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Interstitials, vacancies, and snpersolid order in vortex crystals
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Interstitials and vacancies in the Abrikosov phase of clean type-II superconductors are line imperfec-

tions, which cannot extend across macroscopic equilibrated samples at low temperatures. We argue that
the entropy associated with line wandering nevertheless can cause these defects to proliferate at a sharp
transition which will exist if this occurs below the temperature at which the crystal actually melts. Vor-
tices are both entangled and crystalline in the resulting "supersolid" phase, which in a dual "boson"-
analog system is closely related to a two-dimensional quantum crystal of He with interstitials or vacan-

cies in its ground state. The supersolid must occur for B &&B„,where B„ is the decoupling field above

which vortices begin to behave two dimensionally. Numerical calculations show that interstitials, rather
than vacancies, are the preferred defect for B »/&Pi, ~, and allow us to estimate whether proliferation also
occurs for B B&&. The implications of the supersolid phase for transport measurements, dislocation
configurations, and neutron di8'raction are discussed.

I. INraODUtmION

Fluctuations, especially in high-temperature supercon-
ductors, play a prominent role in determining vortex
configurations in type-II materials in an external field. ' It
now appears, for example, that clean single-crystal sam-
ples of YBa2Cu307 s (YBCO) (in the absence of twin
boundary pinning) melt via a first-order phase transition
at a temperature T well below the upper critical field
line H, z(T) predicted by mean-field theory. 3 s Point dis-
order, in the form of oxygen vacancies, does not seem to
afFect this phase transition strongly in YBCO. It is quite
possible that the disorder-induced translational correla-
tion length R, greatly exceeds the vortex spacing for
T & T in the field range for which the transition is first
order. Although in the presence of randomness the low-
temperature phase is not, strictly speaking, a solid, the
thermodynamic properties at and near the phase transi-
tion should be similar to those in the absence of random-
ness.

Consider the thermal excitations about the crystalline
state on scales less than R, . We assume for simplicity
vortices which are perpendicular on average to the Cu02
planes, i.e., parallel to the z direction. The finite reduc-
tion of the Debye-%aller factor associated with the
translational order parameter

=exp[ —
—,'G;G (u;(r, z)u (r,z))]

by phonons is discussed in Ref. 7. Here, G is a
reciprocal-lattice vector and u(rj, z) is the displacement
field of a flux lattice with vortices parallel on average to
the z direction. Dislocation loops are a topologically dis-
tinct excitation which, when they proliferate at a melting

transition, drive po(T) to zero and can lead to a hexatic
flux liquid with residual bond orientation order. Isolated
dislocation loops are far more constrained than their
counterparts in crystals of point particles: Dislocation
loops in fact must lie in a plane spanned by their Burgers
vector and the average field direction [see Fig. 1(a)].

Vacancies and interstitials differ even more dramatical-
ly from the analogous defects in crystals of point parti-
cles. The number of flux lines is conserved, which means
that these defects are lines instead of points. The point-
like nature of vacancies and interstitials in conventional
crystals ensures that they are present in equilibrium at all
finite temperatures for entropic reasons. 'c However, be-
cause such imperfections have an energy proportional to
their length in flux crystals, they cannot extend complete-
ly across an equilibrated macroscopic sample at low tem-
peratures. A typical fluctuation at low temperatures
might consist of the vacancy-interstitial pair shown in
Fig. 1(b). Unlike the dislocation loop in Fig. 1(a}, this
loop is not constrained to lie in a single plane. " This
configuration also provides a mechanism by which vor-
tices near the loop may jog one lattice constant to the
right as z varies.

Defect loops of this type can have important dynami-
cal consequences. In two dimensions, pointlike vacancies
and interstitials probably dominate the resistive proper-
ties of a weakly pinned lattice in a superconducting
film. ' ' The same may weH be true of vacancy-
interstitial loops and lines in three dimensions as dis-
cussed in Sec. IV D.

Although the energy of vacancy and interstitial lines is
proportional to their length, it is nevertheless possible for
these defects to "proliferate" (i.e., to become infinitely
long} at high temperatures for entropic reasons. Consid-
er, for example, a vacancy wandering across a macro-
scopic sample of thickness L, as in Fig. 2. To estimate
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the free energy of this defect, we describe its trajectory
along the z axis by a function rd(z ) and write its partition
function as a functional integral,
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FIG. 2. Vacancy line (thick dashed curve) meandering
through a vortex crystal. The full lines show the flux lines
which are in the same plane as the meandering vacancy. The
dashed lines represent the flux lines in the neighboring plane.
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FIG. I. (a) Dislocation loop in a ffux-line solid. Dashed lines
represent vortices just behind the plane of the figure. Such
loops lie in the plane spanned by their Burgers vector (indicated
by the horizontal arrows) and the z axis. (b) Vacancy-interstitial
pair in a ffux-line sohd. Dashed hnes represent vortices just
behind the plane of the figure. Unlike the dislocation loop in
(a), this loop is not constrained to lie in a single plane.

Here cd is the energy of an isolated defect, cd is its tilt en-

ergy, defined in analogy with similar quantities for isolat-
ed flux lines near H„(Ref. 7) and Ul(rd ) is a periodic lat-
tice potential with minima at the sites of the triangular
Abrikosov crystal. Implicit in the path integral (1.2) is a
length scale I„which is the average distance along z be-
tween hops of the vacancy from one lattice position to
another. As a crude estimate of the path integral we re-

L/I
place it by exp( edL /T)—6 ', since the vacancy has six
directions in which to hop on a triangular lattice. The
free energy Fd = —T lnZ„ is thus

T
Fd =cdL ——L 1n6,

I,

which becomes negative for T & Td, where

Td =ed 1, /ln6 .

(1.3a)

(1.3b)

Above this temperature (provided the crystal does not
melt first), vacancies (or interstitials} will proliferate in a
crystalline phase. If these defects do not become strongly
pinned by point disorder, one might then expect a linear
contribution to the resistivity due to defect motion within
pinned bulk crystallites, and a vortex-glass transition '

for weak pinning might then occur near Td. More pre-
cise estimates of the proliferation temperature will be
presented later in this paper. A related phenomenon was
suggested by Feigel'man, Geshkenbein, and Larkin, '

who predicted the unbinding of "quarters" (i.e., quartets)
of dislocations above the decoupling Seld Bx in highly
anisotropic superconductors (see below).

The phase in which defects such as interstitials and va-
cancies proliferate is in fact both crystalline and entan-
gled. Regarded in light of the analogy between thermally
excited Aux lines and two-dimensional bosons, it
represents a "supersolid" quantum crystal, in which va-
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cancies and interstitials are incorporated into the ground
state. ' The possibility of a supersolid phase for flux
lines in type-II superconductors was noted on the basis of
the boson analogy by Fisher and I.ee. ' Somewhat para-
doxically, the supersolid is actually less superconducting
for the BCS condensate electrons than a conventional
vortex lattice phase, because of the role of vacancies and
interstitials in facilitating transport. An alternative name
is an "incommensurate solid" or a "vortex density wave. "

Figure 3 illustrates the connection between defect pro-
liferation and the boson order parameter for flux lines.
This figure represents a low-temperature contribution to
the order-parameter correlation function

G(r~, r~;z, z') = ( P(rt, z )f'(r~, z') ), (1.4

0. (1.5)
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FIG. 3. Lowest energy contribution to the order-parameter
correlation function on the solid phase (1.4), which inserts a flux
head and tail into a crystalline vortex array. Dashed lines
represent a row of vortices slightly behind the plane of the page.
A vacancy is created at "time" z, propagates and is destroyed at
"time" z'. The energy of the "string" defect connecting the
head to the tail increases linearly with ~r~ —

r~~ and leads to the
exponential decay of G(r~, r~, z,z'). Physically, this represents
confinement of the magnetic monopoles represented by the flux
head and tail.

where g(r~, z) and P'(rj, z') are destruction and creation
operators for /lux lines moving along the z axis, which
plays the role of "time" for the "bosons. " The composite
operator in Eq. (1.4) creates an extra line at (rI,z'} and
destroys an existing line at (r~,z). The lowest-energy
configuration is then a line of vacancies (for z') z, as in
Fig. 3) or interstitials (for z'(z) connecting (rj,z') to
(rt, z}. At low temperatures, the defect line joining the
head to the tail costs an energy of order fd(s)s, where
s=Q(rt —rj} +(z —z') is the length of the string in
direction s and fd(s) is the angle-dependent defect-free
energy per unit length. The correlation function (1.4)
then decays exponentially to zero, like exp( fds/T), a—s
~rt —r~~ —+0e with z and z' fixed. Above Td, fd changes
sign, defects proliferate, and there is long-range order in
G(rj, rj;z, z'},

lim G(rj, rj,z,z') = ( f(rj, z ) ) ( P*(r~,z') )
Ir, -r,'I

The physical meaning of Eq. (1.5) is that the free ener-

gy of the extra line segment from (r,z) to (r', z') in the
limit of large separations remains granite .The quantity—ln6 measures the free energy of a monopole-
antimonopole pair at (r, z) and (r', z'), respectively. In
the conventional solid phase the magnetic monopoles are
confined by a linear potential, while when the defects
proliferate, the monopoles are unconfined as they would
be in a normal metal with finite total free-energy cost.
Entanglement of vortex lines in the crystal will be ca-
talyzed by the proliferation of vacancies and interstitials,
since these allow fluxons to easily move perpendicular to
the z axis. Of course, entanglement will also arise if the
crystal melts directly into a flux liquid. In either case the
boson order parameter becomes nonzero,

g—:(g(r, z) )%0 . (1.6)

Note that Eq. (1.6) gives a precise meaning to the con-
cept of "entanglement" as used here and elsewhere to de-
scribe "superfluid" phases within the boson analogy.
Strictly speaking, the concept of "tangled vortex lines"
does not distinguish sharply between low- and high-
temperature phases for lines in an infinitely thick sample.
Indeed, in all phases discussed here —solid, supersolid
and fluid —a vortex line will wander as a function of z as
a random walker on sufBciently large scales. Although
this wandering will be more pronounced in the higher-
temperature phases, it does not uniquely distinguish them
from the solid. The presence or absence of particle
diffusion does not sharply distinguish solids from liquids
of point particles for similar reasons. Note also that la-
beling of vortices becomes ambiguous when the lines pass
within a coherence length of each other —one must sum
over "direct" and "exchange" connection possibilities to
define the statistical mechanics. Entanglement also has
implications for dynamics: If lines can only cross or
recombine by overcoming large free-energy barriers, such
lines are dynamically entangled, similar to a dislocation
tangle in a work-hardened metal. In this paper we will
continue the usage in the recent literature of referring
only to phases which are superfluid in the sense of Eq.
(1.6) as entangled.

