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Consistent low-energy reduction of the three-band model for copper oxides
with O-O hopping to the effective t-J model
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A full three-band model for the CuO& plane with inclusion of all essential interactions —Cu-0 and 0-
0 hopping, repulsion at the copper and oxygen and between them —is considered. A general procedure
of the low-energy reduction of the primary Hamiltonian to the Hamiltonian of the generalized t-t -J
model is developed. An important role of the direct 0-0 hopping is discussed. Parameters of the
effective low-energy model (the hopping integral, the band position, and the superexchange constant J)
are calculated. An analysis of the obtained data shows that the experimental value of J fixes the charge-
transfer energy 5=(e~ —ed ) in a narrow region of energies.

I. INTRODUCTION

Since the discovery of high-T, superconductors, major
theoretical efforts have been devoted to finding the sim-
plest model which would contain all details relevant to
superconductivity. Anderson suggested' that the two-
dimensional single-band t-J model fits well for this role.

Now there is general agreement that the Cu02 planes
are common to all high-temperature superconductors. A
realistic model for these planes was proposed from first
principles by Emery, Varma, Schmitt-Rink, and Abra-
hams, and Gaididei and Loktev.

Also some other realistic models have been put for-
ward and investigated on small clusters by Mila and
Eskes, Tjeng, and Sawatzky.

During the last years there was a polemic about the
equivalency of the t-J model and the Emery model in the
iow-energy limit. The principal step was made in the
work of Zhang and Rice, where they proposed the idea
of the local singlet and the idea of the Wannier represen-
tation for 0 states. The problem of the low-energy reduc-
tion has been intensively investigated. ' ' The singlet-
triplet effective Hamiltonian was obtained in works of
Yushankhai and Lovtsov' and Shen and Ting. " In our
recent work' a quantitative comparison of the exact
solution for the three-band model with the solution for
the generalized t-J model was performed. The role of
both essential hybridization terms Cu-0 and 0-0 for the
renormalization of energies of local states was considered
in Refs. 5—8.

However, the situation seems not completely clarified
since (l) most of the above-named works dealt with the
unrealistic region of parameters t (& Ud, h, where t is the
Cu-0 hopping integra1, Ud is the Coulomb repulsion at
the Cu site, and h=(e —

ed ) is the charge-transfer ener-
gy, and (2) all of the above-named works did not con-
sistently take into account direct 0-0 hopping. The ap-
proaches of Refs. 5—8 did not allow one to calculate
effective hopping integrais for the lowest singlet.

In this work we develop a general approach to the con-
sistent low-energy reduction of the three-band model.

For this, following Zhang and Rice, we transform the
primary Hamiltonian of the model from the terms of the
usual oxygen states to the terms of symmetrical and an-
tisymmetrical orthonormalized oxygen states on 0 clus-
ters. Further we introduce a basis of the local states with
a certain number of particles. Since only the systems
with filling close to unity are of interest, we restrict our-
selves to one- and two-hole local states. After that, the
diagonalization of the local part of the Hamiltonian
presents no special problems. It should be noted that we
consider direct O-O hopping. We have found that it does
not change crucially the picture of the local states but
plays an important role for the effective hopping parame-
ters. Next, we keep only the lowest two-hole local singlet
state and consider its transitions over the background of
the lowest one-hole (spin) states. Thus, we get the t t' J--
model. All other states we take into account perturba-
tively, by applying the canonical transformation. In this
way we obtain the general form of the second-order
corrections to the t -t'-J model and the expression for the
superexchange constant J.

At the beginning, we investigate three limiting cases of
the complete three-band model. Because the Hilbert
spaces in these limiting cases are restricted, mathematical
treatment is simplified. Further, we investigate the gen-
eral case of the three-band model in the region of param-
eters where the charge-transfer insulator' is the ground
state of the undoped system. We conclude that the t-J
model is valid for the doped charge-transfer insulator,
i.e., corrections to it are small. Corrections to the hop-
ping integrals at second and other neighbors are not rela-
tively smail, and thus the simple t-t'-J model does not
follow from the three-band model. Since the experirnen-
tal value of the superexchange constant J is known very
well, we determine the value of the charge-transfer ener-

gy 6 through J. We have found that a narrow region of
energies for 5 is suitable.

We also consider the repulsion at the 0 site, U, and
the repulsion between the Cu and 0 ions, V~d, terms in

the framework of our approach. Their influence on the
values of 5 and the first hopping integral t& is discussed.
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Thus, we perform a consistent and full consideration of
the three-band model.

In Sec. II we represent the three-band Hamiltonian in
terms of new oxygen states. In Sec. III we diagonalize
the local Hamiltonian and rewrite it in terms of the Hub-
bard operators. In Sec. IV the low-energy reduction pro-
cedure is developed. In Sec. V three limiting cases of the
three-band model are considered. In Sec. VI the quanti-
tative analysis is performed. In Sec. VII the U and V d

terms are considered. Section VIII presents our con-
clusions.

A more detailed version of this paper is available. '

II. THREE-BAND HAMILTONIAN

l, a m, a

(2.1)

The three-band model studied in this paper was origi-
nally proposed by Emery. It is given by the Hamiltonian

H=Ed gnla+Ep g np +Ud gnltn(g+bH+H',

Hp ed Xdl dl +ep X (qlaql. +ql ql
l, a l, a

where

+ Ud g dI tdl tdI id!I,
1

X ~l!'(dlaql'a+H c )
(11 &a

p X [ All'('qlaql'a 'q I qal' )a
(11 &a

+vll'(qlaql'a+ H' c' ) ]

(2.4)

