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The hexagonal Heisenberg model, in which the spins along the c axis interact via a ferromagnetic
exchange coupling and those in the c plane via an antiferromagnetic one, undergoes nontrivial
changes when an external magnetic field is applied in the c plane. In the classical approximation
this model has the same phenomenology as the two-dimensional planar triangular antiferromagnet:
it is characterized by infinitely many minimum-energy configurations, thermal Quctuations select
one configuration out of the manifold, and an intermediate collinear phase intervenes between the
low-field 120' three-sublattice configuration and the high-field asymmetric fan phase. We find that
the quantum nature of the model leads to first-order phase transitions between the helix and fan
phase and between the fan and saturated phase. This model is suitable to describe CsCuC13 and
agreement between theoretical expectations and experiment is found.

I. INTRODUCTION

The two-dimensional (2D) triangular planari s and
classical Heisenberg4 antiferromagnets show a rich phase
diagram when an external magnetic Geld H is applied
in the plane. Indeed analytic low-temperature expan-
sions and Monte Carlo (MC) calculations evidentiate
four different configurations at increasing H for suffi-
ciently low temperatures. Such phases are a distorted
120' three sublattice phase (with a spin opposite to the
field), the "up-up-down" phase with two spins paral-
lel and one antiparallel to the field, an asymmetric fan
(with two spins parallel to each other, but not one di-
rected along the field), and, finally, the saturated phase
(with all spins parallel to the field). A unique property
of the triangular planar and classical Heisenberg antifer-
romagnets is that at zero temperature infinitely many
minimum-energy configurations exist even in the pres-
ence of an external applied magnetic field. These con-
figurations correspond to the infinitely many spin pat-
terns that in each elementary triangle satisfy the condi-
tion Si+S2+Ss —pH/6JS = 0 where p is the magnetic
moment of a site and J is the spin-spin antiferromag-
netic interaction. This degeneracy is lifted by thermal
fluctuations which, at low temperatures, select the con-
figuration with one spin antiparallel to the field. Ana-
lytic expansions in 1/S show that the degeneracy of the
ground state is lifted also in the 2D quantum triangular
Heisenberg antiferromagnet owing to the zero-point mo-
tion energy. Quantum fiuctuations are also responsible
for the stabilization of the "up-up-down" phase over a
finite range of magnetic Gelds. The elementary excita-
tion energies have been given for both the triangular pla-
nar antiferromagnet and for the triangular Heisenberg
antiferromagnet. An interesting behavior of the uniform
mode energies as a function of the external magnetic field
is found for the Heisenberg model when the eEect of an
easy plane exchange anisotropy is accounted for. The

behavior of the uniform modes as function of the mag-
netic Geld is strongly dependent on the ground state se-
lected by quantum fluctuations. In particular, the uni-
form modes selected by quantum fluctuations compare
favorably with magnetic resonance data ' of CsCuC13,
an ABXs compound with spin S = 1/2 where ferro-
magnetic chains parallel to the c axis are weakly coupled
antiferromagnetically in the c plane where spins are lo-
cated on a triangular lattice. The uniform magnetization
of CsCuC13 has been measured as function of an external
magnetic Geld applied both parallel and perpendicular to
the c axis. When the field is applied in the c plane the
magnetization shows a plateau at a field about one-third
of the saturation field and the value of the magnetization
at the plateau is roughly one-third of its saturation value.
The Gt between the theoretical results obtained Rom the
2D triangular Heisenberg antiferromagnet and the exper-
imental data of CsCuC13 is exciting even though such
a good fit could be an accident since the 3D nature of
the actual compound is neglected. Here we study the
3D hexagonal Heisenberg model with ferromagnetic ex-
change coupling along the c axis and antiferromagnetic
coupling in the c plane in order to keep the relevant fea-
tures necessary to account for the magnetic properties of
CsCuC13. We find that the classical version of this model
shows the same peculiarities of the triangular antiferro-
magnet, for instance, infinitely many minimum-energy
configurations in external magnetic field and selection of
one particular configuration by thermal fluctuations.