Figure 4 illustrates two distinct scenarios for phase dia-
grams of vortices with increasing temperature, which we
call "type-I" and "type-II" melting. In type-I melting a
first-ordering transition separates a line crystal with
pGAO from a flux liquid with QIIAO which may or may
not be hexatic. In type-II melting, both order parameters
are nonzero in an intermediate supersolid phase. As dis-
cussed in Sec. IV, vacancies or interstitials enter the
Abrikosov flux lattice at Td in much the same way as the
flux lines penetrate the Meissner phase at H„. Although
this transition can in principle be continuous, even in the
presence of strong thermal fluctuations, the melting of
the supersolid into a liquid is likely to remain a first-order
transition, since, as far as is known, continuous melting
transitions in which materials lose crystallinity in two or
more directions do not occur in three dimensions.

Can a real supersolid phase exist in quantum crystals?
According to the review by Andreev, "the experimental
data available at present show that the possibility. . . Iof
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a supersolid]. . . can hardly take place in [bulk] He crys-
tals. " In thin films of He, supersolid phases can, howev-
er, exist. On substrates in which one or two layers of in-
commensurate solid He form, there can be a regime in
which the atoms in the next partially filled layer are
superfluid; this is a two-dimensional (2D) supersolid
phase even though there are almost no vacancies or inter-
stitials in the close-packed solid layers. In 2D electron
crystals at zero temperature, some kind of solid phase in
which interstitials proliferate may occur. ' ' However,
since electrons are fermions, such a phase would probably
not be supersolid, except perhaps at extremely low tem-
peratures.

In the case of flux lines, the softer (logarithmic) nature
of the interaction between lines makes a supersolid less
unlikely than in bulk He. However, in the limit of con-
tinuous Aux lines, where the boson analogy is best, we
shall see that such a phase is still improbable. The new
ingredient in the fiux system, which does not have an ana-
log for bosons, is the discreteness of the layers, i.e.,
discreteness in the timelike direction. As we shall see,
this will definitely cause a supersolid for sufficiently large
B in strongly anisotropic layered superconductors. The
characteristic magnetic field above which the layering be-
comes important is the crossover field' ' '

7ype I Melting

, 0o~y2X
0

where do is the layer spacing and

(1.7)

is the effective-mass anisotropy. Physically, this field

represents the crossover between different behaviors for
the energy at a "jog" where one line is shifted by an inter-
vortex spacing an= (Po/B )'~ from one layer to the next.
A jog with shift distance ao & do/y costs an energy quad-

ratic in ao, while for ap&dp/p the energy cost will be
linear in ao and a jog will tend to spread out over more
than one layer. For jogs with shifts ao, the former will

obtain for B »B„. In a sufficiently anisotropic system,

B„«H,z( T=O) and a regime exists, B »B„,in which

the vortex fluctuations are predominantly two dimension-
al.

Figure 5 summarizes our conclusions about the phase
diagram as function of magnetic field B (i.e., vortex densi-

ty) and temperature T, with external field H is parallel to
the c axis. In a sufficiently anisotropic system, the super-
solid must exist for B»B„,where vortices in different

copper-oxide layers are approximately decoupled by
thermal fiuctuations. ' ' The defects in this regime are
equivalent to the "unbound dislocation quartets" dis-

cussed by Feigel'man, Geshkenbein, and Larkin. ' The
existence of a supersolid for fields 8 B„ is a more deli-

cate matter, which we shall discuss more quantitatively in

Sec. IV. For fields B »B„=go/A, t, so that vortices in-

teract via a logarithmic potential, the preferred defects

(a)

Type II Melting
Bx-

e%%N% %% %%%%%%%%%~%%%%%%%%%%%%%%%%%%

%%%%%%%"% %%%%%%% %%%%%%%%%%% %%%%%%%P

Td T

FIG. 4. Two distinct scenarios for vortex crystal melting
with increasing temperature. In type-I melting a first-order
transition separates a line crystal with p&%0 from a Aux liquid
with i(%OAO. In type-II melting, both order parameters are
nonzero in the intermediate "supersolid" phase.

FIG. 5. Schematic phase diagram of a clean high-

temperature superconductor. The supersolid phase is shown as

the shaded region. In the presence of random pinning, a possi-

ble vortex-glass transition, at which the resistance vanishes,

would roughly follow the melting boundary for low fields and

the crystal-supersolid boundary in high fields.
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are interstitials instead of vacancies. Similar conclusions
were reached by Fisher, Halperin, and Morf and by
Cockayne and Elser for electrons interacting with a 1/r
potential in two dimensions. At low fields (B &B,&), we

expect that vacancies are the favored defect, as in most
crystals with short-range interactions. Although a super-
solid is possible, in principle, for any field B (8x, the
numerical estimates of Sec. IV indicate that B B„ is re-
quired fcr this new phase to exist in high-T, supercon-
ductors.

Even if an equilibrium supersolid does not exist for
B &Bx, vacancies and interstitials may still appear for
nonequilibrium reasons. If, for example, vortices pass
through a first-order freezing transition upon cooling un-
der conditions of constant B, the system will initially
phase separate into crystallites coexisting with a liquid of
a different density. When the liquid disappears at a lower
temperature, the crystal density must change to keep the
macroscopic B field constant. In the presence of pinning,
kinetic constraints may force the crystal to absorb inter-
stitials or vacancies rather than change its overall lattice
constant. If freezing occurs above the field corresponding

to maximum melting temperature in Fig. 5, a nonequili-
brium concentration of interstitials would then result.

In Sec. II we derive simple estimates for the defect un-

binding temperature in various regimes, and compare
these to the melting temperature. Numerical calculations
of the energies of various kinds of straight defect lines in
the high-field regime are presented in Sec. III. In Sec. IV
these energies are used to estimate T& more quantitative-

ly for B,&
&B ~ BX. We also discuss the consequences of

supersolid order for neutron diffraction and theories of
the melting transition, and finally the implications of a
supersolid phase for resistivity measurements.

II. ESTIMATES OF DEFECT UNBINDING TRANSITIONS

A. Model parameters and Seld regimes

To obtain the important physical parameters in a
thermally excited vortex lattice, it is instructive to exam-
ine one representative fluxon in the confining potential
provided by its surrounding vortices in a triangular lat-
tice:

r

r(L ) =r~ 1 L 1 dr(z)Z, (r~, O;L)= J Sr(z)exp ——J + V&[r(z)] dz
r(0) =0 T o 2 ' dz

(2.1)

As we shall see, this simple model gives predictions for
melting equivalent to those obtained via "nonlocal" elas-
tic constants and the Lindemann criterion. Closely re-
lated models [such as Eq. (1.2)] will be used to determine
when defects proliferate. The efi'ective potential V, [r(z)]
in (2.1) arises from a microscopic pairwise interaction
V[r,"(z)] between two parallel flux lines r, (z) and r (z)
with separation r; (z). In the London approximation,
this potential is'

(2.4b)

2
dr

(2.5)

Although the tilt modulus has more generally a com-
plicated wave-vector dependence, it is approximately
constant over the (short-distance} length scales of interest
to us here. "Nonlocal" (in z) contributions to the in-

teraction potential are similarly unimportant provided

V(r;J ) =2s+p(r J /A, j ), (2.2)

where

sp=(Qp/4nA, ,) (2.3}

'f&=y spin(ap/gj) (B»B„), (2.4a)

where y —=M~/M, && 1 is the mass anisotropy,
ap=(Pp/B)', and g'~ is the in-plane coherence length.
Equation (2.4a) follows from the wave-vector-dependent
tilt modulus evaluated in the short-distance regime
re)evant for melting. This result applies only when
B»B„:—Pp/A, ~, so that we may neglect the electromag-
netic coupling between Cu02 planes. When B SB„,this
coupling is important and the tilt energy becomes'

where A~ the in-plane London penetration depth is the
energy scale per unit length. The Bessel function
Ep(x)=in(x) for x «1, and Ep(x)=(n/2x)' e "for x
large. The parameter Z, is the tilt energy of a flux line,
given approximately by

Z(r~, O;L ) = (r~~e ~0}, (2.6)

where ~0} is an initial state localized at 0, (r~~ is a final

state localized at r~, and the "Hamiltonian" & is

T' 2Vj+ V)(rq) .
1

(2.7)

The probability of finding the flux line at transverse posi-
tion rj within the crystal is Pz(rj ), where gp(rj) is the
normalized ground-state eigenfunction of (2.7).

When B &&B,&, the potential is logarithmic, and we ex-
pand V, (r~) about its minimum at r~=0 to find

which is well satisfied throughout the crystalline phase.
As discussed by Brandt, ' the same criterion justifies the
neglect of higher-order terms in [dr(z)/dz] in Eq. (2.1).

Three important field regimes for fluctuations in vortex
crystals are easily extracted with this approach. We first
rewrite this imaginary time path integral as a quantum-
mechanical matrix element,
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T'212
2E ]

~i+ —«i fo=Eolo (2.8a)
above this field, the planes are approximately decoupled,
and T may be estimated from the theory of two-
dimensional dislocation mediated melting

where (neglecting constants of order unity)

d V

dr

Ep

2ao
(2.8b)

(2.9)

and ap is the mean vortex spacing. Equation (2.8a) is the
Schrodinger equation for a two-dimensional quantum os-
cillator, with R~T and mass m ~'E, . The ground-state
wave function is

codo
T =0.5, 8»8„.

8~ 3
(2.14)

where the prefactor 0.5 is a rough estimate of the effects
of phonon fluctuations. Note that the convergence to
Eq. (2.14} for high fields may be quite slow due to the
very strongly divergent translational correlation length at
the melting temperature in two dimensions ' this
causes T (8 ) to approach Eq. (2.14) only as
1/ln (8/Bx ).