P„v]II =[A,,P, v](1—I')

lattice constant is equal to unity.
It is evident that the pd-hybridization term in H in-

cludes only the symmetrical state. In terms of these
operators after substitution of (2.4) in (2.1),(2.3) and in-
verse Fourier transformation, the Hamiltonian has the
form

hH =
Up g n tn l + Vp~ g nlan~&tI,

m |', lm &,a,P
(2.2) =g [A, , IM, v] „exP[—ik(l —l'}], (2.5)

where l and In denote summation over the Cu and 0
sites, resPectively, n« =d,ad«, n~a =Pl~«, dl (d,a)
creates (annihilates) the Cu (3d») hole, and pl (pl }

creates (annihilates) an 0 (p„,p ) hole. Ud and U are
the intrasite Coulomb repulsion at the copper and oxygen
sites, respectively, and Vzd is the intersite repulsion be-
tween the nearest Cu and 0 holes. The hybridization
Hamiltonian H' includes Cu-0 and O-O hopping terms:

H'=t g (dI~ +H c ) t g —(p ~ .,+H c ),
&lm &a (mm'&a

(2.3)

where ( l, m ) denotes the nearest-neighbor Cu and 0
sites and (rnm') denotes the nearest-neighbor 0 sites.
The quantities t and t are positive. In Eq. (2.3) the sign
convention corresponds to the change of the signs of the
operators at the odd sites, which corresponds to the shift
of quasimomentum space by (n/a, m/a). As was pro-
posed in Ref. 17, such a transformation makes all O-O
hopping constants of the same sign and negative.

The three-band model (2.1),(2.3) and its modifications
have been studied recently by many authors. ' ' ' One
of the simplifications used in all analytical works was
neglecting the repulsion at the oxygen and between the
nearest-neighbor copper and oxygen sites. To take into
account the main effect, we will first consider the model
(2.1)—(2.3) without U and Vd terms and later include
these terms as the perturbation.

It is reasonable to introduce the symmetrical and an-
tisymmetrica1 orthonormalized p operator combination
as

q„=[«s(k„/2)p! +«s(k /2)p„, ](1+y„)

qlr, =[—cos(k /2)p! +cos(k„/2)pip](1+yl, )

where yl, =(1/2 }[cos(k„a ) +cos(k„a ) ]. Hereafter, the

with quantities

Al, =(1+yl, )'

pl, =8cos (k„/2)cos (k /2)(1+yl, )

vt, = 4cos(k„/2)cos(k /2)

X [cos (k„/2) —cos2(k /2)](1+yl, )

where the summation over k is produced over the Bril-
louin zone; the coefficients A,, IM, v decrease rapidly with
increasing ~l

—l'~. The values of A, , )Lt, and v for small
~1

—l'~ are given in Table I. It is easy to obtain
vp=—vpp=0 and v« =v(nx—+ny) =0

One can divide the Hamiltonian (2.4} into local and
hopping parts,

Blat ed g dladla+(&p Pptp }g qlaqla

+(Ep+pptp ) g qlaqla+ Ud g dltdltdI(dig
l, a 1

+2th p g (dlaql +H. C. )
l, a

H»p = 2t g XII.(d«ql a+H c)..
11'a

g [ All'(ql. ql'. ql ql'—
11'a

+vII(qlaql +H c )J;..

(2.6)

hereafter, the sum over I, I' means that IXI'.
Now, one can discuss the reasons for the transforma-

tion from the Hamiltonian. (2.1)—(2.3) to (2.6). The
copper d state hybridizes only with the symmetrical oxy-
gen q state. Taking into account direct O-O hopping
does not change this picture. After this separation out of
the strongly interacting d and q local states, one can find
the full energy spectrum of the one- or two-hole local
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TABLE I. Coefficients A,(l —l'), p(l —l'), and v(l —l') as
functions of ( I —l' )=n I+m y.

n, m

0,0
1,0
1,1

2,0
2, 1

2 2

~n, m ~m, n

0.958 1

0.1401
—0.0235
—0.0137

0.0069
0.0035

Pn, m Pm, n

1.4567
0.5497
0.2483

—0.1245
—0.0322

0.023 1

&n, m &m, n

0.0
0.2678

0.0
0.08 12
0.0609
0.0

III. DIAGONALIZATION
OF THE LOCAL HAMILTONIAN

In this paper we study the model relating to high-
temperature superconductors, which are the systems with
a nearly half-filled band. Thus, we shall concentrate our

states and solve the problem of the low-energy two-hole
state at the background of the one-hole states (spins) con-
sistently. This spectrum is well determined, in the sense
that the local states on different sites (clusters) mixed
weakly. Roughly, we know that for our representation
(2.4) the ratio of the effective hopping parameters be-
tween the difFerent states to the energy gap between them
for the Cu02 plane is of the order 1/10. It is a strong
justification for our perturbation scheme.

The direct O-O hopping only slightly shifts the ener-

gies of the oxygen states with opposite symmetry. But its
contribution to the effective hopping parameters will be
very ™portant (see Sec. V). The transformed Hamiltoni-
an (2.6) with the definitions (2.6) is equivalent to the
Hamiltonian (2.1), (2.3) without the additional Coulomb
terms U~ and V~d and describes the three-band model ex-
actly.

attention on the case of one hole over unit filling in the
framework of the three-band model. Namely, we deter-
mine the space of one- and two-hole local states of the
Cu02 plane. A primary set of states in the one-hole sec-
tor is

Iq. & =q.' I
o &, Iq. & =q.+ Io & . (3.1)

(3.4)

The two-hole singlet sector has a set of states

lg&—:dtdgl0&, lqr&—=q&q~ &,
(3.2)