Linearized equations of motion for the spin deviation
operators provide the spin wave frequencies. The field
dependence of these &equencies is strictly related to the
minimum-energy configuration assumed. The zero-point
motion energy which involves a sum over these frequen-
cies is in its turn dependent on the minimum-energy con-
figuration assumed, so that it is able to select one out of
the infinite manifold of these configurations. At vari-
ance with classical models, in this quantum model the

0163-1829/94/49(14)/9679(9)/$06. 00 49 9679 1994 The American Physical Society



9680 E. RASTELLI AND A. TASSI

selection of a particular configuration occurs at zero tem-
perature. The minimum-energy configuration selected by
quantum Huctuations is the same as that selected by ther-
mal Huctuations at finite temperature. Anyway a signif-
icant efFect of quantum Huctuations is the stabilization
of an intermediate phase between the low-field distorted
helix configuration shown in Fig. 1(a) and the high-field
asymmetric fan configuration shown in Fig. 1(b) over a P-
nite range of magnetic fields. On the contrary, this range
shrinks to zero in the classical model for vanishing tem-
peratures.

We find that the uniform mode &equencies of the low-
field configuration compare favorably with magnetic res-
onance data of CsCuC13. ' The intermediate phase sta-
bilized by quantum fluctuations occurs for fields around
one-third of the saturation field and is characterized by
a magnetization one-third of its saturation value. More-
over, a plateau is found by a Maxwell construction that
eliminates unphysical states with decreasing magnetiza-
tion at increasing magnetic field. This should explain the
plateau observed experimentally. Note that the interme-
diate phase we find is a coexistence region between the
distorted helix and the asymmetric fan phase. This is a
relevant difFerence with respect to the the intermediate
phase of the classical triangular antiferromagnet stabi-
lized by thermal fluctuations. Indeed, in the classi-
cal 20 models the intermediate phase is a homogeneous
"up-up-down" phase with two spins parallel and one spin
antiparallel to the field as shown in Fig. 1(b).

The format of the paper is the following: In Sec. II we

study the minimum-energy configurations of the model
in classical approximation and the spin wave dispersion
curves obtained by linearized equations of motion of the
spin operators. In Sec. III we consider the eH'ect of quan-
tum Huctuations on the ground state configuration and
on the magnetization. Comparison with experimental
data of CsCuCl3 is given in Sec. IV. Finally, summary
and conclusions are contained in Sec. V. Technical de-

(a)

(b)

(c)

FIG. 1. The magnetic cell in a generic c plane of the hexag-
onal quantum Heisenberg antiferromagnet: (a) distorted he-

lix phase for h = 0.5, (b) "up-up-down" phase for h = 1, (c)
asymmetric fan phase for h = 1.5.

tails of the spin wave theory for the hexagonal lattice we
consider are given in the Appendix.

II. GROUND STATE CONFIGURATION, SPIN
WAVES, AND ZERO-POINT MOTION ENERGY

We consider a hexagonal lattice of ferromagnetic chains
coupled by weak antiferromagnetic interaction. Figure 1
shows the iII3 x ~3 magnetic cell in a generic c plane.
We assume the external magnetic field directed along a
line of in-plane nearest neighbors. The Hamiltonian we
consider reads

'8 = —J ~ ~S. S. , + S S-, + S(') S(') ~ + J & ~S( )'S( )' S( )'S( )' S(')'S(')'~0~ y i i+/ i i+/ i i+/ J g0 0 / ( i i+/ + i i+/ + i i+/)
i8' i8'

+ 2J ~ ~S( ) ~ S( ) + S( ) S( ) + S( ) S( ) 3 —2 J X (S( )'S( )'+ S(~)'S(')' S(') S( )')
i i+6 i i+8 i i+6) ~ r' .( i i+8 i i+b + i i+8 J

ib i6

~) ~ (~(a)x g(b)x + ~(c)z) (2.1)

where 2JO is the ferromagnetic intrachain exchange in-

teraction, 2J is the in-plane antiferromagnetic exchange
interaction, qO, g & 0 are the easy-plane exchange
anisotropy that couple spins along the c axis and in the
c plane, respectively. H is the external magnetic field,

g is the Lande factor, p~ is the Bohr magneton. i la-
bels the sites of each one of the three sublattices la-
beled by a, 6, c in which the hexagonal lattice is divided.
b = (0, 0, +c) joins a spin with its intrachain nearest

neighbors, b = (a, 0, 0), (—2a, + ~&a, 0) joins a spin with
its in-plane nearest neighbors.