The estimate (2.11) also breaks down at low fields
8 B„where the logarithmic interaction potential must
be replaced by an exponential repulsion. The two-
dimensional harmonic oscillator approximation can again
be used with the replacement

with spatial extent
' 1/4

ao
(2.10)

&p —ap/X,k~ e
kJ

(2.15)

BpE ) in Eq. (2.8b). The transverse wandering distance is now

Melting occurs when r, =cLap, where cI is the Lin-
demann constant, so the melting temperature is

' i/4T g ap/4e' (2.16)
T =CL +epXiup, Bqi «8 8 x (2.11)

in agreement with other estimates. Note that eo and E&

are themselves temperature dependent so that Eq. (2.11)
is an implicit expression for T (8 ), or, equivalently, a
melting field 8 ( T).

This result is only applicable when
8 «H, 2( T ) =Po/[2m/i( T ) ], where gi( T ) is the
temperature-dependent in-plane coherence length includ-
ing the effects of critical thermal fluctuations which make
H, 2( T )- ( T, —T )

r for T sufficiently close to the zero
field transition at T, . In this regime A,i —( T, —T )

and the resulting ratio

B~ /H, 2( T ) =const

independent of magnetic field or anisotropy. The loga-
rithmic factor in f„Eq. (2.4a}, is thus of order unity,
since ap/g (Ti)=const. Such critical effects were not
taken into account in calculations of the melting temper-
ature prior to Ref. 12.

Vortices in the crystalline phase will travel a perpen-
dicular distance r ~ in a "time" along the z axis l, , where

I, =r„/(T/e, )

(2.12)

A new high-field regime arises when l, ~ do, where do is
the average spacing of the copper-oxide planes, i.e., for
8 ~8» with' '

and takes place over a longitudinal distance

l~ =Qfi/Gpk, ie

The low-field temperature becomes

(2.17)

aa O
—ap/2kJT =cl y' sot, e (8 &8„),

Ar J

(2.18)

consistent with earlier predictions. Although we have
retained the distinction between 'E& and co in these formu-

las, note from Eq. (2.4b) that Zi = so in this regime.
The predictions (2.11), (2.14), and (2.18} are combined

to give the reentrant phase diagram for melting shown in

Fig. 5. ' %'e note that when fluctuations are relatively
weak, so that melting occurs closer to T„Eqs. (2.11) and

(2.18) must be solved self-consistently for T using the
temperature dependence of eo, Z&, and A,~. This procedure
causes the maximum in the melting temperature to bend
downwards towards T, in materials such as YBCO.' 8
rather than H is used for the vertical axis since it is 8
rather than 0which is fixed for the thin, low aspect ratio
crystals usually studied in experiments. This figure is

only schematic because a first-order transition at con-
stant 8 would lead to two-phase coexistence with domain

size limited by the strong interactions between vortex tips
as they exit the sample surface in thin crystals. Analytic
estimates and boundaries for melting in the various re-

gimes are summarized in Table I.
ei 4o8
&p d

(2.13) B. Vacancy and interstitial unbinding transitions

which is up to a logarithmic factor the same criteria dis-
cussed in the previous section, 8„-(y Po/do). Well

Consider a defect such as the vacancy shown in Fig. 2.
To estimate when its free energy changes sign, we need to
determine the kink separation l, which appears in Eq.
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TABLE I. Estimates for melting and defect unbinding transitions.

Regime

Bx&B
B„«B&B„
B SB,1

T.(B)

0.5spdp/8m. &3
c'Qs()E'{Po/B)'

—(1/2)(B 1/B)c'g soE, A,,{B„/B)e

Td(B)

constXsgo/In{2nB/B„)
c3V so&i{do/B)

—(1/2)(B 1/B)constXV sg,A~{B„/B)e

(1.3b). Up to factors of order unity, a similar estimate for
Td would apply to an interstitial vortex which, for exam-
ple, hops between the centers of the triangular cells of an
Abrikosov crystal. Interstitial wandering would then
take place on a honeycomb lattice, and the factor In6 in
Eq. (1.3b) would be replaced by ln3.

We suppose initially that B„«B&B„,so that the
pair potential is logarithmic with well-coupled Cu02
planes. As shown in Sec. III, the defect line energy is
then proportional to the characteristic line energy scale
so of the pair potential(2. 2),

Cd =CdGp . (2.19)

Ek +sp~luo~ (2.20)

from Eqs. (2.12) and (2.1), since the "kinks" are spread
over a distance l, . This expression is just the WKB tun-
neling exponent which follows from the quantum-
mechanical analogy discussed above. The line density of
kinks is then of order

]. —Ek/T
ging pl,

(2.21)

where l, should be the same order of magnitude as in Eq.
(2.12). Similar estimates would apply to vacancies:
Kinks arise in Fig. 2, for example when one of the flux
lines surrounding an unoccupied site jumps over a barrier
in the lattice potential U&(r) of order sp and essentially
changes places with the vacancy. The "attempt frequen-
cy" associated with this event should again be of order
1/l, .

For both types of defects, we conclude that the spacing
between kinks is of order l, =n &;„'&, or

(2.22)

Upon substituting Eqs. {2.19) and (2.22) into (1.3b), we
find a simple self-consistent equation for Td,

Td=ci+so&60 exp[c2+E0Zi&0/Td], (2.23)

In Sec. III, we determine the constant cd for various
kinds of defects, and show that in fact interstitials, rather
than vacancies are favored energetically for B»B,&.

An interstitial surrounded by a triangular cage of
nearest neighbors will fluctuate in much the same way as
the vortex in the hexagonal cage discussed in the previous
section. To "tunnel" to one of its three neighboring tri-
angular plaquettes, it must overcome a barrier of order
cp. The energy associated with one of these kinks or tun-
neling events is of order

that

Td=c3+spZ~Qp (2.24)

T 2mBF'=sdL — ln 8 L,
0 X

(2.25)

which leads to a defect unbinding temperature

Td(B)=constXspp/ln[2nB/8„]. (2.26)

Since Tz —1/1 (n2mB/8„) in this regime, while T is
asymptotically 8 independent according to Eq. (2.14),
defects must proliferate for B»8„. Equation (2.26)
agrees with the unbinding transition of dislocation pairs
from bound dislocation quartets estimated in Ref. 13.

The result Eq. (2.26) for the limit 8»B„can also be
obtained from a simple physical argument. In the limit
of nearly decoupled layers with a very weak Josephson
coupling, the density of defects in each layer is just—Ed/T
nd -e ",where

Ed=dpsd (2.27)

is the energy of the defect in a single layer. When the in-
teractions between layers are weak, they can be estimated
perturbatively. If a vortex passing through two neighbor-
ing layers is misaligned by an amount b, the excess cost is
of order y spb/dp from the Josephson coupling between
the layers. Naively, the cost of misalignment of the vor-
tex which makes up an interstitial "line" is obtained by
setting b =apnd ', the typical jog distance of the defect
between nearly decoupled layers. This is certainly an
upper bound for the kink-free energy, since fluctuations
of the other vortices in each layer will add a large in-
coherent part to the phase difference associated with the
interstitial. We conjecture that this will result in a reduc-
tion of the full Josephson energy to

2~ 2n —k

(2.28)
dp

E—

which has the same form as Eq. (2.11) but with c3 a
different numerical constant. Therefore a supersolid
phase will occur whenever c3 &cz. We attempt to esti-
mate c3 in Sec. IV.

When B»B„,defects can hop one lattice constant or
more between copper-oxide planes of spacing dp, and the
defect path integral (1.3) must be evaluated in a different
limit. We now neglect the lattice potential UI(rd) entire-

ly and evaluate the functional integral which remains by
discretizing the path integral along z in units of dp. The
result is

where c& and c2 are constants of order unity. It follows with k ~ 1.The free energy per layer of the defects is then
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Fd =Ednd+ Tnz lnnd+ndEt(nd ) . (2.29)

Minimizing with respect to nd yields the result that Ed
becomes negative, and hence nd positive, when T) T„
with

Td--kEd/In(BIB ~ ), (2.30)

2
p —ao/A~

cd =const X ape
XJ

(2.31)

The barrier to produce a kink in the trajectory of a va-

cancy or interstitial has similar exponential dependence
on ap, so the resulting kink energy is

2~ p 0/2A, iEk-% o&i
A J

(2.32)

just the form of Eq. (2.26). Note that the magnetic inter-
layer coupling will only add an nd independent term to
Ez because of the screening due to relaxation at the other
vortices as discussed in Appendix B.

The 2D defect energy Ed is correctly obtained via Eq.
(2.27) from the 3D calculations of Ed described in this pa-
per, since in the absence at Josephson coupling the vor-
tices in 2D layers interact logarithmically at all distances
with the effective penetration length at long distances
only reduced by negligible 8(do/ii) corrections for small

p'
Finally, when B ~B,&, the exponential interaction be-

tween vortices leads to a different result. The lowest-
energy defect in this regime of short-range interactions is
presumably a vacancy, as is usual for solids with short-
range interactions. The characteristic defect line energy
is now

A. Gibbs free energy of a perfect vortex lattice

Let x(l ) be the equilibrium position of the lth flux line.
In the London limit, a =A.~/gi && 1, the pair potential be-

tween two straight flux lines is given by Eq. (2.2),

4o
V(rn ) = Ko(re IAi),

8m Ai
(3.1)

where r&&
= ~x(1)—x(l')~, and Ko is the modified Bessel

function, with the asymptotic behavior
Ko(x ) =(n /2x )'~ e " for large x and Ko(x ) = —ln(x /2)
—y for small x.

For H~~B~~c the Gibbs free energy per unit length L
and unit area A is

HP()
+neo+ Ko(ro~/AJ)

4m I

(3.2)

Here s&=(po/4m'. &) lnx'=solus is the energy per unit

length of a single flux line (ignoring an additive constant
correction to in@), and n =NIA is the number of lines

per unit area. The second term in the Gibbs free energy
represents the interaction energies of the lines, while the
first includes the effect of the external magnetic field H
and favors large values of 9. H plays the role of a pres-
sure (or chemical potential), which tends to increase the
density of lines. The prime denotes that self-interactions
(the l=0 term) are omitted from the summation. The
equilibrium magnetic-flux density B,q = n Po is obtained

by minimizing the Gibbs energy, i.e., by solving

dg IdB =0. In the limit B,q »((}o/i,i one finds

Numerical calculations are presented for various types of
defects in the limit B„«B«H„.