Iq& =—s(d",q'& lo &,

Iy& —=qttqt}lo&, Ix& =—s(dt, qt)lo&,
(3.3}

l~& —=s(q', q')Io&,

where S(a,bt)=(1 /&2)(a &b t a tb—t ).
The two-hole triplet sector is

Irm & =t (d, q )IO&, Irm &
= t (d—, q )IO&,

lgm &
= t (q—, q )Io&,

where t (a, b )=(a tb t, a &btt, (1/v'2)(a tb&+a &bt )

for m =+1,0, and IO& is the vacuum state (state without
holes on a cluster). Hence, we have three one-hole and
nine two-hole states. Classification of the cluster states
on the same footing was proposed in Refs. 5 and 6, but on
the basis of nonorthonormalized states. As will be shown
below, some of these states do not play any role in a low-

energy model. In this part of the work we shall consider
only the local part H&„of the Hamiltonian (2.6). It is
convenient to express this Hamiltonian in terms of the
Hubbard operators rather than in terms of the usual Fer-
mi operators. Such a representation of the Hamiltonian
(2.6) in the one- and two-hole sectors in terms of states
(3.1)—(3.4) has the form

l, a

Xd, d +(~ & t )Xy ~ —+(e +p t }X[ & +2tk (X, ~ +H. c. )],
(3.5)

=y I[(U&+2ed }X/&+2(e —'pot )Xf ++(gd+Ez —putz)Xf'r+2V2tko(Xt' +X/' +H c )]..
I

+2(e +pot )Xf'm+[(ed+@ +pot )Xf»+epXt +2tgo(X|' +H. c. )]+(ed+ed Potp } X
m =+1,0

[( + t }XTm,TI71++ X/I1l, gPt+2tg (Xt +H c )]I
m =+1,0

where the upper index 1,2 marks the one- and two-hole
sectors of the 1oca1 Hamiltonian and Xi ' is the Hubbard
operator at the site I:

Xt'—:
I aI & ( bl I,

a, b = [deaf, qrt, qa, g, y, X,X,rt, rm, pm, rm ]
(3.6)

where the index a =+—,
' in H ' is a spin projection;

m —=+1,0 in H denotes triplet components.
The representation of HIo, (2.6) in terms of the Hub-

bard operators Eq. (3.5) allows us to solve simply the
one-site problem. The diagonalization of H 1„,H 1„ is

performed at each site independently. After the diago-
nalization, 01'„is given by

H,'„=g I efX( f +egXf g +(e +pot~)Xtt ' ],
l, a

(3.7)

where ef = —(b, +pot )/2+-R, , R, =(b, '+4t2A~o)'~,
h=(b, p,ot~)/2, A=Ep Ed, and Ifa—& and Iga& are the
lower and higher one-hole cluster states,

I fa &
= Ulda &

—vlqa &, lg~ &
= vld~ &+ Ulq~ &,
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with U=[(R&+b, )/2R&]'~ and V=[(R& —b, )/2R&]'~ .
Our approach gives us the reasons to assume that in

the low-energy limit at unit filling the background of the
Cu02 plane consists of the lowest

~
fal & states (3.8) at

each cluster. Such state is a linear combination of the d-
hole state and the orthonormalized symmetrical q-hole
state at the nearest oxygens. Virtual transitions of holes
in the

~fa & states (spins) at the neighbor sites and back
provide an antiferromagnetic type of interaction between
these spins.

In H, (3.5} there are different sectors, separated by
the square brackets, which are diagonalized independent-
ly. The first sector includes the three singlets dd, qq, and
dq. One can prove that diagonalization of this sector
gives the lowest singlet with the eigenenergy well below
than the eigenenergies of other states. Thus, the diago-
nalized two-hole part of the Hamiltonian (3.5) is

r

H(„=g E Xf '+g E Xf» (3.9)
1 y

where E is the energy of the lowest singlet ~c &,E are
the energies of the upper states, and y is the set of the
two-hole local states without ~c &. For the analytical ex-
pression of the eigenenergies and for the set of eigen-
states, see Sec. V and VI. After diagonalization of the lo-
cal part (3.5} of the full Hamiltonian (2.6), one can intro-
duce the nondiagonal Hubbard operators and rewrite the
hopping Hamiltonian (2.6) in terms of transitions be-
tween local eigenstates at different sites.

IV. LOW-ENERGY REDUCTION

A. Zero order

As was noted, we assume that at unit filling there are
holes in the lowest ~fa& states (spins) at each cluster.
We will demonstrate below that these spins interact anti-
ferromagnetically. A general expression for the superex-
change constant J is derived in Sec. IV D.

For the case of one hole over unit filling we take into
account only the lowest singlet and its transitions from
site to site. All upper two-hole states and transitions to
them are projected out. Such a procedure gives the t-t'-J
model with hopping at all neighbors in the explicit form

B. Schrieffer-WolÃ transformation

By diagonalization of the local part of the primary
Hamiltonian (3.5) we obtain a set of the local states. For
the low-energy processes one can consider only the lowest
states and include all others perturbatively. We use the
Schrieffer-Wolff (SW) transformation

H~H=exp( S)H—exp(S), S = —S, (4.3)

for getting the second-order correction to the pure t-t'-J
model. In this way we use the smallest of the [A,, JM, v] &&

constants for ~1
—1'~%0. The first-order generator of the

transformation S and second-order correction are given

by

[HD, S]= H', 5H—=(1i2)[H',S] . (4.4)

For the case of one hole over unit filling
HD= H», +H—&'„+H, , [Eqs. (3.7), (3.9), and (4.1)] and
H' includes all terms of Hb, (2.6} which are relevant to
the transition between the lowest singlet and all of the
upper two-holes states. In terms of the nondiagonal Hub-
bard operators the Hamiltonian H' is given by

H', = y y'FP [X) XP'+H. c. ]
ll'aP y

+ y Fy, [X( Xi(~'+H. c.],
ll'aP, y

(4.5)

where y is the set of the two-hole states and the prime in
the sum (4.5) denotes the absence of a contribution of the
lowest singlet state; fa and gp are the one-holes states
(3.8). The second term in Eq. (4.5) is essential only for
correction to the energy E of the c singlet. The first
term in Eq. (4.5} provides corrections both to the energy
and to the hopping integrals. FP&~'" are the matrix ele-
ments of transitions between ~cl' &

~fal & and
~xP1' & ~yl & states (x =f,g),

FP~„'» =
& iyl & i'xP[~H', ~(CI' & Ifai & . (4.6)

order perturbation theory, which gives us a criterion of
validity of the t t'-J-model (4.1). Thus, if corrections to
the energy and the hoping integrals for the lowest singlet
from virtual transitions to the upper states are small, one
can argue that this model (4.1) is valid.

