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We use the single-cluster Monte Carlo update algorithm to simulate the Ising model on two-

dimensional Poissonian random lattices with up to 80000 sites which are linked together according to
the Voronoi-Delaunay prescription. In one set of simulations we use reweighting techniques and finite-

size scaling analysis to investigate the critical properties of the model in the very vicinity of the phase
transition. In the other set of simulations we study the approach to criticality in the disordered phase,
making use of improved estimators for measurements. From both sets of simulations we obtain clear
evidence &hat the critical exponents agree with the exactly known exponents for regular lattices, i.e., that
{lattice) universality holds for the two-dimensional Ising model.

I. INTRODUCTION

Physically the concept of random lattices plays an im-
portant role in an idealized description of the statistical
geometry of random packings of particles. ' A prom-
inent example is the crystallization process in liquids, and
many statistical properties of random lattices have been
studied in this context. From a more technical point of
view, random lattices provide a convenient tool to discre-
tize space without introducing any kind of anisotropy.
In the past few years this desirable property of random
lattices has been exploited in a great variety of fields. The
applications range from quantum field theory or quantum
gravity, the statistical mechanics of strings or mem-
branes, to the solution of Laplace's equation in the con-
text of diffusion limited aggregation, or the study of
growth models for sandpiles, ' to mention a few. The
preserved rotational, or more generally Poincare, invari-
ance suggests that field theories or spin systems defined
on random lattices should reach the continuum or infinite
volume limit faster than on regular lattices. An implicit
assumption in this approach is that the concept of (lat-
tice) universality, which is known to be true for spin sys-
tems on difFerent regular lattices, carries over to random
lattices. By this, one means that a system defined on
different lattice discretizations should exhibit the same
qualitative behavior once the physical length scale is
much larger than the average lattice spacing. Even
though this assumption appears very natural, previous
numerical work"' on random lattices could only give
weak evidence that it applies in this case as well.

In fact, in view of the equivalence of a random lattice
system to a regular lattice system with impurity bonds
derived a long time ago, ' the universality assumption
Iaight appear less trivial than naively expected. ' In par-
ticular for the two-dimensional Ising model, according to

TABLE I. Exact critical exponents for the regular two-

dimensional Ising model.

0{log) 0.125 1.75 0.25

the Harris criterion, ' random disorder is marginally im-

portant since the critical exponent of the specific heat is
a=0. It should be noted, however, that in the random
lattice case the equivalent distribution of impurity bonds
exhibits complicated correlations, which makes the
theoretical analysis even more subtle.

To investigate this point numerically, Espriu et ai. '

performed Monte Carlo (MC) simulations of the Ising
model on a two-dimensional Poissonian random lattice
with %=10000 sites, linked together according to the
Voronoi-Delaunay prescription. ' Analyzing their data
in the high- and low-temperature phase they obtained
weak evidence that the critical exponents for the random
lattice system agree with the regular Onsager values, '

which we have summarized for the reader's convenience
in Table I. Using a local Metropolis update algorithm as
in Ref. 12, it would be very time consuming to obtain a
significant improvement, especially in the vicinity of the
phase transition where critical slowing down is a severe
problem. ' In the meantime much more efficient update
algorithms have been discovered' which overcome
this problem. Together with improved methods of data
analysis ' this now allows one to simulate the model also
at criticality with high precision and to study its finite-
size scaling (FSS) behavior.

In this paper, we thus present and analyze two sets of
extensive simulations of the Ising model on two-
dimensional Poissonian random lattices of Voronoi-
Delaunay type, varying in size from 5000 to 80000 sites.
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In the first set of simulations we concentrate on the very
vicinity of the transition point and apply FSS tech-
niques to extract the critical coupling K, =1/kz T„and
the exponents v, y/v, P/v, and a/v. The second set of
data consists of simulations in the disordered phase for a
random lattice of size 40000 sites. Here we focus on the
approach to criticality of the susceptibility and the
specific heat, which yield independent estimates of K„
and the critical exponents y and a.

To achieve the desired accuracy of the data in reason-
able computer time we have applied the single-cluster al-
gorithm' to update the spins. In the FSS region we fur-
ther made extensive use of the reweighting technique, '

and in the disordered phase we took advantage of the fact
that the average cluster size is an improved estimator for
the susceptibility.

The paper is divided as follows. In Sec. II, we briefly
describe the numerical construction of the random lattice
and give a few simulation details. In Sec. III, we present
a finite-size scaling analysis of our simulations near the
transition point. Section IV is devoted to a discussion of
our results in the disordered phase, and in Sec. V we close
with a brief summary and a few concluding remarks.