We use the standard spin wave approach to obtain
the ground state energy, the elementary excitation en-

ergy, and the low-temperature properties. We account
for a configuration with three spins per unit cell,

'IjtI3 being the angles between the spins of the a, 6, c
sublattices and the external magnetic field, respectively.
Transformation to sublattice quantization axis, Holstein-
Primako8' spin-boson transformation, minimization of
the classical energy of the model (proportional to 8 )
with respect to pi, p2, $3, truncation of the bosonic
Hamiltonian within bilinear contribution and diagonal-
ization of the so obtained harmonic Hamiltonian are
given in the Appendix. Here we limit ourselves to show

the main results.
Hamiltonian (2.1) is replaced by
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(2.2)

Eo is the ground state energy of the model in classical
approximation (S ~ oo)

Ep =2JNS [cos())t)i —))t)z) + cos(fz —)t)s) + cos($3 Qi)
—h(cos Pi + cos Pz + cos Ps)] —2JoNS, (2.3)

where h = giJ, ~H/6 JS. Minimization of Eo with respect
to Pi, P2, Ps gives the minimum-energy configuration in
classical approximation. We obtain
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FIG. 2. Zero-point motion energy b,E/2 JONS vs magnetic
field for g0 ——0, q = 0.054, and j = 0.263. The upper curve
corresponds to the choice )t) = 0, the lower curve (the stable
configuration) to 1It) = PM.

1
sing~ =—

2

3 —hz + 2hcosp—sing p (h —cosP) 1+ h~ —2hcos

(2 6)

AE = 3JNS ——2JoNS+ —).).~~
e=1 q

for0&h&3and

(2.12)

with —PM ( P & PM where PM = m for 0 & h & 1,

QM = cos ( "z& ) for 1 & h & 3. This configura-
tion coincides with that obtained for the triangular pla-
nar antiferromagnet and for the triangular classical

Heisenberg antiferromagnet. ' As it is well known the
angle that the spins of one sublattice make with the field
is arbitrary. This corresponds to an infinite degeneracy
of the minimum-energy configuration which reads

Eo = —JNS (3+ h ) —2JoNS . (2 7)

For h & 3 the classical minimum-energy configuration is
nondegenerate and corresponds to the saturated phase

4i =42 =Ps = o.'

Eo —— 6JNS (h —1—) —2JoNS . (2.8)

By a suitable Bogoliubov transformation given in the Ap-
pendix we obtain

hu)&'l = 4JoSy x~'l, s = 1,2, 3, (2.10)

where x&'~ are the solutions of the following cubic equa-
tion:

(2.9)

where a~, P~, 0'~, are the destruction operators of the
spin waves of wave vector q. The spin wave energies are
given by

3

SE = -3JNS(h - 2) 2J,NS-+ - ) ) r ~'l

e=1 q

(2.13)

for h & 3. The ground state energy in the harmonic ap-
proximation is E~ = Ep + AE. For 0 & h & 3 the P
dependence of the ground state energy is entered by AE.
In particular, the last term of (2.12) is P dependent since

the spin wave frequencies uz~'l are P dependent (see the
Appendix). Numerical evaluation of b,E as a function of
P gives the following result: b,E is maximum for P = 0
and minimum for P = PM. In Fig. 2 we show the mini-
mum and maximum value of AE versus field for go = 0,
g = 0.054, and j = 2J ——0.263, a choice of parameters
proper to model CsCutlq. For 0 ( h & 1 the stable con-
figuration corresponds to P = m and is shown in Fig. 1(a)
(distorted helix). For h = 1 the stable configuration is
given by Fig. 1(b) ("up-up-down" phase). For 1 & h & 3
the stable configuration is characterized by P = PM and
is shown in Fig. 1(c) (asymmetric fan). For h ) 3 the
saturated phase is the stable one.

III. FIRST-ORDER PHASE TRANSITION
INDUCED BY QUANTUM FLUCTUATIONS

The &ee energy in harmonic approximation reads

x —ax +be —c=Q3 2 (2.11) E=Ee+11E+1eeeT) ) le(1 —e e ). (3.1)
e=l q

with a, b, c, given in the Appendix. The zero-point mo-
tion energy LE is given by For 0&h &3wehave
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Like quantum fiuctuations, thermal fiuctuations are P
dependent for 0 ( h ( 3, since T(') are (t) dependent
in this range of fields. Again the stable configuration is
characterized by ttt = PM, as shown in Fig. 3, where a
temperature T = 10 K is taken.