H, , =E Q Xf '+ g ts Xj 'X,'f
l ll'a

(4.1) Also, there is another term which makes the contribution
to correction to the energy,

where ~c & is the lowest singlet,
~ fa& is the lowest one-

hole state, and tll are the effective hopping parameters
from l to l' site. In more usual terms this Hamiltonian
(4.1) may be written as

H,'=g g Gfj.fr [X,'f'X,'~»'+H c ], . .
ll', z aPy5

(4.7)

where Aapy are the three-hole states, z is their index,
and

H(, =E g (1 tt f+di)+ X—ts.clacl'a
I ll', a

c& =c& (1—6'& ), c& =(c& } (4.2}

G;,', gr =
& Iol & ~'&aPy ([H', ~[c&'& Iffi~ & .

In the case of unit filling, H0 and H' for Eq. (4.4) are

(4.8)

&( =(c(c(),d( =c tctc tctc-
Here cl, cl are the electron creation and annihilation
operators.

In the next part of the work we will consider second-

Ho=H&o +H
H'= g Df(. tt[Xf' X(' ~+H. c.],

ll'aP, y

(4.9)

where ~0& is the state without holes and Df& tt are the
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matrix elements of the transition of two holes at different
sites into the two-holes state y,
Ifal)glfpl'& —loi &elyi'&,

Dfj,.p= &Iyl &I'0IIH'Ilfal'& Ifpi & . (4.10}

One can get the explicit form of the matrix elements
Ff&",G('(, and DI'( from Eqs. (4.5), (4.7), (4.9), and (2.6) (see
Ref. 16).

C. Second-order corrections

where

+T Xf 'X' (o' t(S )] (4.12)

S(=(1/2)cr px(~,

(n(' 2 in(' g y fn('

T(n(' T(n(' +X xy Tfn('

Here we derive a general form of corrections to the
t t' J-mo-del. By applying the SW transformation (4.3),
(4.4) to the Hamiltonian H' (4.5), (4.7), (4.9) one can get a
generator and corrections to the Hamiltonian of the c
singlet, '

5HE g M((.x( 8'(,
11'

(4.11)

E E —E E+e—ef—
I
G('( I'

, E, +Eo E Ef- —

where 8'(=X("(+X( (.
Corrections to the hopping Hamiltonian of the c

singlet (4.1) have the form'

5H = y [T"X("X; 8'5
Inl'aP

Gordon coefBcients, I =+1,0 are spin-1 projections,
a,p=+ —,

' are the spin- —,
' projections, and p= —p. Similar

relations for D-matrix elements are given in the next sec-
tion. One can see that the corrections (4.11), (4.12) to the
t t' -J-Hamiltonian (4.1) depend on the filling (8' term in

5HE and 5H, ) and magnetic order (S term in 5H, ). Such
terms cannot be expressed through a simple direct hop-
ping.

In Sec. V we will analyze quantitatively the relative
magnitudes of the second-order corrections. The validity
of the t-J model, as well as the correctness of the in-
clusion of hopping at the next neighbors is checked well

by this analysis.

D. Superexchange interaction

In our approach the superexchange interaction arises
in the second order of perturbation theory over the hop-
ping of holes at a neighboring cluster and back. The situ-
ation is similar to the calculation of the superexchange
interaction in the simple Hubbard model (4t /U). Of
course, in the case of small t our result for the superex-
change constant must be proportional to t as was calcu-
lated in earlier works' ' in the fourth order of perturba-
tion theory. From Eq. (4.9) one can get the generator of
the SW transformation and superexchange term,

S=—g ' [Xff X,'f~ H c ]-, . .
Dpi, a((

II'aP y Ey +Eo 2E'f
(4.15)

5H =Hq= g (J((S(S(+Y((P(A() .
(II &

Such a form (4.15) is more general than in the t Jmodel. -

First, there are interactions between all pairs of spins.
Due to the rapid decrease of the constant [A, ,p, v],
(J((( )

—10 J((( ) ), one can omit all next-nearest-
23

neighbor terms in Eq. (4.15) and get the Heisenberg term
of the usual t-J Hamiltonian. Second, Y((A —(1/4)J„
because the hole may virtually hop into triplet states and
back, i.e.,

T(n( =D(nD„( /(E +Ep 2tf ),
Tf( Ff F»( /(Ey E )

(4.13)

here x =
—,
' for singlets and x„=—,

' for triplets, z =1 for
singlets and z„=—

—,
' for triplets, and Dfj I

»E +E —2e
y

ID' I'

«E +E —2e
y y o f

(4.16)

for y =singlet and triplet, respectively, (4.14)

G('(', E' =5 s5py G('(

where [map] = ( 1/2a
I
1 /2p, lm ) are the Clebsch-

Ep is the energy of the IO) state.
Corrections to the hopping Hamiltonian which have a

form similar to (4.12) were considered by Psaltakis ' on
the basis of the Hubbard model. In Eqs. (4.11) and (4.13)
we express the parameters M and T through the matrix
elements without spin structure. They are connected
with the primary matrix element as

F"I'»=5 W"'» F"&'»=(2P}[maP]F"'"
t a~ 11 & ll, a

with x =4 and z =1 for y =singlet, x = —2 and zy
=

—,
'

for y =triplet. D(»(. are connected with the matrix ele-

ments D f&. t( as follows:

Dfi, at(=(2a)5 t(D f&, D((. ((= [maP]Dfj. , (4.17)

for y =singlet and triplet, respectively.
One can check that in the limit t 0 the reduced ma-

trix element Df&, is proportional to t and the superex-
change constant Jll has a contribution proportional to t .
But such contributions from. the singlet and the triplet
two-hole states are canceled, and we get the usual result
which is proportional to t .
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V. LIMITING CASES

In the previous parts of the work we consistently refor-
mulated the three-band model and passed from the terms
of the primary Fermi operators of the hole at the copper
and at the oxygen sites to the one- and two-holes state
Hubbard operators on the cluster. For the problem of
one hole over unit filling we established the general form
of the low-energy t t' J-m-odel (4.1), the general form of
the corrections to it (4.11), (4.12), and the general form of
the spin interaction at unit filling (4.15). Now we will
consider three limiting cases, all with special constraints
on the Hilbert space of the problem. Such constraints

I

simplify the mathematical treatments and provide the
possibility to get results in an analytical form.

A. The case Ofh, «U&

This case was considered by Lovtsov and Yushankai. '

We include into this problem direct O-O hopping and
make consideration more complete.

Such a limit (Ud ao ) pushes up in energy the state
with double occupation of the copper site. Thus, one can
ignore If&-singlet state (3.2). After such simplification
diagonalization of the two-particle sector of the Hamil-
tonian (3.5}presents no problems,

E X"+E X +2@ t Xf"++E Xi' + g Xi" '"
1 m =+1,0

+E X'+ g X' ' (b—+yt) , g X; '
m =21,0 m =+1,0

(5.1)

B. The case ( Uq —4)« Uq

This case was considered by the authors' without O-O
direct hopping. In Ref. 14 we assumed that at unit filling
there is one hole (spin} per copper site. In terms of the
present work we ignored the admixture of the Iq & state
to ld & state. We also assumed that there are no doubly
occupied oxygen degrees of freedom. Both assumptions
are valid over the parameter —t/Ud. Such constraints
lead to U=1, V=O [see Eq. (3.8)] and a rather simple
form of the diagonalized Hamiltonian H1„,

Ic &= —&ly&+big&, Ib &=big &+~IX&,

I
c &

= UIX &
—Vlrt &, Ib &

= VIX &+ U Ft &,

It2& = Vlr &+ Ulg&,

(5.2)

8 =y E X"+E X"' (b+p t ) y—X' '
1 m =+1,0

where b = [(R +b )/2R]', a = [(R —E)/2R]'~2, and U
and V are determined after Eq. (3.8). The energies of the
local states at Ud ~ ~ (5.1) for values of the hopping pa-
rameters t =1.4 eV, t =0.7 eV, and 6=3.66 eV are
E = —7.38 eV (lowest singlet), E,= —4.68 eV (next
two-hole state triplet), and others considerably above.

Next, we follow the scheme of Sec. III. Explicit forms
of the parameters of the t -t'-J model are

(5 Pot&
—

) X—} 'r+ g X~
m =+1,0

where E+ = b&+R, 6~=1/2—(Ud 36 ppt~),
R =(b, +8t Ao)'~, b, =(Ud 6+pot )/2, and—

lc &
= —~lp&+big&, Ib & =big&+nip&, (5.4)

where c, b are the lowest and highest singlets of the q-d
sector, c,b are the lowest and highest q-d singlets, t l, t2
are the lowest and highest q-d triplets, and ~ and y are
determined in Eqs. (3.2), (3.4). All energies are counted
from ez (hereafter ez =0) E.+ = —b,2+R,
6~=1/2(b, +3pot ), R =(E +8t Ao)'~, E+ = b, +R), —
and K=(h pot&)/2. —New eigenstates are connected
with the primary set of states (3.2), (3.4) as

E, =E = (6+3potz )/2 —R, —
(5.3}

t». = 2th&& Vb(bU+.V2Va)+t~p». (+2aV+ Ub) /2 .

Hopping parameters for the first neighbors at values of
the parameters mentioned above are t, =0.43 eV,
t2 =0.078 eV, and t3 = —0.074 eV. One can see the irn-
portant role of the direct O-O hopping. Its contribution
to the full amplitude of hopping at the nearest neighbor is
=50% and it plays a major role for hopping at the next-
nearest neighbor. Corrections to the energy and to the
first hopping parameters are 4.1% and 3.1%, respective-
ly. Thus, the t-J model is valid for this case. It seems
that inclusion of hopping at the second and third neigh-
bors to the t -t'-J model is justified because corrections to
them are small enough (9.6% and 14.4%, respectively).

with b =[(R +b, )/2R]'~ and a = [(R b, )/2R]'—
The explicit form of the parameters of the t -t'-J model is

E, =E = —(Ud —3b, —pot )/2 —R,
t» =2t A».+2ba + t~ p,,» b /2,

(5.5)

where E = —7.38 eV, t1=0.38 eV, t2 =0.03 eV,
t3 = —0.057 eV at Ud =8 eV, and 6=3.65 eV. One can
see that direct O-O hopping is less important than for the
case given in Sec. V A. It is evident, because part of the
oxygen degrees of freedom is excluded from considera-
tion. Correction to the energy is not so small as for the
case given in Sec. V A. It is close to 13%;a correction to
the first hopping is close to 4.0%. Thus, the t-J model
may be valid. Inclusion of hopping at next neighbors re-
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quires consideration of corrections in the form (4.12) be-
cause they are not relatively small (6t2 /t 2

——300%,
5t3 /t3 —90%%uo). One can see a discrepancy in our ap-
proach .We assume that ( Ud

—b, ) ((Ud, i.e., b, = Ud,
while the realistic region for 6 [for which J=126 meV
(Ref. 22)] is close to 3.6 eV. Such a situation is explained

by the importance of the oxygen states for the three-band
model.