Upon using Eq. (2.17) for l, in Eq. (2.22), we find via Eq.
(1.3a} that H —H =B + ln

4o
c1 eq

+C +8(B, '),
B, A,i

T —E„/'1
Fd =c.dL 1 —const X e

E„
(2.33) (3.3)

=const X QsoE,
2

~p —a /2A,0 (2.34}

in the limit of low fields. A supersolid phase is in princi-
ple possible for low fields if Td &T as given by Eq.
(2.18}. We conclude in Sec. IV however, that T (T„ for
B Bx, which makes this possibility rather unlikely.

Our estimates for interstitial or vacancy proliferation
temperatures are summarized in Table I. Combining
these estimates for Tz and T (and assuming that the su-

persolid is unfavorable for small fields) leads to the
schematic phase diagram shown in Fig. 5.

III. FORMATION ENERGY OF LINE DEFECTS

In this section we discuss more precisely the defect line

energy cd for rigid configurations of straight vortex lines.

which (provided the constant is not too small) changes
sign for

Td =constE&

where H, &

=4m'
& /Po. The constant C = —ln4m —2

+y+ A depends on the lattice structure with

y=0. 5772. . . is Euler's constant. For a hexagonal and

square lattice we find A 6 =0.079 7107, and

A4 =0.100 879 7, respectively. For a rectangular lattice
with lattice constants L„and L the value of A has to be

calculated from

~R2 exp[ GL„L /4m ]-
L Lr o G L L /4'

(3.4)

We are interested in the formation energy of "point de-
fects" at constant line density n corresponding to a fixed
external magnetic field H. This later condition allows us

to consider only the interaction part of the free energy
(3.2) for N particles, i.e.,

The corresponding minimum value of the Gibbs free
energy is

B B 0
g, = — + +8(1) .

g~ 32 2g2
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E)v =Neo X Ko(ro) lki)
I

(3.6)

in determining defect energies. With Eqs. (3.2)—(3.5) one
finds

1
E~ =2%a,o, nmk, q+ —ln

1 +C+1
nA, &

B. Definition of defect energies

N+1E'= g' V(rol )
—g' V(rol ),

I

(3.8)

i.e., we have subtracted the interaction energy of the re-
moved center line with the rest of the lines. Hence the
(unrelaxed} defect energy for a vacancy at constant lattice
spacing is given by

2
Ey =E —E~+)=— EN+(2)— (3.9}

2. Constant line density

The vacancies that occur in a superconductor occur at
constant line density or constant chemical potential, not
constant lattice constant. Starting with a large perfect
lattice containing N flux lines in a fixed area A one can
imagine rearranging the fiux lines (with N fixed) in such a
way that the resulting configuration is identical to the
one generated above be removing one line from a perfect
lattice containing N+1 lines. Thus, the unrelaxed vacan-
cy energy at constant line density is defined by

Ev=E' Ell=Ev"+«-ll+) EN) . - (3.10)

Upon using Eqs. (3.2}—(3.7) one gets for the Gibbs free
energy per unit length of a vacancy line is an unrelaxed
lattice,

&o6"=E"= ——lnV V
1 +C+2

nA, &

(3.11)

Note that we have neglected terms of the order
n IN = 1/3 since we are interested in the thermodynam-
ic limit with n fixed and N —+ 00. The defect energy itself
is ev=Gv-so[in(i(, )/ao)+const], which is the correct
order of magnitude except for the logarithmic divergence
as ao/A, ~~O. As we shall see, this singularity disappears
when we allow the lattice to relax around the defect.

C. Elasticity theory

Before allowing static relaxations, we review the ener-
gies of the phonon distortions which are involved. %hen

I. Constant lattice spacing

%e follow Ref. 25 and illustrate the definition of defect
energies for the case of a vacancy line. Consider first a
perfect lattice with N+ 1 flux lines confined to an area A.
The corresponding interaction energy is Ez+&. Remov-
ing a line at the origin without allowing the flux lattice to
relax reduces the interaction energy to

each vortex line is given an arbitrary displacement u(l )

from its equilibrium position x(1) the interaction (poten-
tial} energy of the vortex crystal is given by

(3.12)

where x(ll') =x(1)—x(1'} and u(ll') =u(1)—u(l') are the
difFerences in the lattice vectors and displacement vec-
tors, respectively. Expanding up to second order in the
displacement fields yields

(3.13)

where E& is the interaction energy of a rigid flux lattice.
Here a,P=x,y label the Cartesian components and the
dynamic matrix is given by

() V(rll. )
for ll',

ax x&

d V(rll, )
for 1=1' .

lyl ()X X

(3.14)

Upon defining the Fourier transform

C~&(q)=a yy &(1,0)e- q*( o)

I

= —[S ~(q) —S l (0)],
with

() V(r„)
SaP(q) a g e iq x(l, l')

Bx ()x

(3.15)

—iq x y e
—iq (x(l) —x)

x~o ()x ()x~

X V(x(l )—x)—V(x), (3.16)

the interaction energy can be written as

E=Ez+ I u (q)C'~( —q)u~( —q) .1

2Q q
(3.17)

Here a, =(v 3j )2a=on' is the volume of the unit cell
of the triangular lattice and we have introduced the
short-hand notation f = f [d q/(2n ) ] for integrals

over the in-plane wave vector q.
In the limit of a very large London penetration depth,

A,) »ao, the dynamic matrix takes the form (see Appen-
dix A)

a III a
C l'(q)=2s 2m + [& ~q' 2q q~]—

2 8
(3.18}

for small values of q. Upon comparing with the usual
continuum elastic description of vortex solids,

C (q)=a,'[cl)(q)e ~'+c66(q+ &']

we find that the bulk and shear moduli are
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47TEO n EO
c»(q) =n

nEO
c„(q)=

(3.19)

(3.20)

E(v„)(Iu(l)I)= I u (q)uP( —q)C P( —q)
1

2a~

1
V, qu —

qa,

where n =a, is the vortex density. In this limit of rigid,
parallel vortices we obtain no information on the q,
dependence of these quantities or on the tilt modulus c44.
Equation (3.20) agrees with the shear modulus first ob-
tained by Fetter, Hohenberg, and Pincus. Equation
(3.19) is correct for A)

'
&q) & ao ', which encompasses a

wide range of length scales when 8 ))Po/A, ).

D. Variational calculation of the relaxational energy
of a straight vacancy line

In this section we calculate the relaxation energy of a
straight vacancy line by a variational approach. The
presence of a vacancy causes a distortion of the lattice de-
scribed by the displacement field u(l ). Assuming the dis-
placements u(l ) to be small and slowly varying the relax-
ational energy for a vacancy can be obtained by minimi-
zation with respect to u(l ) of

Ev(a) ( I uj ) =—g p p(1, 1')u (1)u p(l')1

1,1'

1 p p

2Q~ q k

(3.28}

VaP(q) —a y VaP(i )e sq x(l)

1%0

(3.30)

Following Ref. 25, we make a variational Ansatz for the
lattice distortion field,

a
u (q)=ia, z f(q), (3.29)

q

where f(q)=1+cq+dq with c and d as variational pa-
rameters. As discussed in Appendix B, the constraint
f(0)=1 is enforced by the long-range potential. V, (q)
and V2p(q) can be expressed in terms of the dynamic ma-

trix C P(q}

V((q)=a, g V, (i)e ' ""'= i —Vz~(q},

—g V)(&)u (l)
1%0

= —C P(q)+ V2P(q=0), (3.31)

——g VzP (l )u ( l )u P( l ),
1%0

(3.21)
where we have used the asymptotic form of the potential,
lim), „V(x ) = —lnx, to derive Eq. (3.30). This gives

j.

where 2m ac
V;(q)=2iso 2

—
q

q
(3.32)

V, (l)= V(x),
Bx

(3.22)
and for the above Ansatz for the displacement field one
can take

VzP(1) = V(x),
ex exp

(3.23)
VP(q) = —C'P(q) . (3.33)

u (q)=a, gu (l)e
1

C P(q) =a, g P (i,0)e
1

VG(q) a+ VR(i )e Iq x(i)

leo

V~P(q) a g Vcr(i )e i (ql—)x.
1&0

(3.24)

(3.25)

(3.26)

(3.27)

and the vacancy relaxation energy becomes

and the dynamical matrix (I) p(l, l') is defined in Eq.
(3.14).

The first term in EvR( I u] ) is the elastic energy of the
lattice distortion caused by the vacancy. It overcounts
the energy of the missing center line with the rest of the
crystal. This contribution is subtracted by the second
and third term in Eq. (3.21), which is just a Taylor ex-
pansion of g(&oV(~x(l)+u(l) —x(0)~), where x(0)=0 is

the position of the vacancy in the lattice.
In Fourier space, we have

Upon using the long-wavelength approximation (2.18) for
C P(q), one finds

E'vr't( Iu(l ) I ) =2so(I(+I2+I3) (3.34)

with I; given in Appendix B. The variational calculation
for c and d yields (see Appendix B)

1
c = =0.161+a, ,

7kd

d = — = —0. 114a, ,
10

7k2

(3.35)

(3.36)

Eo 1 265
VR 2 k &g2 252

(3.37)

The total vacancy energy density at constant density
instead of constant lattice constant, is, following the con-

where kd =Q4n/a, is a cutoff .which preserves the area
of the underlying hexagonal Brillouin zone. Hence, the
elastic relaxation contribution to the vacancy energy den-

sity at constant lattice spacing is
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siderations of Sec. III B.

Gv =EvR+Ev '+EN+) —E~ . (3.38}

The last three terms are given by Eq. (3.11},which, when
combined with (3.37), leads to

Ep 265
G =——y —A +V 252

(3.39)

Our variational vacancy line energy is thus tv =Gv, or

@v=0.1973co . (3.40)

Note that the logarithmic divergences as ao/A, ~
—+0 in

Eqs. (3.11) and (3.37) have canceled to yield a finite result.
A heuristic "back of the envelope" argument for the

vacancy energy can also be constructed: Assume that the
phonon displacement in real space for a vacancy at the
origin takes the isotropic form

E= g' Ko(rii IAi ),
1,1'

(3.45)

where our energy unit is Eo=2co. This sum over the
infinite lattice can also be written as

all its periodic images. For comparison with the com-
puter results, one must therefore calculate not the energy
of a single defect in an infinite system, but the energy per
block of a periodic array of defects in an infinite system.
After correcting for these "image" defects one can ex-
tract the desired energy of a single defect. In practice we
choose the system large enough that the interaction of
the defects with its periodic images can either be neglect-
ed or calculated by means of linear elastic theory.