II. THE MODEL AND SIMULATION TECHNIQUES

A. Random lattice construction and properties

In constructing the random lattices we followed closely
the method described by Friedberg and Ren. At first we
draw N random sites distributed uniformly in a unit
square, thereby generating a so called Poissonian distri-
bution. For alternative distributions discussed in the
literature see, e.g., Refs. 9 and 24. To link these sites ac-
cording to the Voronoi-Delaunay prescription, we start
by picking one site at random, locate its nearest neighbor,
and store this link along with its direction. Next a third
site is searched for in a counterclockwise sense by draw-
ing a family of circles that pass through the first two sites

and are centered on their bisector. Once the first triangle
is completed this procedure continues with the same
steps until all sites are linked. Some care must be exer-
cised when approaching the boundaries of the lattice to
ensure the periodic boundary conditions. To implement
the nearest-neighbor search efhciently we subdivided the
unit square into smaller boxes. The optimal box size is
determined by two conflicting requirements. On the one
hand, the box size should be large enough to ensure that
nearest neighbors will be located with high probability in
the same box or at least in the eight surrounding boxes.
On the other hand, to minimize the time needed for test-
ing all sites in a box, the box size should be as small as
possible. We only performed a "trial and error" optimi-
zation based on heuristic arguments, but in any case the
complexity of the lattice construction is reduced in this
way from order N2 to order N.

To test our random lattice construction we have mea-
sured the average link length (I ), and the (normalized)
distribution of coordination numbers P(q ), which can be
compared with the exact results given in Refs. 2 and 25.
Our results for three different realizations with
N = 10000 sites and one with N =80000 sites are collect-
ed in Table II. Notice that for N=80000 a single site
with coordination number q = 14 would give
P(14)=0.0000125. Compared with the exact number
we thus expect this to happen on the average only every
fourth realization. Similarly, a site with q=15 should
occur only every 40th realization of a N=80000 lattice.
The average coordination number q was always exactly
six, as it should be for periodic boundary conditions (i.e.,
on a torus) by Euler's theorem, N NL+Nr=—g Here.
NI and NT are the number of links and triangles satisfy-
ing 2NL =3Nr, and y is the Euler characteristic (=0 for
a torus and =2 for a sphere). This implies

q =2NL /N=6(l y/N) and th—us q =6 for the topology
of a torus, while for the topology of a sphere there is a
correction term (1 2/N)—

TABLE II. Coordination number distribution P(q) and average link length ( l ) for the three realiza-
tions of N=10000 and for N=80000. The exact numbers for P(q) are taken from Ref. 25, and for
(I ) =32/9n see Ref. 2.

3
4
5

6
7
8
9

10
11
12
13
14

N= 10000

0.0107
0.1033
0.2535
0.3052
0.2048
0.0889
0.0258
0.0068
0.0010
0.0000
0.0000
0.0000

N= 10000

0.0112
0.1077
0.2519
0.3037
0.1991
0.0903
0.0267
0.0064
0.0026
0.0003
0.0001
0.0000

P(q)
N= 10000

0.0127
0.1090
0.2573
0.2923
0.1982
0.0889
0.0313
0.0084
0.0016
0.0002
0.0001
0.0000

N= 80000

0.010737 5
0.107 962 5
0.257 512 5
0.295 250 0
0.200000 0
0.090437 5
0.029 7500
0.006 550 0
0.001 5000
0.000 275 0
0.000 025 0
0.000000 0

Exact

0.012 7(8)
0.1077(11)
0.258(2)
0.294(3)
0.198(3)
0.090(20)
0.028 8(7)
0.006 95(20)
0.001 53(9)
0.000 24(3)
0.000 029(5)
0.000 0028(4)

1.129 7(32) 1.129 6(33) 1.1310{33) 1.1312(12) 1.131768. . .
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B. Model

We use the standard partition function of the Ising
model,

Z= ge, E= —g s,s, s, =+1,
I s(. I (I'j)

where It. =J/k& T)0 is the inverse temperature in natu-
ral units, and (ij ) denotes nearest-neighbor links of our
two-dimensional random lattices with periodic boundary
conditions. In (1) we have adopted the convention of
Espriu et al. ' and assigned each link the same weight.

C. Simulation

It is by now well known that the problem of critical
slowing down of local update algorithms at continuous
phase transitions can be overcome by nonlocal update al-
gorithms in which whole clusters of spins are flipped in a
coherent way. It is intuitively clear that this leads to a
much more eIcient sampling of long-wavelength fluctua-
tions than in local update schemes. Currently there are
two related formulations available: first, the Swendsen-
Wang (SW) formulation, ' in which the whole lattice is
decomposed into clusters, and second, Wolff's single-
cluster (1C} formulation, ' which is based on the genera-
tion of a single cluster in each step. Various tests of these
cluster algorithms, in particular for the Ising model on
two- and three-dimensional regular lattices, have clearly
demonstrated that critical slowing down is significantly
reduced. ' Both formulations are easily implemented
on random lattices as well. The only difference is that the
coordination number now varies from site to site. In our
simulations we have chosen the 1C formulation. This
choice was motivated by comparative studies of the two
cluster algorithms on regular cubic lattices which favor
the 1C formulation. This is very pronounced in three di-
mensions, ' ' but also in two dimensions we expect auto-
correlation times that are about 2 —3 times smaller than
for the SW formulation.