C. The special case of the complete model

Here we consider the complete three-band model (3.5)
without any constraints on the Hilbert space. Let us put
(Uz —2b, )= 2pot .—Such a choice of parameters leads

I

to accidental degeneracy of the energies of the qq and dd
singlets. The q-d singlet sector of the Hamiltonian (3.5) is
written as

Hi2„=+ j[E~Xf t'+E Xi~~ (6—+potp)Xf r
I

+2&2th c(Xt ' t+Xt '~+H. c. )]]+ (5.6)

where Ey =E+=Ep = Ud 25 = 2ppt& ~ Simplification
in this case is as follows: Linear combination of l 1( & and

ly& (3.2) singlets lc2& =(1/~2)(lg& —
ly& ) does not hy-

bridize with the qd singlet lX & (3.2). After diagonaliza-
tion of H1„we have

0 =~ ~ E X~'~'+E X~ '~ +E X' ' +2p t Xy"g+E X~'~+ ~ C"
loc ~ ' — 1 0 1 + I Pop I 1

1 m =+1,0

Xbb+ , y Xt2m, t2m (g++ t ) y X~m, rm

m =+1,0 m =+1,0
(5.7)

where E+ = —Az+8, Ep 2ppt~ A2 Ud /4+ 2pptp,
E~= —6+Ri, b, =Ud/4, Ri=(b, +4t A, )' and
R =(b, +16t Ac)'~2. Thus, the real hybridization pa-
rameter is 16tAp/U .dIt means that the perturbation ap-
proach over t/Ud (Refs. 9 and 12) is unjustified for this
system. The states lc &, lb &, lt 1 &, and lt2& are defined in

Eq. (5.2},

lci &= —a(lq &+ly&)/&2+biz&,

lc3& =b(lq &+ lg& }/&2+alx&,
(5.8)

E,i =E = —( Ud /4—+2t20tp )—R,
t&i

=2t A
i& ( UV +ba ) + t~ p&i (a V +b U) /2 .

(5.9)

The local level with energy E lies well below the others
(E = —9.81 eV). The first excited two-hole state has
the energy E,= —6. 1 eV. Hopping parameters are

t, =0.53 eV, t2=0.028 eV, and t3= —0.076 eV.
As in the first limiting case, O-O hopping plays an im-

portant role for the magnitude of effective hopping of the
lowest c1 singlet. Correction to the energy is close to
4.6%, correction to the first hopping constant is close to
2.5%. Thus, the t-J model is valid with the same pre-
cision. The absolute magnitude of the second hopping in-
tegral (hopping at the next-nearest neighbors) is small
due to the partial compensation of the amplitudes of Cu-
0 and O-O hopping [see Eq. (5.9)]. As a result, correc-
tion to them is rather large =78%, and the t-t'-J model
is not valid. The relative magnitude of terms with a tran-

with b =[(R+6)/2R]' and a =[(R b)/2R]'—
Since in this case b, = Uz/2+pot, one can determine an

adequate value of U& at fixed t, tz, and J. In the case be-

ing considered, the experimental value of J is achieved at
Ud =8. 13 eV and 6=5.1 eV. Expressions for the param-
eters of the t -t'-J model are

sition at the next neighbors (farther than nearest} is of the
order of 10%. This is also the parameter of accuracy of
the t-J model as the low-energy limit of the three-band
model.

VI. THE GENERAL CASE

where the coef6cients U;, V;, 8'; are determined from a
solution of a system of three linear equations. The ener-

gies E,E0,E+ are roots of the corresponding cubic
equation. The effective hopping parameters are

th)
= 2tkii(&2Ui U —Wi V)(&2V, V —8'i U)

+ t pit. (i/2V, V —W, U) /2 (6.2)

The parameters of the effective t -t'-J model are calculat-
ed at the following values of parameters of the three-band
model: t =1.4eV, t =0.7 eV, Ud=8 eV, and 6=5.1 eV
according to different band calculations and a de-

tailed analysis of the experiment.
In Table II the magnitudes of the hopping parameters

at the first four neighbors are given. The important role
of O-O hopping is shown: For the first hopping parame-
ter it is close to 30%%uo, for others it is close to 50%. Rela-

In this part of the work we consider a reduction of the
three-band model to the effective t-t'-J model in the gen-
eral region of parameters when the charge-transfer insu-
lator is the ground state of the undoped system. The gen-
eral case differs from the special case considered above
only by the absence of degeneracy of the local ldd & and

lqq & two-hole states. The local Hamiltonian is defined by
Eq. (5.6) with E&= Ud 2b, and E = 2pt —We—st. ress
that E&WE in this case. The expression for the diago-
nalized Hamiltonian H1„coincides completely with Eq.
(5.7) but the eigenstates lri & have the more general form

(6.1)
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TABLE II. Energies of the local states, the hopping parameters at the first four neighbors, the
second-order corrections to them on a ferromagnetic background, correction to the energy E, the su-

perexchange constant J, and the ratio t&/J for the general case at Ud=8 eV, 5=5.1 eV.

One-hole local
energies (eV)
Two-hole local
energies (eV)

Ef = —6.43

E = —9.85
E = —5.41

Eg =0.31

Eo = —2. 12

E+ =1.33
E+ =1.61
E =2.04

E,= —6. 12

Neighbor
number

1

2
3
4

Correction to
the energy E (%)

3.02

Direct hopping
parameters

t„(eV)

0.528
0.0274

—0.0758
0.0057

Contribution of
direct O-O hopping

t~~ (eV)

0.187
0.0846

—0.0424
—0.011

Superexch ange
constant J (meV)

126.4

Contribution of
Cu-0 hopping

tl (eV)

0.341
—0.0572
—0.0334

0.0167

Second-order
corrections

5t„(%)
2.5

82.2
23.0
24.8
Ratio

4.18

tive magnitudes of corrections to the energy and first
hopping are 3% and 2.5%, respectively. Thus, the t J-
model is valid with the same precision. Due to compen-
sation of the contribution of the p-d and p-p hopping to
the effective hopping integral at the second neighbors
(they have the opposite sign), the correction to it is not
small (82%). Thus, the model with transitions at the
neighbors farther than nearest must include the terms of
the form (4.12), which depend on filling and the spin state
of neighbor sites.