The interaction energy of the flux-line lattice per unit
length in the z direction is

&o x(l )u(l)=-
2m' x2(i)

(3.41)
EpE= g $( rit. IAi), .

I, I'e box

(3.46)

d q~v=~66
q ~ij q

(2n )
(3.43)

with u,j(q) = —a, q;qj/q . Upon using Eq. (3.20) and im-
posing a circular Brillouin zone of radius kd =Q4n. /a„
we find finally

ev=so/4 (3.44)

an estimate only 25% greater than Eq. (3.40), and very
close to the numerical value for the relaxed vacancy
configuration with sixfold symmetry.

E. Numerical calculation of the defect energies

Interstitial defects generally occupy lattice sites of low
symmetry, so that analytic methods become quite labori-
ous. In this section we describe numerical calculations of
the various defect energies which do not require the ap-
proximations used above. Our goal is to calculate the de-
fect energies for an infinite system.

In the computer simulations, we have not an infinite
system but a system with a large but finite block of parti-
cles with periodic boundary conditions. In order to han-
dle the long-range logarithmic interaction between the
flux lines we use the Ewald sum technique, which
amounts to including the interaction of the flux line with

consistent with a sixfold symmetry of this defect site.
The parameter Qo is the area change induced in the flux-
line lattice. To keep the density of fiux lines fixed (as is
appropriate for 8 »Po/A~), we take Qo=a„ the area of
one unit cell to cancel the vacancy energy. Since V u=0
and B,u=0, the only contribution from the continuum
elastic free energy per unit length comes from the wave-
vector independent shear modulus term,

ev f d xc66uij (3.42)

where u; =
—,'(8;uj+i} u;), i=1,2, and c66= —,'noso. In

Fourier space, this expression becomes

where the summation is over all particles within the basic
box of size (L„,L~). The effective pair potential within
the basic box

P(rii /A j )= &' Ko( lx(ll')+Rl /~j )
R

(3.47)

represents the interaction energy between a flux line at
position x(l } and one at position x(l'} together with all
its images at positions x(l')+R. The sum over R runs
over all simple cubic lattice points, R=(IL„,mL„) with
l, m integers. This vector reflects the shape of the basic
box. The prime on the summation sign of Eq. (3.47) indi-
cates that we omit the term R=O for x(ll') =0.

For a numerical calculation Eq. (3.47) is not a suitable
starting point because of its poor convergence properties.
Therefore, we make use of Ewald's summation method.
Using the integral representation of the modified Bessel
function Ko and Ewald's generalized e function trans-
form (see Appendix A) we find for xAO in the limit of
large A, i

P(x/A, i ) =—g E)
R

exp[ L„L G 5/4m']-
iox—.

2 o L„LG /4m.
21Th, i

L L 2
(3.48)

where E,(x)= J "dyy 'e r is the exponential integral
function. The vectors Vi=2m(m/L„, n/Lr ) with m and
n integers index the square lattice reciprocal to the lattice
of image lines. Note that this result is valid for any
choice of the Ewald separation parameter 5. It can be
used as a numerical check and to optimize the conver-
gence properties of Eq. (3.48). We choose 5= 1.

For $(0) we get
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R
P(0)=—g'E( exp[ G—L„L» /4n. ]+—g'

G L„L„/4m.

2 7TAr J 1 1+ ——+—ln
L L 2 2

2m' q 1 L Ly+—ln
L„L 2

L L
+

4+A,

+—(y —1 —ln4m+ A„„) .
1

1+—g' 4( rii. /A i )
1,1'

with the effective pair potential

(x—R) n
4(rii. ) =—g E,

R x y

exp[ L„L G /—4n. ]—iG x

2 o L„L„G /4m

(3.50)

1

2

(3.51)

Upon comparing Eq. (3.50) with the interaction energy of
a perfect flux-line lattice, Eq. (3.7), one gets for a rec-
tangular basic box

—g'4(rii )= ( lnN+ A6——A—„„), (3.52)
1,1'

where 1V =30 t is the number of flux lines in the box of
size (L„,L )=(5,3v 3)tao.

For the numerical calculations it is sufficient to consid-
er only those parts of the interaction energy, which ex-
plicitly depend on the coordinates of the flux lines.
Hence we consider the quantity

(3.49)

The value of the Ewald sum A „„depends on the shape
of the basic box [compare with Eq. (3.4)]. We choose the
rectangular basic box such that L, =Sao t and
L =3~3ao t with t integer. Then one gets from a nu-
merical evaluation of the Ewald sums A„„=0.101 8412
and the interaction energy in units of Eo becomes

~2 2m L L
E= +—y —1 —ln4m+ A +ln

2 L L 4 rect
X

These forces are most efficiently calculated together with
the energy (in one subroutine).

We now explain the algorithm by which the formation
energies of the various types of defect lines are deter-
mined. We start with an initial configuration [x' '(i)]
which, after relaxation, will contain the desired defect.
This is easily achieved by adding or removing lines from
the perfect hexagonal lattice. This procedure leads to the
defect energies at constant lattice constant, and hence
must be corrected as in Eq. (3.38) to produce energies at
constant vortex density. The corresponding initial
configuration for a vacancy and a variety of other defects
are shown in Fig. 6.

The lattice relaxation process was performed by stan-
dard methods adapted from molecular-dynamics simula-
tions. For advancing the positions and velocities of the
flux lines we implemented an artificial dynamics via a
leapfrog algorithm

vi(t+ ,'5t )=—vi(t——,'5t )+5tai(t ),
x, (r+5r)=x, (r)+5rv, (t+ ,'5r) . - (3.57)

0 0' 0 0 0 0' 0' O' 0 0 I

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

The acceleration ai =
f i/m of the Ith flux line is calculat-

ed from the forces fi =pi, +iF&&,. In each step of the
iteration we calculate the kinetic and potential energy,
and the forces using Eqs. (3.50), (3.51), and (3.55). This
procedure is repeated until an equilibrium configuration
is reached. The "mass" I and the time step 5t were
chosen to accelerate the convergence to equilibrium.
Equilibrium here means that the forces on the flux lines
become zero. Hence the method is capable of finding not
only minima but also some saddle-point configurations, at
least for initial states with high symmetry.

In order to test the accuracy of our method we calcu-

E=—g'4(rii ) .
I, 1'

(3.53) 0 0 0 0 0 0 0

4(ra, ) . (3.54)Bx(ll')

Using the above expression for the interaction potential
4 one can write

F(xn')=Fn =

exp[ —~x R~ m/L„L ]-
F(x)=— g 2

"
(x—R)

2 L„L Ix RI 7T/L L

exp [ GL„L„/4m. ]-
+ g'Gsin(Ci x) GL L /417

(3.55)

The force between flux lines at a distance x(ll') is given
by

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

n oI
0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

FIG. 6. Initial defect configurations for a symmetric vacancy,
centered interstitial, edge interstitial, split-centered, and split-

edge interstitial used in the numerical calculation of the defect-

formation energies.
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TABLE II. Exact and numerically calculated energy per par-
ticle of the perfect flux-line lattice for different system sizes. N
is the number of flux lines. The energies are measured in units
of Ep =28p.

30
120
270
480
750

1080
1470

Eexact

0.855 831 94
1.202 405 54
1.405 13809
1.548 979 13
1.660 550 90
1.751 71168
1.828 787 05

Enum

0.855 832 16
1.202 406 52
1.405 140 51
1.548 982 90
1.660 556 87
1.751 720 15
1.828 798 59

lated the energy of a perfect flux-line lattice with
N =30t particles for t =1,2, . . . , 7, and compared them
with the exact result Eq. (3.52). Our results are summa-
rized in Table II. The relative difference is less than 10
and can mainly be attributed to the inaccuracy in the nu-
merical approximation we have used for the exponential
integral function. '

Starting from the initial configurations shown in Fig. 6
we have determined the relaxed configurations using the
algorithm described by Eqs. (3.56) and (3.57) for various
system sizes. From this analysis we can extrapolate to
the defect-formation energies of an infinite system.

For the vacancy we find that starting from the initial
configuration in Fig. 6, which has the sixfold symmetry
of the hexagonal lattice, the lattice Grst relaxes into a
saddle-point configuration, which possesses the full sym-
metry of the lattice. This configuration, however, is un-
stable with respect to a compression along one of the
three axis connecting the nearest neighbors at the vacan-
cy. It finally relaxes into a configuration of lower symme-
try (see Fig. 7). Note, that there are three equivalent
orientations of this relaxed vacancy configuration. In
Table III we summarize the formation energies of the
stable and saddle-point configuration of the vacancy for
different system sizes.

The edge interstitial relaxes starting from the initial
configuration in Fig. 6 into a saddle-point configuration
shown in Fig. 8. From the numerical simulation we find
that this configuration is unstable with respect to small
amplitude "buckling" perpendicular to the edge. The
edge interstitial relaxes into a "buckled configuration, "
which is identical to the relaxed centered interstitial
configuration, also shown in Fig. 8. These results are
analogous to findings by Cockayne and Elser for the
two-dimensional Wigner crystal, ' ' where the edge in-
terstitial is also unstable with respect to buckling perpen-
dicular to the edge of the triangle. However, the time re-
quired for this relaxation process is much larger than the
relaxation time from an initial edge interstitial
configuration constrained by symmetry to go to a final
edge state. Thus, the interstitial appears to occupy a very
flat minimum in configuration space.

In Table III we have listed the defect energies for a va-
cancy and several types of interstitials for various system
sizes. Whereas there is a clear energy gap between vacan-
cies and interstitials, the interstitial energies are all very

H ~ ~ H N

r 4 t
e O j i ~

FIG. 7. Starting from the initial symmetric vacancy
configuration, shown as squares, the flux-line lattice relaxes first

into a symmetric configuration, shown by the diamonds. This
configuration, however, is just a saddle point and unstable

against squeezing the vacancy along one of the three symmetry

axis. One of three degenerate stable final configurations is

represented by the circles.

close. The energy differences are less than l%%uo. The sys-
tem size dependence for the centered edge, split-centered
interstitials, and two types of vacancies are shown in
Figs. 9(a) and 9(b), respectively.