The magnetization is given by the usual thermody-
namic realtion M = —&H. If we define a reduced mag-
netization as m = ~s we havegpgNS

—0.04
0

I

1 2
h=gp~H/6JS

3
1
4

for 0&h&3and

1 1 )9f (t)
2S 6jS Bh

(3.6)

F = —2JONS 1+j 1+ — + 3 1+j. t' l1 1

3) 3S

(3 2)

where t = 4J s and4JpS

f(t) = —f dz J dyf dz

x ) Qz(') + 2t ln 1 —e
) .s=1

(3.3)

with x = 2aq, y = ~2aq„, z = cq, . For h ) 3

F = 2JoNS 1+—2j (h —1) + [33S

+yt(& —y) —f('))I. (3.4)

FIG. 3. Quantum and thermal contribution to the free en-

ergy (I" —Eo)/2JoNS at T = 10 K for the same parameters
as in Fig. 2.

for h&3.
Quantum Buctuations accounted for by the first term

of Eq. (3.3) cause an interesting phenomenon in our
model, that is the onset of two first-order phase tran-
sitions at about 6 = 1 and h = 3, respectively. Indeed,
as shown in Fig. 2 by the lower curve, the zero-point
motion energy is a function that decreases with field for
0 ( h, ( 1 and increases for h ) 1. This means that
the magnetization is higher than its classical value for
0 ( h & 1 and lower for h ) 1 undergoing a discontinuous
jump at 6 = 1. To avoid an unphysical decreasing of the
magnetization at increasing magnetic field as involved by
the jump, we make a Maxwell construction as shown in
the inset of Fig. 4. At about 6 = 1 a coexistence region
between the distorted helix and asymmetric fan phase
replaces the discontinuity. The same can be done at
h = 3 where a coexistence region between the asymmetric
fan and saturated phase occurs. The temperature mag-
nifies the plateau entered by the Maxwell construction
as shown in Fig. 5. This behavior differs substantially
&om that of classical 2D models, where an intermediate
new phase ("up-up-down" phase) between the low-field
distorted helix and the high-Geld asymmetric fan is in-
troduced by quantum Quctuations. The "up-up-down"

CQ

C)

II

1.0

0.8

0.6

0.4

I I I I

0.40

0.35

0.30

0.25

oso
0.8 0.9

I I I I I I I

FIG. 4. Reduced magnetization vs mag-
netic Beld at T = 0 K for g0 ——0, g = 0.054,
and j = 0.263. The insets show the Maxwell
construction at h = 1 (left, high) and h = 3
(right, low). Crosses are experimental data
concerning CsCuC13 from Ref. 9.
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phase, supported by thermal Buctuations in 2D classical
triangular antiferromagnets, is a homogeneus phase with
two spins pointing along the field and one spin pointing
in the opposite direction [see Fig. 1(b)). We think that
the "up-up-down" phase in the 3D hexagonal quantum
Heisenberg antiferromagnet should be replaced by a co-
existence region between the distorted helix [Fig. 1(a)]
and asymmetric fan [Fig. 1(c)] phase.

IV. MAGNETIC RESONANCE DATA AND
MAGNETIZATION OF CsCuClq

Elastic neutron scattering experiment allows the
evaluation of the Hamiltonian parameters of Eq. (2.1)
to fit CsCuCls, a hexagonal compound with S = 1/2
of the ABX3 family, where A is an alkali element, B a
magnetic ion, and X can be Cl, Br, or I. We can ne-
glect the easy-plane exchange anisotropy along the c axis
(rjp = 0). The experiment gives 2Jp ——64.45 K=1342 GHz,
2J = 11.28 K=235 0Hz, g = 2.19. The fitting with mag-
netic resonance data allows us to evaluate the easy-plane
exchange anisotropy in the c plane: g = 0.054. Indeed,
for rjp ——0, q = 0, and 0 & h & 3 the solutions of (A14)
lead to the following uniform mode frequencies:

(4.1)

with p(h, P) given by (A19). In Fig. 6 we show the fitting
for ri = 0.054. The lower (upper) continuous curve is ob-
tained taking P = PM in (4.2) [(4.3)]. The function of P
that appears in (4.2) and (4.3) is p(h, PM) = (h+ 2) for
0 & h & 1 and p(h, PM) = z&, [(h2 —5)2+2] for 1 & tt ( 3.
This choice corresponds to the minimum of the zero-point
motion energy 6E and the corresponding configurations
are those shown in Fig. 1. Lower (upper) open circles are
obtained taking P = 0 in (4.2) [(4.3)]. In this case one
has p(h, 0) = (h —2)2 for 0 & h & 3. This choice that
corresponds to the maximum of AE leads to a configura-
tion characterized by the spins of one sublattice pointing
along the Geld and the spins of the other two sublattices
symmetrically oriented with respect to the field. Inci-
dentally, this configuration was originally assumed as the
stable one to fit magnetic resonance data of CsCuC13.
The striking difference in the uniform mode energies ver-
sus field, depending on the choice of the ground state
configuration, confirms the crucial role of quantum Quc-
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FIG. 6. Uniform mode frequencies of CsCuC13 vs magnetic
field for g0 ——0, g = 0.054, and j = 0.263. Continuous curves:

IjkM. Open circles: P = 0. Crosses: magnetic resonance
data &om Ref. 8.
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tuations in selecting the configuration with (t = PM. For
h & 3 the saturated phase is the stable configuration.
The uniform mode &equencies become

Aud = Ald = 6JS/(h —3)(h —3+ „), (4.4)

Res ) = 6JS/h(h —2g). (4.5)

Experimental data concerning magnetization of CsCuCl3
at T = 1.1 K (Ref. 9) compare favorably with our theoret-
ical result at T = 0 K as shown in Fig. 4. In particular,
the plateau at about h = 1 is in good agreement with
the plateau observed at H 11 T. The plateau at h = 3
(H 31 T) is hard to be seen at so low temperatures.
However, as shown in Fig. 5, the plateau are strongly af-
fected by the temperature. In particular the plateau at
h = 3 which is hardly detectable at T = 0 K is mag-
nified at T = 10 K. Note that the Neel temperature of
CsCuC13 at H = 0 is TN = 10.5 K. For this reason we

recommend magnetization measurements on CsCuC13 at
a temperature higher than T = 1.1 K in order to test our
theoretical interpretation of the properties of CsCuC13,
when an external magnetic field is applied in the c plane.

The evaluation of the zero-point motion energy and
magnetization in a way similar to ours has been per-
formed when the external magnetic field is applied along
the c axis. ii In that case the magnetization is found to in-

crease as the magnetic field increases, leading to a jump
at h = 1.08 in qualitative agreeinent with experiment.
Note that in our case (magnetic field applied perpendic-
ular to the c axis) a plateau is found in the magnetization
instead of a jump in agreement with experiment.

V. SUMMARY AND CONCLUDING REMARKS

We have discussed the magnetic properties of a hexag-
onal spin lattice of ferromagnetic chains parallel to the
c axis weakly interacting via an antiferromagnetic inter-
chain coupling when an external magnetic field is ap-
plied perpendicular to the c axis. This model is suit-
able for modeling some compounds of the ABX3 fam-

ily. In particular, we focus on CsCuC13 for which elastic
neutron scattering, magnetization, and magnetic reso-
nance data7' as a function of the external magnetic field

are available. Our approach consists of the linearization
of the equation of motion of the spin deviation operators
(spin wave theory) to obtain normal mode frequencies,
quantum and thermal fiuctuations (Secs. II and III). The
model shows infinitely many minimum-energy configura-
tions in classical approximation (S ~ oo) because the di-

rection of one spin over three with respect to the external
magnetic field is arbitrary. This peculiarity was already
found in the 2D planar triangular antiferromagneti and
in the classical Heisenberg triangular antiferromagnet.
For these 2D classical models low-temperature expan-
sions and MC simulations provide a rich phase diagram
in the H-T plane, where a particular configuration is se-
lected by thermal Huctuations. The possible configura-
tions are (i) a distorted helix with a spin antiparallel
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APPENDIX

In this appendix we give some details of the spin wave
approach to the model Hamiltonian (2.1). We introduce
a local reference axis where (; is the quantization axis of
the spin at site i supposed to be the same for each spin
belonging to the same sublattice. It is assumed to lay in
the c plane (the easy plane). Pi, 4)2, Ps are the angles
that the local axes of the spins of the a, b, c sublattice
make with the external magnetic field. For instance, for
the a sublattice we have

S,. = —S, "sing + S, cos4),
S(~)w S(~)n y + S(~)& s;ny (A1)

The customary Holstein-Primakoff spin-boson transfor-
mation

to the field, (ii) an "up-up-down" collinear phase, sup-
ported by crucial nonlinear effects, (iii) an asymmetric
fan phase, and finally (iv) a saturated phase comes in for
suKciently high fields.