Applicability of a perturbation scheme in the realistic
region of parameters of the three-band model is provided
by the smallness of the ratio of the effective hopping pa-
rameters between different local states to the energy gap
between them. This ratio is of the order of 10% which
gives the accuracy of the t-J model for the Cu02 plane.
The relative magnitude of the t' terms (hopping at the
next neighbors) in the t t' Jmode-l i-s also of the order of
10%. In Table II the fundamental ratio t~/J =4.2 for
Ud=8 eV is presented. It only weakly depends on Ud
and h. This value is slightly larger than the generally ac-
cepted t /J =3

Different parameters of the three-band model are
known with different accuracy. Notice that the value of
the superexchange constant for La2Cu04 is known with
high accuracy which imposes restrictions on the values of
the parameters of the three-band model. Therefore one
can try to determine the value of the least known param-
eter b as a function of other parameters of the model. At
fixed values of t and t presented above and J= 126 meV

we get 6 as a function of Ud in the physically reasonable
region: 6 ~ Ud & 12 eV. We obtain that the reasonable
region of 6 lies between 4.75 eV and 5:75 eV which is in
complete agreement with the band calculations of Sush-
kov and Flambaum but larger than the generally ac-
cepted value 5=2.75—3.75 eV.

VII. INCLUSION OF V~ AND Up TERMS

Here we consider the role of the intrasite repulsion at
the oxygen sites U and the intersite repulsion V&. We

~pd g fI, I), l~ntaql(, ttql2, p
d

l, l ), l~, a, P

+ Up X hl I I I ( l,qt, q, i)(tqI~ lq, g)
l, ll, l2, 13

(7.1)

where fii I =f (I&
—1,12

—I), h&I I &
=h(1& —1,12

—I,
13 —I ), and

fl I I
= g fz z. exp[ik(l, —I)—ik'(12 —I )],

k, k'

hl I I I
= g hg g g-exp[ lk(I, —I ) —ik'(12 —I )

k, k', k"

+ ik"(13—I )],
with

fk k, =2[ cos(k„/2)cos(k„'/2)cos[(k„—k„')/2]

+(x y)](1+yz) '
( I+y&. )

hk k k-=2( cos(k„/2)cos(k„'/2)cos(k„"/2)

Xcos[(k„+k„'—k„")/2]+(x~y)]
X(1+yg) ' (1+yg. )

' (1+yg-)

(7.2)

(7.3)

X(1+yg+g g )

Thus, we have the four-fermion terms with the compli-

suppose that the main efFect is taken into account (strong
hybridization d and q states), so that one can take the
above-named terms as the perturbation. Therefore, we
do not consider the contribution of these terms to the
second-order corrections to the energies and the hopping
integrals of the form (4.11), (4.12). Our aim is to get the
renormalization of the first hopping integral and the
charge-transfer energy due to the Hamiltonian hH [Eq.
(2.2)]. Since we are interested in the renormalization of
the lowest singlet parameters, we can omit all terms with
antisymmetrical oxygen operators q. Using the represen-
tation (2.4) for qi and q& operators we obtain
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cated relation between many states at different sites. All
later arguments are based on a very rapid decrease of the
constant fl l l and hl l l l with il„—1 i. Our calcula-

tion gives fo ——f (0,0)=0.9180, f, =f (1,0)=f (0, 1)
=0.1343, and Sf —=gi ~( ~lfl l l =0.0092;
ho—:h (0,0,0)=0.29 and h, = h (1,0,0)=h (0, 1,0)
=h(0, 0, 1)=0.0096. Therefore, one can turn from (7.1)
to the effective Hamiltonian

~Hioo=Vpd g ftl ni'. nl(p+Up ghltnt')nfl,
IE', a, P 11'

~~hop Vpdf 1 g nla Iql, tlql', p+
&II ),a, f3

+ U h, g ( nP& I q, &q, , i+H. c. j
&II )

+nfl Iql tql i+H. c. j ),

(7.4)

where in bHlo~ fit'=ft l l, and hit h-—eff

Let us consider the system at unit filling and calculate
the shift of the energies of the local states due to hH&„.
At unit filling there is the state mfa) = Usda) —Viqtr ) at
each site. Hence, the shift of the energy of a d hole at the
site I will be

~~d Vpd V 2 fll' Vpd V (2 f0),
141'

for the qI state, and

beq= Vpd U (2—fo)+U V ( —,
' —ho) .

(7.5)

(7.6)

The numbers 2 and —,
' are the sums over all I' for fl l and

hl. l, respectively. The coelcients U and V are defined
after Eq. (3.8) by

R, =(b, +4t A, )' b, =(E E)/d2 . — (7.7)

Thus, Eqs. (7.4), (7.5), (7.6), and (7.7) are the system of
equations, which can be solved numerically. After solv-
ing we have new values U and V, consider one hole over
unit filling and get the shift of the local energies of the ad-
ditional hole.

The matrix elements of AHh, p [Eq. (7.3)j produce the
addition to the first hopping integral,

b t, = ( f l V d UWl +&2h, U—VVl )( W, U —V'2 V', V ) .

The matrix elements b,Dfi which are essential for the
constant J (4.16) are also derived and included into the
calculations.

Different band calculations give consistent magni-
tudes for Vp& and Up& Vpp 1 2 eV and Up 4 eV The
calculations present no special problems.