The lattice conformations resulting from relaxing an
edge interstitial and a split edge interstitial initial
configuration (constrained now not to buckle as in Fig. 8)
are shown in Fig. 10. As can be inferred from this figure
the configurations essentially differ only by a parallel shift
along the edge of the triangle. Because the energies are
quite close (see Table III) we conclude that gliding of this

type of defect along the direction defined by the edge of
the triangle (in the absence of buckling) must be a low-

energy excitation. The barrier for this motion is presum-
ably of the order of the difference in energy of those
configurations, i.e., 6 M, =10 Eo. After very long relax-
ation times both types of initial conformation, i.e., edge
and split-edge interstitial, may in fact finally relax into
the same final configuration.

We conclude that interstitials, rather than vacancies,
are clearly favored at high fields and that the centered in-
terstitial is the most likely candidate for producing a su-
persolid in this regime. Since the differences between the
energies of the various interstitials are so small, an inter-
stitial wi11 have substantia1 extra entropy, 1owering its
free energy even further.

F. Interaction between point defects

Following Cockayne and Elser, @ ' we can use defect
energies for different system sizes to infer the distance
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TABLE III. Defect energies at constant line density for the symmetric vacancy (V6), "squeezed" va-
cancy (V2), edge interstitial (EI), centered interstitial (CI), split-edge interstitial (SEI), and split-centered
interstitial (SCI) configurations. The results are obtained from a molecular-dynamics-type calculation
for difl'erent system sizes with N flux lines. The energies are measured in units of Eo =2@0.

30
120
270
480
750

1080
1470

0.11857
0.122 04
0.123 81
0.124 16
0.124 29
0.124 34
0.124 37

0.11394
0.108 92
0.108 25
0.107 83
0.107 81
0.107 72
0.107 80

0.071 56
0.073 58
0.073 92
0.07403
0.07408
0.074 10
0.074 12

Eci

0.072 18
0.072 74
0.072 93
0.072 99
0.073 04
0.073 09
0.073 07

ESEI

0.071 56
0.073 59
0.073 92
0.07402
0.07405
0.074 11
0.074 11

Esca

0.071 66
0.072 95
0.073 10
0.073 15
0.073 19
0.073 24
0.073 25

dependence of the interaction energies. As explained at
the beginning of Sec. III 0, periodic boundary conditions
always yield a rectangular superlattice of defects. Since
we are changing only the size of the big box (L„,L ) and
not its shape, the system size dependence of the forma-
tion energy should scale the same way as the radial
dependence of the interaction between two single defects
for large L„and L~.

From the system size dependence of the centered and
edge interstitial energies, plotted in Fig. 9(a), one can
infer that both defects show an attractive interaction at
distances larger than five lattice spacings. Over the range
studied 5 & r & 35 the interaction approximately scales as
r ' for centered interstitials and as r for edge intersti-
tials. From a nonlinear least-squares fit over the limited
range we get E;„t=0.0742 —0.0787% ' corresponding
to r ' and Ec, -0 0732—0 0078K ' correspond
ing to r ' for the edge and centered interstitial, respec-
tively. As we shall see, these are definitely not the correct
asymptotic long-distance behaviors.

We have also analyzed numerically the distance depen-
dence of the interaction between two centered interstitials
at smaller distances. In order to calculate this energy we
have started with an initial configuration, which contains
two centered interstitials at a distance d (measured in
units of the lattice constant ao) in a perfect hexagonal lat-
tice containing N =480 Qux lines. The interaction energy
is found by subtracting from the resulting relaxation en-
ergy the energy of two isolated single centered intersti-
tials. The results for two different directions are
displayed in Fig. 11(a). If the vector connecting the two
centered interstitials points along one of the unit vectors
of the primitive cell of the hexagonal lattice, the interac-
tion is attractive up to d =3ao and becomes repulsive for
larger distances. In the direction perpendicular to one of
the unit-cell vectors we find a minimum in the interaction
potential at a distance of approximately two lattice vec-
tors. (Note that distances in Figs. 11 are the distances be-
tween the defects in the initial configuration. ) The system
size difference discussed earlier indicates that, roughly,
some angular average of the interaction is attractive forr) 5ao.

In Fig. 9(a) we have plotted the system size dependence
of the symmetric and "crushed" vacancy configurations.
Whereas for a symmetric vacancy configuration the for-
mation energy increases with increasing number of flux

lines X, it decreases for the crushed vacancy
configuration. From a nonlinear least-squares fit to the
data in Fig. 9(b) we find E;„,=0.1076—0.312K " cor-
responding to r and E;„,=0.125+0.05763V cor-
responding to r ' over the limited range 5a0 r ~ 35a0
for the symmetric and crushed vacancy, respectively.
Hence we conclude that symmetric vacancies appear to
have an attractive interaction at relatively long distances,
while crushed vacancies, which have the lower formation
energy, repel each other at comparable distances.

For smaller distances we have performed calculations
analogous to those for the centered interstitial. The re-
sults for the stable crushed vacancy (V2) for the interac-
tion along (solid line) and perpendicular (dashed line) to
an edge of the unit cell are shown in Fig. 11(b). Whereas
the interaction energy is attractive for a11 distances less
than 11ao along the directions perpendicular to the edges
of the unit cell, it is attractive for small distances and be-

0 a

5, 8 i 8 0 i 5 0 i 0

FIG. 8. Relaxed configurations for centered (squares) and

edge (circle) interstitial. The edge interstitial is unstable with

respect to a "buckling" mode perpendicular to the edge of the
triangle. The final stable configuration is the centered intersti-
tial configuration.
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comes repulsive for distances larger than d =5a0 for the
interaction along the edge of the unit cell. This has to be
compared with the roughly angular averaged attractive
interaction for d )5ao obtained from the finite-size
analysis.

It is not possible to study the interaction between sym-
metric vacancies at short distances. This is because the
anisotropy of the stresses induced by the interactions
causes the vacancies to deform to the anisotropic crushed
vacancy configuration which has lower energy. The sym-

o o b o 0 i o o b o o ' o o '0 o o

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o o o o o 0 o 0 0 0 o o o o

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
D 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0

0.0750
(a}

0 0 0 0 0 0 0 0 o 0 0 0 0 0

o o a 0 o 0 o 0 0 + 0 o o a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 o 0

0.0740 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I

I

0.0730
0
teal

E
0

LL

0.0720
/

0.0710
0.0

I

500.0
I

1000.0 1500.0

FIG. 10 Relaxed configuration for an edge (open circles) and
split-edge (open squares) interstitial. The two configurations
differ by a shift along the edge of the triangle. Because of their
energy difference being small gliding along the edge of a triangle
is a low-energy process. Note, however, that both
configurations are unstable to buckling, resulting in the centered
interstitial configuration.

0.130

(b)

0.125

0.120

0.115
0
tO

E

0.110

0.105-

0.100
0.0

I

500.0
I

1000.0 1500.0

FIG. 9. (a) System size dependence of the formation energies
for centered (solid line), split centered (dot-dashed line) and
edge (dashed line) interstitials. The energy in units of Eo is plot-
ted versus the total number of Aux lines ¹ The lowest-energy
configuration is the centered interstitial. (b) System size depen-
dence of the formation energies for symmetric (solid line), and
"crushed" (solid line) vacancy. The energy in units of Eo is
plotted versus the total number of fiux lines ¹ The symmetric
vacancy configuration (sixfold symmetry) is unstable against
squeezing it along one of the three symmetry axis. The final
stable configuration is the "crushed" vacancy with only a two-
fold symmetry.

metry axis of the resulting crushed vacancies is parallel to
their separation vector.

It is instructive to compare these results with those ob-
tained from linear elasticity theory which should be valid
for very large separations. It can be shown that the lnr
interactions between unrelaxed defects will be completely
screened by the relaxation of the other vortex lines. This
is already evident in the calculations in Sec. III D for a
single vacancy: The vortex lines far from the vacancy re-
lax just so as to cancel the overall "charge" of the vacan-
cy. The long-distance interactions between defects thus
have the same form as for short-range interactions.
These depend on the symmetries of the defects involved.

For defects with three- or sixfold symmetry —the sym-
metric vacancies and centered interstitials —the interac-
tions are exponentially small in the absence of anisotropy
of the elastic interactions with the anisotropy associated
with the sixfold symmetry [which appear at order q in
the elastic matrix C ~(q) of Eq. (3.18)], the interactions
will decay as cos68/'r the angle between a lattice vector
and the interdefect separation vector. The sum over all
the interdefect interactions with the periodic boundary
conditions used in the numerical computations will thus
almost cancel as the systems used are almost square with

Ly /Lz 27 The resulting asymptotic L dependence of
the vacancy energy should thus have a leading 1/L term
with a small coeScient whose sign depends on details of
the q-dependence of the elastic matrix and the stresses in-
duced by the vacancy which we have not calculated.

The interactions between defects with only a twofold
symmetry axis edge and split-centered interstitials and
crushed vacancies are longer range, since they would de-
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ium. The in-1 even in an isotropic elastic me iu
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quartic potential in the coordinate x connecting two
honeycomb lattice sites,

2 2
Zd CO

V(x)= x ——b
2b

1x+—b
2

(4.7)

where the potential vanishes at the lattice sites. The fre-

quency co is fixed by equating the maximum to he & 0, the
energy difference between the edge and centered intersti-
tials in Table II,

(4.8)

FIG. 12. Basis vectors (8; ] for the honeycomb lattice of cen-
tered interstitial sites with lattice constant b. The A and 8 sub-
lattices are indicated by open and closed circles.