In our 3D model we find that quantum Buctuations se-
lect the same configuration as thermal Buctuations do in
2D classical models, but two first-order phase transitions
between the distorted helix and the asymmetric fan con-
figuration and between the asymmetric fan and the sat-
urated phase are entered by a Maxwell construction that
rules out unphysical states characterized by a decreasing
magnetization at increasing magnetic field (Sec. III).

The magnetic resonance data ' and the magnetization
curve at low temperature of CsCuC13 compare favorably
with our theoretical results. In particular, the agreement
is assured by the effect of quantum Huctuations that se-
lect the configuration with one spin opposite to the field
at low fields (Sec. IV).

We suggest the opportunity of performing measure-
ments of the magnetization versus field at higher temper-
atures in order to test the existence of another plateau in
the vicinity of the saturation field. Also we urge neutron
scattering measurements in order to establish the nature
of the phase at h 1. Indeed, taking advantage &om
the geometrical factor in &ont of the strucure factor in
the neutron cross section, one could check whether the
plateau at 6 = 1 corresponds to a coexistence region of
two phases (distorted helix and asymmetric fan phase) or
it is due to the onset of a collinear "up-up-down" phase
as occurs in the corresponding 2D classical models. In
the former case the geometrical factor cannot reduce to
zero the intensity of the magnetic Bragg's peaks, whereas
in the latter, because of the collinear nature of the up-
up-down phase, the choice of a proper geometry with the
scattering wave vector parallel to the magnetization di-

rection should reduce to zero the intensity of the elastic
peaks.
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SI )4
( + t + )

/2S

S!'"=,. (a, -at+".),
+2S

2t
~(a)q g ata.

(A2)

are the usual destruction Bose operators of a spin devia-
tion on a site i of the sublattice a, b, c, respectively. The
ground state energy of the model in classical approxima-
tion (S -+ oo) is

Ep 2J——NS [cos(py —Q2) + cos($2 —Qs) + ms($3 4'1)
and similar transformations for the 6 and c sublattices
lead to the bosonic equivalent Hamiltonian

R = Ep+ Ry+ R2+ ~ ~ ~, (A3) h—(cos Pq + cos $2 + cos Ps)] —2JpNS, (A4)

where all contributions with three or more Bose opera-
tors are neglected (harmonic approximation). a;, b;, c; where h = gp,~H/6JS,

(g2S&
'Rq ———6JS ) ( sin(Pq —P2) + sin(Pq —Ps) —h sin Pq (a; —a, )2i )

+ sin($2 —Ps) + sin($2 —Pq) —hsin$2 (b; —b, ) + sin(Ps —Pq) + sin(Ps —P2) —hsinPs (c; — c)). (A5)

Minimization of @p with respect to pz, p2, and ps is equivalent to the condition 'Rz ——0. The angles between the
sp&ns belonging to the three sublattices and the field are explicitly given in Eqs. (2.4)—(2.6) o& S«11 ss wel»s the
classical minimum energy Ep is given in Eqs. (2.7) and (2.8) of Sec. II. The bilinear Hamiltonian of Eq. (A3) becomes

1
'R~ =) 6JS+4JOS 1 —

~

1 ——qo ~cos(cq, ) ))
x(ataq+ btbq+ ctcq) + ) gpJpScos(cq, )(aqa q+ atat + bqb q+ btbt + cqc q+ ctct )

+) 3JS 1 —g —cos(Pq —P2) (p'aqb q+pqa b ) + 1 —g+ cos(Pq —$2) (p'aqb + pqa bq)
q

+ 1 —g —cos($2 $3) (p'bqc q+ pqb c ) + 1 —g+ cos($2 —Ps) (p'bqc + pqb cq)

+ 1 —g —cos($3 Qg) (p'cqa q+7qc a ) + 1 —@+cos(Ps —P~) (p'cqa +pqc aq) (A6)

for0&h&3, and

I'
'R2 ——) 6JS(h —2) + 4JpS 1 —

~

1 ——gp
~

cos(cg, ))
x(ataq+ btbq+ ctcq) + ) gp JpScos(cq, )(aqa q+ atat + bqb q+ btbt + cqc q+ ctct )