DifFerent contributions to the first hopping parameter
t, are presented in Table III for U& =8.0 eV and b =3.0
eV. Inclusion of hH tends to decrease t, . The ratio
t, /J=-3. 38, which is close to the results of the other
works 24 27

Taking into account the additional Coulomb repulsions
( Vpd, Up) change the Possible region of b, at fixed J. For
a reasonable region of Ud(5 —11 eV) the charge-transfer
energy varies in the narrow region 2.6—3.5 eV which
coincides very well with the band calculations and
analysis of experiments.

VIII. STABILITY OF THE SYSTEM

There are a few conditions which determine the stabili-
ty of the system under study. One can take an analogy
from the classical Hubbard system: The energy of two
electrons at different sites ( I ll, ll, j ) is lower than the en-

ergy of two electrons at the same site and an empty site
(I2l, Ol j ) by the energy of the Hubbard intrasite repul-
sion UH. Thus, the ground state of the system at unit
filling is the state with one electron per site which is a
dielectric if UH is suSciently larger than bandwidth mzt,

where z is the number of neighbors and w is a constant of
the order of unity.

Since we have reduced our problem to the system of
the Hubbard type but with many states at each site, we
can formulate the stability conditions in terms of energies
of these states. The conditions will be

E +E —2E')0 and E +E' —2E &0, (8.1)

where the indexes n =0, 1,2, 3 denote the states with n

holes at site. From this one can easily get the charge-
transfer gap (an analog of UH ) as the difference between
(E +E ) and 2E', where E is the energy of the lowest
singlet and E' is the energy of the lowest one-hole state,

b,E(2,0—1, 1)=E +E 2Ef =3.2 eV)—0, (8.2)

(7.8) for the above-mentioned parameters.

TABLE III. Contributions of p-d hopping, p-p hopping, V~& and U~ terms to the effective hopping
parameter of the lowest singlet at the nearest neighbors, the superexchange constant J, and the ratio
t /J at Uq =8 eV, U~ =4 eV, V~&

= 1.2 eV, and 5=3.0 eV.

Effective
hopping

parameter
t, (eV)

0.427

p-d
contribution

(eV)

0.351

contribution
(eV)

0.202

Vpg

contribution
(eV)

—0.113

U
contribution

(eV)

—0.013

Superexchange
constant J (meV)

126.26

Ratio

3.38
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An interesting quantity is also the difference between

([2&,21 ] } and ([3&, 1& ] } states. On the basis of our ap-
proach one can solve the three-hole problem and analyze
the energy spectrum of three-hole states. We considered
the full set of these states (20}, get the energy of the
lowest ones, and obtain

b,E(3, 1 2, 2—}=E +E 2E—=2.7 eV, (8.3}

where E is the energy of the lowest three-hole state.
This energy difference bE(3, 1 —2, 2} is also an analog of
the energy of the Hubbard repulsion Uz.

IX. CONCLUSION

We conclude by summarizing our results. We have
studied the low-energy properties of the Cu02 plane near
unit filling in the framework of the three-band model.
We have considered the full three-band model in the form
that was put forward by Emery, in the realistic region of
the parameters, without any additional assumptions
about the smallness of some of them.

Thus, we have taken into account direct O-O hopping,
intrasite repulsion at the oxygens U, and intersite repul-
sion Vd, which have not been considered earlier. We
have presented a consistent approach to the mapping of
the three-band model to its low-energy limit. Following
the idea of Zhang and Rice, we expressed the primary
Hamiltonian in terms of symmetrical and antisymmetri-
cal oxygen states. Next, we turned to the terms of the lo-
cal states with a certain number of particles and transi-
tion between them. The diagonalization of the local part
of the Hamiltonian provided the set of eigenstates. The
lowest of them is the singlet state with the energy well
below than others. We have derived the low-energy
Hamiltonian for the lowest singlet and its transitions
(t-t' Jmodel), and h-ave taken into account all upper
states by the special type of the unitary transformation.

Thus, we obtained the effective single-band Hamiltoni-
an which is essentially the t-J model one. Transitions to
next neighbors are not simple hopping due to the impor-
tant role of the correction, which has a complicated
structure.

Our approach allows one to establish the quantitative
boundary of the validity of the t-J model as the low-

energy limit of the three-band model, to get the correc-
tions to it in an explicit form, and to take into account

the transitions at the next neighbors. It is evident that
one can determine the value of the charge-transfer energy
5 from the well-defined value of J at other fixed parame-
ters of the three-band model. We have established that 6
varies in a narrow region of energies.

The lowest one-hole state for the undoped Cu02 plane
is [Eq. (3.8}]

~fu)=Usda) —V~qa), a= T, l . (9.1}
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The lowest two-hole singlet state for the doped Cu02
plane is [Eq. (6.1}]

~cl)= U, ~dtd])+V)~qtql)

+ IV~(ld &q&) —
ld ~q&) }/+2

where
~

la ) is the state of a hole at the copper with pro-
jection a; ~qa) is the state of a hole at the symmetrical
oxygen which represents the Wannier state formed from
the four oxygen states around the co~per ion; ~d fd J, ),
~qfql), and (~d tqJ, ) —~d Lq t ) }/&2 are the two-hole
singlet states.

The following set of parameters of the three band mod-
el (2.1}—(2.3} seems the most acceptable at present:
lal E'p 'Ed 3 eV, Ud =8 eV, Up =4 eV, V~d

= 1.2 eV,
t =1.4eV, and t =0.7eV.

For this set of parameters of the three-band model we
have the following values of the coeScients
U, V, U„V&, IV, [Eqs. (9.1}, (9.2}] which determine the
probability of location of holes at the copper and the oxy-
gen sites: U=0. 85, V=0.52, U&= —0.38, V&= —0.64,
and W, =0.67.

The fundamental parameters of the t-J model t, and J
are t, =0.427 eV, J =0. 126 eV, and t, /J =0.34.

The charge-transfer gap LE =3.2 eV and the effective
Hubbard repulsion of holes UH =2.7 eV.
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