(4.9)

for the two lowest-lying levels, with

A standard quantum-mechanical calculation then gives
1/2

1 Sp So /TE = Tto —+2&3/2m
T

e

Sp =
—,'Ed a)b (4.10)

%~=un yIr„&&r„I+y Irs &&rsI

X Ir~&&r~+5~I

'a»s
(4.3)

Ik, A &= g e' '" Ir„&,

where Ir„& and Ir~& are normalized states on the two
sublattices, I 5„I

= I5; I and

Isa�

)
=

I
—5, I. Here uc is a

site energy, and t is a tunneling matrix element.
The eigenvectors of (4.3) are the linear combinations

g~(k) —= (1/~2)( Ik, 3 &+Ik,B & } of normalized plane-
wave states,

The WKB exponential factor Sp is just the "kink energy"
of a defect with stiffness Zd which moves between the two
sites as a function of z in the path integral (1.2}. Upon
identifying the splitting in (4.9) with t in Eq. (4.3},we find

t =2V3/2na)(TSc)'~ e

To a zeroth approximation, we have up =cd, the ener-

gy of the centered interstitial computed in Sec. III. In
principle, up should be corrected by the zero-point ener-

gy of two-dimensional quantum oscillator, i.e., by twice
the first term of Eq. (4.9). This represents the entropy of
harmonic fiuctuations of the defect. There is also, how-
ever, a negative contribution of this form from the entro-

py of the Aux-line itself which should have approxi-
mately the same magnitude. We assume for simplicity
here that these two contributions simply cancel.

It is convenient now to set

(4.4)
Qp =ada s (4.11b}

where Nc is the number sites in one sublattice and k is
confined to a hexagonal Brillouin zone. The eigenvalues
consist of two bands,

ez(k) =
un T-

I t I +3+2[cos(k.5, )+cos(k.52)+cos(k.53)],

(4.5)

which are nondegenerate except at the zone centers. The
lowest eigenvalue occurs in s+(k ) at k=0,

Ec(T}=un—3ItI, (4.6)

and dominates the partition sum (4.1}in the limit I —+ 00.
The defect unbinding temperature T& is determined by
the condition Ec( Te )=0. To proceed further, we need to
determine up and t.

We assume the tunneling process between sites of the
honeycomb lattice can be modeled by a one-dimensional

where according to Table III, a=70. Upon using Eqs.
(4.11) and (4.10}, we find that the condition Ec(Td)=0
takes the form

' 1/2
Sp —So/Tda =32''3/2n e (4.12)

which is solved by Sc/Td =0.085. The assumption

zd ='E&, then leads to

Td =0.30+ecE)ac, (4.13)

i.e., Eq. (2.24} with c3
=0.30. The substitution

c~=0.15—0.30 in Eq. (2.11), however, shows that the
melting temperature T is significantly (about an order
of magnitude} smal/er than our estimate of Td in the re-
gime B,&

&B (B~. Evaluation of the high- field formula
Eq. (2.26) at B=Bx is only slightly more encouraging:
Using Table III for the centered interstitial energy leads
to T& =0.079scdo, while the Lindemann criteria at
B=B„gives T =0.02—0.09cpdp —Td. %'e conclude
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that the supersolid probably only exists for B & Bx, as in-
dicated in Fig. 5.

Of course, our estimate for Sp/Td is so small that it
casts doubt on the validity of the tight-binding model and
the WKB approximation, which are only strictly correct
at low temperatures. More accurate band-structure esti-
mates of T„ for B & Bx (including B &B„)would cer-
tainly be of interest.

8. Nature of the transition at Tz

As discussed above, a transition to a supersolid below
the equilibrium melting temperature of the flux crystal
becomes possible when 8 &B„. Once the defects proli-
ferate, interactions between them become important, as
in the closely related problem of vortex penetration just
above H, &. To model this process, we use a continuum
coherent state path integral representation of the parti-
tion function, similar to one used for flux lines near H„.
The details of the lattice of preferred sites are neglected,
although these could easily be taken into account if
necessary. The grand canonical partition function
describing the interstitial degrees of freedom then reads

= fg)p g)g'~e s(A4 } (4.14)

with

S~q, q']= fd rdz 1(; a, — V
2Kd

+r I@;I'+u lg; I'+v Ip; '+

(4.15)

magnitude of the six smallest reciprocal-lattice vector
jG(T)] of the Abrikosov flux array for fixed magnetic
field B. Note that B will also be, in general, temperature
dependent for fixed external field H. The number of unit
cells per unit area n, is related to G according to

n, ( T}=v'3 6(T)/8m (4.17)

=no n, (—T) &0 . (4.18)

A plot of n, (T)lno is thus a direct measure of the density
of defects, with n, ( T )/no = 1 for T & Td, and

n, (T)/no&1 when T& Td.
A nonzero defect order parameter (g;(r,z) ) necessari-

ly implies that the boson order parameter (1.6) is nonvan-
ishing, because wandering vacancies or interstitial defects
catalyze enhanced entanglement of the underlying vortex
crystal. The vortices are thus simultaneously crystalline
and entangled when Td & T & T, as discussed in the In-
troduction. Once the equilibrium concentration of one
type of defect is nonzero, all defects will proliferate in at
least small concentrations. Consider, in particular, the
process shown in Fig. 1(b), the creation of vacancy-
interstitial pairs. This can be modeled by adding terms to
the action (4.15) as follows:

If vacancies or interstitials only exist in small closed loop
pairs, as in Fig. 1(b), n, must be exactly equal to the areal
density of vortices, n, =no =B/Po. Above the prolifera-
tion temperature Td, interstitials dominate over vacan-
cies, and we have

;(T)= & lq;(, )I'&

Here g;(r, z) and P,"(r,z) represent interstitial line creat-
ing and annihilation operators, and r ~ ( Td —T } is the de-

fect chemical potential. The areal density of interstitials
n, is given by

(4.16)

S~S+f d r dz P; 8, — Vj P„+r„IQ„I
2E,d

+g(4;f.+0'0; } (4.19)

and the couplings u and v represent the effect of interac-
tions.

The nature of the transition to the supersolid which
occurs with decreasing r depends crucially on the sign of
the quartic coupling in Eq. (4.15). If u &0, then a con-
tinuous transition results, and nd ~(T Td) up to loga--

rithmic corrections. Both the coeScient and the loga-
rithmic correction can be calculated as in Ref. 7. If u &0,
the transition to the supersolid becomes first order. A
first-order transition is possible because the microscopic
two-body interaction between centered interstitials
Irepresented by u If(r, z)I in Eq. (4.15}] is attractive, at
least at large distances; see Sec. III. The unbinding tem-
perature Td &T is probably too low to allow for a
significant thermal renormalization of u, which could in
principle be driven positive by entropic effects. The first-
order transition described by (4.15) with u negative is dis-
cussed in Ref. 45.

A finite density of proliferating defects is detectable, at
least in principle, via a neutron-difFraction experiment
which precisely determines the temperature-dependent

The first two terms are the vacancy propagator and
chemical potential, while the last allows pair creation and
destruction with probability proportional to g. Because
the vacancies are unfavorable relative to interstitials, r,
will remain positive just above Td. We see, however, that
a nonzero ( P;(r,z ) ) acts like an ordering field on

P„(r,z), i.e., (P, (r, z) )%0 for T & Td. In more physical
terms, vacancies will appear because their unfavorable
energy in isolation is compensated by nearby thermally
created interstitials.

We also mention an exotic type of supersolid which is
possible, at least, in principle: Suppose that the split in-
terstitial, or some similar defect had the lowest energy.
The three distinct orientations of this defect within its
hexagonal cell represent an internal degree of freedom for
the corresponding "boson" world lines. Should such
"ribbonlike" defects proliferate in the solid, the resulting
fluid of lines would be a "quantum rotator" liquid, with
the same potential broken symmetries as a quantum
three-state Potts model when interline interactions are
taken into account.
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C. Nature of the transition at T

where the IG) are reciprocal-lattice vectors in a plane
perpendicular to z. The free-energy diff'erence 5P be-
tween the liquid and crystalline phases can then be ex-
pressed as a Taylor series in the order parameters Ipoj,

6

rG X ~PG ~
+~ X PG,PGPo + ' ' '

j=1 G,.+G.+Gk =0

(4.21)

where we have included only the first ring of six smallest
G's. The crucial element is the third-order term allowed
by the symmetry of a triangular lattice, which leads to a
first-order transition within this mean-field theory. The
magnitude of the smallest 6's in Eq. (4.20}would be com-
pletely determined by the magnetic field for type-I melt-
ing, but would depend on the incipient density of vacan-
cies or interstitials in the type-II case, as discussed in Sec.
IV B.

Tesanovic has suggested that when the freezing tran-
sition approaches H, 2, as it will at low temperatures or if
the fluctuations are weak, the transition will be to a
charge-density wave state with a wave vector not simply
related to the magnetic field. Such a state is similar to
the supersolid phase discussed here, and presumably
evolves continuously into it as the melting field falls we11

below H, 2. The line of supersolid phase transitions may
also be related to the solid-phase transition suggested by
Glazman and Koshelev, above which phase coherence
is lost in the z direction. See Sec. IVD.

Note that generically, if a melting transition is weakly
first order, it is likely to be to an incommensurate solid
phase as the wave-vector-dependent rG in Eq. (4.21} will
in general not have its minimum at any particularly sim-
ple wave vector.

The distinction between type-I and type-II behavior
also affects dislocation mediated melting theories, which
start from the ordered phase just below T . Reference 8,
for example, studies effects of dislocation loops which are
confined to the plane spanned by their Burgers vector and
the z axis. This restriction implicitly assumes type-I
melting, i.e., that no vacancies or interstitials are present
at long wavelengths. The absence of vacancy or intersti-
tial lines means that only "glide" motions of dislocation
lines are allowed along the timelike z axis, which is
equivalent to a planarity restriction for the three-
dimensional vortex loops. A small concentration of prol-
iferating vacancy or interstitial lines would allow "climb-

It is important to distinguish between type-I and type-
II melting into a liquid phase, according to whether va-
cancy and interstitial defects have already proliferated-
see Fig. 4. Consider the standard Landau argument for a
first-order transition starting from the Qux-liquid state:
Provided Quctuations suppress crystallization well below
the mean field H, 2, one can expand the local BCS conden-
sate density in Fourier components of the incident densi-

ty wave,

(4.20)

like" distortions of a vortex loop, as the loop absorbs or
emits these defects. Type-II dislocation mediated melting
would thus involve arbitrary nonplanar dislocation loop
configurations, in contrast to the planar loops associated
with type-I melting.

