given by

2
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pie of 2e. The parabolas intersect one another at
(2j+1)e (j being an integer). The spatial disorder opens
gaps in the energy levels at the intersections of the parab-
olas. Then, if an unbiased junction is adiabatically
charged by a bias charge Q, the voltage across the junc-
tion oscillates as a function of Q. Whenever the value of
Q becomes (2j+1)e, a Cooper pair tunnels across the
junction, and the momentum of the fluxon is changed by
2m%/L.

The picture emerging from the analysis of the fluxon's
Hamiltonian (12}is similar to that emerging in a few oth-
er problems in related fields. Most notably, it is similar
to the picture emerging from the discussion of persistent
currents in normal and superconducting rings threaded
by a magnetic flux. ' In the latter case a unit charge is
being driven by a flux and exhibits a persistent current
with a periodicity of a flux quantum. In the Josephson
junction case a flux quantum is being driven by a charge
and exhibits a persistent voltage, with a periodicity of 2e.
For typical junction parameters d =20 A, II, =5000 A,
AJ =30 pm, L =100pm the amplitude of the voltage os-
cillations is of the order of 10 V.

To conclude this section, we turn to justify our approx-
imation of the dynamics of the field Hamiltonian (1) by
the single-particle fluxon Hamiltonian (12). The quanti-
zation of theories with topologically nontrivial solutions,
especially the sine-Gordon theory, has been studied ex-
tensively in the context of high-energy physics. Several
quantizations methods have been used, among them a
semiclassical, WKB-like quantization (the Dashen-
Hasslacher-Neveu formula), '5 and a Born-Oppenhemier
approximation. "' In the latter method, the classical sol-
iton solution is regarded as the ground state ("vacuum")
of a Fock space called the one-soliton sector. This sector
is completely disjoint from the sector containing no soli-
ton, thus reflecting the topological stability of the soliton.
The states of the one-soliton sector are constructed by a
perturbative expansion in the coupling constant of the
theory, P [Eq. (2)]. This expansion is valid as long as P2
is small, and blows up when P =4m Using .the typical
junction parameters values giving above and XL —1000

0
A, we find that in our case P —10, and thus the Born-
Oppenhemier approximation is well justified. The
ground state of the one-soliton sector is the classical
fluxon solution, and the higher states consist of the fluxon
and a collection of the small-amplitude plasma oscilla-
tions of the junction (plasmons). However, the plasmon
spectrum is separated from the vacuum state by a gap,
given by Ac/Az. Thus, as long as the frequency at which
the fluxon encircles the ring is lower than c/Az, and the
temperature is lower than A'c/Az ( —1 K), this interac-
tion can be disregarded.

averaged. The relevant energy to compare with the tem-
perature is the energy difference between consecutive lev-
els. The energy levels are given by Eq. (16). For low lev-
els in the long-junction limit (L »Az), the energy
difference is of the order of (2e) /2C, &. For the junction
parameters given in Sec. III, this difference is of the order
of 10 ' —10 K.

For the calculation of the thermal average of the volt-
age induced by the motion of the fluxon, it is convenient
to define the scaled bias charge q =Q/2e, and the scaled
temperature t—:[2C,s/(2e) ]k~T. We are interested in
(BE/BQ). Our first step is to calculate the partition
function, given by

Z(q, t) = g exp- (l —q)

I = —ao

(17)

Using Poisson's summation formula we find that

Z(q, t}=&mt 1+2 g exp[ (nm—} t]cos2nrnq
m=1

(y) (~BE)
2e 1 iIz (19)

decreases exponentially with temperature, too (see Fig.
4}.

V. CONCLUDING REMARKS

The discussion given in the previous section has
brought us to the conclusion that a bias charge induces a
voltage across an ideal circular Josephson junction en-
closing a fluxon. In this section we make a few remarks

0.8—

LIJ 06-

o 04-

02-

(18)

While Eq. (17) expressed the partition function as a sum
over eigenstates, Eq. (18) decomposes it to a sum over
harmonics. ' As is evident from this decomposition, the
charge-dependent terms of the partition function are ex-
ponentially suppressed by thermal averaging. The
characteristic (scaled) temperature for this suppression is
I /n . Consequently, the induced voltage,

IV. THE EFFECT OF THE THERMAL DISTRIBUTION
OF THE FLUXON'S ENERGY

At finite temperatures, the fluxon's energy is thermally
distributed. Since for a given value of the bias charge Q
the voltage across the junction depends on the momen-
tum of the fluxon, and the momentum depends on the en-
ergy level, the voltage across the junction is thermally

6 S
TE MPERATURE

t

lO

FIG. 4. Induced voltage as a function of temperature, for
q =0.05. The voltage is drawn relative to its value at zero tem-
perature. The dimensionless units for the temperature are
defined in the text.
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about nonideal junctions.
We have already commented on the effect of weak dis-

order on the voltage across the junction. If the disorder
is strong, one might expect a localization of the fluxon's
eigenstates, and thus a suppression of the voltage across
the junction. Since the system is one dimensional, locali-
zation should take place when the mean free path of the
fluxon is smaller than the junction's circumference. ' '

As discussed in Sec. III, the voltage across the junction
results from a quantum interference effect. As such, it is
expected to be suppressed by interactions of the fluxon
with external degrees of freedom. In particular, interac-
tions with plasmons [which are included in the ideal-
junction field Hamiltonian (1) but are neglected in the

fiuxon Hamiltonian (12)] and with quasiparticles (which
are neglected in both) are expected to dephase the in-
terference, and introduce a phase-braking length. Both
mechanisms for dephasing will be examined in future
works.
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