+ ) 3JS —g(p'aqb q+ pqatbt ) + (2 —g)(p'aqbt + pqatbq)
q

g(7qbqc —q + fqbqc q) + (2 g) (Pqbqcq + fqbqcq) l7( fqcqa q + Pqcqa q) + (2 T/) (P cqa + Pqcqaq)

(A7)

&~3e' ~ +2e '& ~ cos aqq —
3 9 (A8)

In order to diagonalize 'R2 we use the well-known tech-

for 6 & 3. The operators aq, bq, cq are the spatial Fourier
transforms of a;, b;, c;. The structure factor 7q is given
by

I

nique of the equation of motion for the boson operators.
We have

Ru~ laq = [o.q, 'R2], her~ lPq = [Pq, 'R2],

Aldq 0'q = [0'q~ R2] )
(3)

(A9)

where the following Bogoliubov transformations are as-
sumed:
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q
—~(&)a —v( at + r(&)g —s—q q q q —q

+Pq cq —
qq c )

(i) (i) t

P = tb(2)g, 2j(2)gt + r(2)b (2)t tq q q q —q "q q q —q
(2) (2) t+~q q q —q

(A1Q)

(A11) = 4JoSqbj z('), s = 1, 2, 3, (A13)

corresponding creation bose operators lead to a homo-
geneous system of six equations for the six unknowns
uq, vq, rq, sq, pq, qq. Solutions exist only in correspon-
dence of the zeros of the determinant of the system.
These eigenvalues are the spin wave frequencies we are
looking for. The result is

—~( )a v )at +„( )g (3)~t—q "q q sq —q
(3) (3) t+&q q

—
qq c-q~ (A12)

n~, P~, o~ are the destruction operators of spin waves
that diagonalize 'R2. Equations (A9) and those for the

z —az +bx —c=0,3 2

where, for 0 ( h & 3, one has

(A14)

where x(') are the solutions of the following cubic equa-
tion:

(t = 3 ]. —cos(cq, ) + j 1 —(1 —ri()) cos(cq, ) + j + 2j (1 —)7)siip~i (A15)

b = 1 —(1 —qc) cos(cq, )+j (2 1 —cos(cq )+ j —ssj lqs~ }
i(b —q)j 1 —(1 —qo)cos(cq, ) +j (2ss 1 —cos(cq, )+ j lqsl'+ —j(s, —s,)(qs+vs ))
+ (1 —q)'j'( —2 1 —cos(cq. ) +j lqsls —s,j 1 —«s(cq. ) + j (qs' + qs') + ssq'lqsl' ), (A16)

c = '1 —cos cq, + j —s2j 1 —cos cq, + j pq + —s2 —1 j' pq' + 7q*

1 — 1 —
7/p cos cq + j —3 1 —'g j 1 — 1 —gp cos cq + j pq + 1 —g j pq + pq (A17)

with j =,'J
3 1 2 3

sg ————+ —h2, s2 ———+ —h p(h, 1)I))
2 2

'
4 4

(A18)

p( )=p&4 = 4 —4hc so/(4c os42) —1) + h (16cos2 P —3) —6hs cos(t) + h4

1 —2h cosP + h2

Notice the (t) dependence of u, b, c. For tb ) 3, the coefficients of (A14) are given by

a = 3 1 —cos(cq, ) + j(h —2) 1 —(1 —)7o) cos(cqz) + j(h —2) + 6j (1 —)7)ip~i,

(A19)

(A20)

b = 2 1 —(1 —qo) cos(cq, )+j(h —2) ( 1 —cos(cq, )+j(h —2) —j lqs~

ib(1 —q)j' 1 —(1 —qo) cos(cq ) + j(h, —2) (2 1 —cos(cq, ) +j(h —2) lqsl* —j(qs+qs ))
+2(1 —q) j ( — 1 —cos(cq, )+j (h —2) lqsl —j 1 —cos(cq, )+ j(h —2) (q + q' ) +bj lqsl ), (A21)

c= 1 —coscq +j h —2 —3j 1 —coscq, +j 6 —2

3x 1 — 1 —gp cos cq, + j 6 —2

—2(1 —q)'j'[1 —(1 —qo) cos(cq ) +2 ("—2)l(qsl'+ (' —q)'2'(&s+ &s ) )
The diagonal form of 'R2 is given in Eq. (2.9) of Sec. II.

(A22)
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