D. Transport properties

Finally, we compare briefly the resistive properties of
the supersolid, crystal, and vortex Quid phases. In the ab-

sence of pinning by random impurities, all the above

phases dissipate currents perpendicular to the macro-
scopic magnetic field since the vortex lines can move free-

ly provided —in the solid —the motion is uniform. In
contrast, the vortex crystal is a linear superconductor for
currents parallel to the z direction. Concomitantly, it can
screen additional magnetic fields normal to the z direc-
tion. This will not occur in a semi-finite system with a
planar surface, since the magnetic fields can just rotate.
But in a cylinder with the vortex parallel to the axis, a
small additional azimuthal magnetic field will be ex-

pelled, decaying exponentially in a layer with thickness
given by an effective penetration length.

Even in the crystal phase, Pnite currents parallel to z
will be dissipated by nonlinear nucleation of vorticity
normal to z~ the details of this process in bulk samples
have not, to our knowledge, have analyzed.

It is interesting to note that while the vortex crystal is
very anisotropic in response to uniform currents, it ap-
pears much more isotropic in its linear confinement of
magnetic monopoles as discussed in the Introduction.

Both the vortex supersolid and vortex Quid phases will

respond like normal metals to currents parallel to f, al-

though there will be additional nonlinear dispersion and
nonlocal effects. The linear resistivity may also be ex-
tremely anisotropic if the vortex lines are rather straight.
In the supersolid phase, the dissipation will be dominated
by the fiuid of interstitial (or vacancy) lines, while the un-

derlying lattice will not move in response to a small
current in the z direction.

Pinning by random impurities, oxygen vacancies or
other defects strongly affects the resistive properties of
the mixed state of superconductors. If the pinning is very
weak, the thermodynamic properties will be little
affected, but the long-range translational order of both
the crystal and supersolid phases will be destroyed at
large distances, resulting in a large but finite positional
correlation length. The crystal phase could be replaced
in its entirety by a truly superconducting vortex-glass
phase' with vanishing linear resistivity. In contrast, the
vortex fluid phase is not much affected by weak pinning.
Because the defects are Quidlike in the supersolid phase,
they also will not be strongly affected by weak pinning,
provided they are suSciently dense. The resulting
phase will then still be metallic with nonzero resistivity.
Thus, it appears likely that the possible vortex-glass
phase transition for weak pinning should occur at what
was the defect proliferation transition Td, in the pure sys-
tem. If the vortex lattice melting is type I, then the puta-
tive vortex-glass transition should probably occur at the
T of the pure system.

The nonlinear response of the weakly pinned superso-
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lid will involve motion of both the underlying lattice, in-
cluding plastic flow involving dislocations, as well as va-
cancies and interstitials. Thus, even if the defect lines
themselves are pinned, and the supersolid is in a vortex-
glass phase, the nonlinear response might distinguish it
from a weakly pinned crystal.

In the presence of sufficiently strong pinning, both
equilibrium phase transitions —defect proliferation and
melting —will be destroyed. The vortex-glass transition,
if it exists at finite temperatures, will then become second
order with the resistance vanishing continuously as the
temperature is decreased. In this case, the distinctions
between the low-temperature solid phases will disappear
as the extent of any crystalline order will be very short
range. There are, however, several caveats. First, it is
likely that hexatic bond-orientational order can persist
out to much longer distances than positional order, ' and
perhaps even to infinite distances so that distinct hexatic
and vortex-glass transitions could occur. Another possi-
bility is that more than one type of vortex-glass phase
could exist, one with residual shear elasticity, as hy-
pothesized by Feigel'man et (tl. and one without shear
elasticity as discussed by Fisher, Fisher, and Huse. '

Which of these phases actually can exist even in principle
is still very unclear. This complex set of possibilities il-
lustrates the subtleties once random point pinning is tak-
en into account.

As mentioned earlier, the basic phase boundaries may
well, except for strong pinning, be determined by the
properties of the pure vortex systems analyzed in this pa-
per. Thus, a more quantitative analysis of the phase dia-
gram in the pure system is certainly merited.¹teadded in proof. An entropy argument, similar to
that embodied in Eq. (1.3), has been constructed for de-
fects in columnar liquid-crystal phases. See J. Prost, Liq.
Cryst. 8, 123 (1990).
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APPENDIX A: CALCULATION OF THE DYNAMIC
MATRIX IN THE LIMIT A,i~ 00

and Ewald*s generalized 0 function transform

ge ' '"'"exp[ —Ix(l) —xI t]
I

= " &e '(q+o'"exp[ —Iq+GI'/4t],
a, t 6

(A3)

~ g2f d ry ——i(q+6) x

a, 0

Xexp[ —~X'Iq+Gl'] .
(A4)

Now we split the ~ integration by introducing an arbi-
trary Ewald split parameter e

I, (x/A, )=—f dr~ 'e
2 0

—iq x(l) Ix(l ) XIX e 'q'" exp
4vA,

—e(k iq+Gi +1)
+ 2~ g2 y —i(q+6) x e

I+A, Iq+GI
(A5)

where we have already performed the ~ integral in the
second term.

%e are interested in the limit of large London penetra-
tion depth A, . Upon choosing e-A, we take the limit
A, ~00 with ei, staying finite. Then one gets for the
second term in Eq. (A5)

—ex'lq+ Gl'
2'7r g2 y —i(q+G) x

I+&'Iq+Gl'
(A6)

For the first term we make the substitution

y = Ix(l )
—xI /(4'(, ) and get

exp
dy Ix(l ) xI —y iq x(i)—e e

I 4P~

In the limit )(,~(x we get exp[ —Ix(l ) —xI /4yi(, ]~i,
since y is bounded from below by (t = I/4ei, Ix(l) —xI .
Hence the first terzn can be written in terms of the ex-
ponential integral function which is defined by

where a, is the volume of the unit cell, one can rewrite
the first term in Eq. (Al) as

1)(x/i()= pe q'*("&,(lx(l) —xl/&)
I

"dry 'e 'ye 'q"'"exp- I x(l )—xl'
2 0 4'.

2

Eo(x ) =— dr r e 'exp
2 0 4' (A2)

In this appendix we describe the details of the calcula-
tion of the dynamic matrix. Starting from Eq. (3.16) the
central quantity to calculate is

I(x/A, ) = g e 'q "")Ko(Ix(l )—xI /)(, )—I(.0( IxI /A, ),
1

(A 1)
where we set A,~=—A, in what follows. Upon using the in-
tegral representation of the Bessel function Xo

E,(x)= Ei( —x)=—~ dp
x

In summary one gets

2

cm &x — e 1
4eA, 2

—,g2~q+G~2

+ 2)r g2 y —i(q+G) x e

Iq+Gl'

(A9)
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In order to get I( ~x~ /A, ) one has to subtract

Eo(x /A, ) =— dr r 'e 'e " '= —ln(x /2A, }
e)

2 0

ing the long-wavelength approximation (3.18) for C ~(q),
one finds three contributions to EvR, the vacancy relaxa-
tion energy at constant lattice spacing,

(Alo)

from I&(~x~/A, ) in the limit A, ~~. Therefrom one can
now calculate C & and expand in powers of the wave vec-
tor q. The result is

4o qqC (q)= 2n q q + [& ~q~ —2q q~]
8~2P2 q

2

Eva([u(l)) )=2eo(I)+I2+I3)

with

1 d'
I, =— q i2q, q 'q

2 (2n) q q

u P g
X 2m. + (5 ~q —2q q~)

8

(Bl)

(Al 1)

where we have taken 1/(4eA, )=n /a, for the Ewald sepa-
ration parameter.

'qq-' 'q- ' 'qq'q . B2

APPENDIX B: VARIATIONAL CALCULATION
OF THE VACANCY-FORMATION ENERGY

In this appendix we give the details of the variational
calculation for the vacancy-formation energy. Upon us-

I

and

I = — i — qi q
q q 2

kd g kd=—f dq q 'f(q)+ f dqqf(q), (B3)

I3=— —1 + q — —2 q
—

q
— i a, q

1 2m(q —k) (q —k}~ ae 2 , , k —q~

2Qq q k (q-k)' 8 'k
q

' f f f( )f(k) 2 + '( k)( —2 k+k )
(q —2q, k+k )q2k2 8 q2k2

a,
4 q'k'(q k —k )(q —q k)

(B4)

where f(q }=f(1+cq+dq ) and we have approximated the hexagonal Brillouin zone by a circle of equal area with ra-
dius kd =/4n/a,

The third contribution can be split into I3 =I3, +I3&+I3„where

I,=a~f qdq f kdk 2~ f dp f(p)f(k)( k

(2~) —~ (q —2qk cosy&+k )q k

Upon using

(qz
—qiq2 cosq )( —ql —

qiq2 cosq }
F(q, , q2)= dp

'lr q i+q2 2qlq2 cos

one arrives at

a& kd kd f (q)f (k) k for k (q
I3,= — dq8~ o o qk q for k)q

—7rq2 for q] &q2

q i for q& (q2
(B6)

' f dq f f(q)f(k)dk—+ f +f(q)f(k)dk
8~ o oq q k

a kd
I3b= ' f q dq f k dk f" dy f(p)f(k)(q —2qk cosy&+k )

16 o o (2~)3 —~ qk

(B7)

I3G

2

f dq f dk f(q)f(k}qk,

g2 kd k~' f qdq f kdk f deaf(p)f(k)(qk cosy —k )(q —qk cosy)

3a

16(2~)'2 f dq f dk f(q)f(k}qk .

(B8)

(B9)
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All these integrals diverge at small momenta. This is due
to the fact that we have taken the penetration depth
A, —=A,~ to be infinite. Upon reintroducing the lower cutoff

the leading contribution (which diverges in the limit
A, ~ ~ ) is found to be c = =0.161+a, ,

d
(B14)

Now we have to look at the subleading terms. We set

f= 1 and do variational calculation for c and d. One ob-
tains

ln(kd A, )+0(1),

I2 = f in(—kdi, )+8(1),
I3=8(1,(ink, )IA, ) .

Hence one finds

(B10)

(Bl 1)

(B12)

10d= — = —0. 114a, .
7k

(B15)

The result for the vacancy relaxation energy at constant
lattice spacing becomes

2

g(2)—
VR

8 2g2
f 1 3f2
2

ln(k A, ) —f ln(k l)+ f—
16

2
(2) (j)o 1 265

32m A, kA,
(B16)

(B13)

Since we are interested in the limit A, ~00 we must
choose f= 1 in order to cancel the ln(kd A, ) divergences in
the final expression for the vacancy free-energy.

which corresponds to a free energy of
'2

GD= 0.789 .
4o

(B17)
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