For the first set of simulations at criticality we generat-
ed random lattices with N =5000, 10000, 20000, 40000,
and 80000 sites. For later use we adopt the notation for
regular lattices and define a linear lattice size I. by
L =&N. To investigate the dependence of thermal aver-
ages on different realizations for fixed N, we considered
three randomly chosen realizations for N=5000 and
10000, and two for N=20000, respectively. All runs
were performed at ED=0.263, the estimate of E, as ob-
tained by Espriu et al. ' From 50000 to 150000 clusters
were discarded to reach equilibrium from an initially
completely disordered state, and a further 4 X 10 clusters
were generated for measurements. Every tenth cluster
the energy per spin, e =E/N, and the magnetization per
spin, m =g,.s, /N, were measured and recorded in a time
series file. The mean cluster size (~C~) was obtained
from all clusters.

Our second set of data consists of simulations in the
disordered phase. Here we used one random lattice with
N =40000 sites to generate time series for e, m, and

~
C

~

at K =0.22, 0.225, 0.23, 0.235, 0.24, 0.245, 0.25, and 0.26,

and another lattice with N =80000 sites at E=0.252 and
0.254. The statistics is the same as in the FSS region.

D. Update dynamics

To estimate the autocorrelation time of the measure-
ments of e and y=ENm we used two methods. First, by
measuring the (normalized) autocorrelation function
A(k) = (O(k);O(0) ) /(O(0);O(0) ) with (O(k);O(0) )—:(O(k)O(0)) —(O(k))(O(0)), we computed directly
the integrated autocorrelation time r= —,'+gk, A(k),
using a self-consistent upper cutoff of k~,„=6&. For a
rough error estimate we used the a priori formula

e,=+2(2k~,„+1)/N r, where N is the number of
measurements. Second, we used the fact that ~ enters the
error estimate e =o 2~/N for the mean 0 of N corre-
lated measurements of variance o = (0;0 ), and deter-
mined e by blocking procedures. Using 8000 blocks of
50 measurements each we obtained agreement with the
direct method at a 1 —2%%uo level. For a smaller number of
blocks (3200 or 800), we observed a clear increase of the
fluctuations around the directly obtained values of v. con-
sistent with an inverse square root behavior. Our results
are compiled in Table III. We see that the integrated au-
tocorrelation times of the measurements of e and y are of
the order of ~, =0.8—1.3 and ~&=0.7—0.9. Since com-
pletely uncorrelated data would give v =0.5, our sample
thus effectively consists of about 200000 uncorrelated
measurements.

While this properly characterizes the statistics of our
simulations, the numbers for ~ of a single-cluster simula-
tion are not yet well suited for a comparison with other
update algorithms or even single-cluster simulations on
regular lattices. To get a comparative work estimate, the
usual procedure' is to convert the ~ by multiplying with
a factor f= 10(

~
C

~ ) /N ( = 3 in our case) to a scale where
measurements are taken after every spin has been flipped
once (similar to, e.g. , Metropolis simulations). In our
case, however, the measured ~ s are too small to justify
this simple res caling procedure, since nonlinearities
caused by the discreteness of MC time would lead to
quite severe overestimates. This follows by observing
that A(k) is in general a convex function and that r can
be interpreted as the trapezoidal approximation of the
area under this curve. Increasing the interval between
measurements by a factor of 5 or 10, say, corresponds to
measuring only every fifth or tenth point of the curve one
would get by taking measurements every iteration. If at
the scale of the less frequent measurements ~= 1, then the
trapezoidal approximation becomes obviously poor and
overestimates the true area. To see this more explicitly
we adopt the usual assumption that the autocorrelation
function can be written as a sum of exponentials,
A ( k) =g„a„exp( —k /r„), with exponential autocorrela-
tion times ~„and amplitudes a„satisfying
g„a„=A(0}=l. Each exponential contributes to ~ a
term

coath(1/2 ) =ra„r„[1+1/12~„+ ' ] .

While the ~„do get simply rescaled when changing the
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TABLE III. Integrated
K0=0.263 (=E ). The
while ~ is estimated directly

N
~b&
7 (Icl) X

autocorrelation timimes of energy and susce tibilitp y te o po t
ror ana ysis using 8000 blocks of 5

from the autocorrelation function
c s o 50 measurements each,

fbi

5 000
5 000
5 000

0.79
0.76
0.78

0.79(1)
0.76(1)
0.78(1)

0.67
0.67
0.70

0.68(1)
0.67(1)
0.68(1)

1 564.3(1.2)
1 642.7(1.1)
1 621.0(1.1)

3.13
3.29
3.24

2.04(2)
2.02(2)
2.05(2)

1.54(2)
1.57(2)
1.58(2)

10000
10000
10000

0.93
0.85
0.80

0.94(1)
0.86(1)
0.80(1)

0.74
0.71
0.70

0.75(1)
0.71(1)
0.69(1)

2 761.2(2.3)
2 992.5(2.3)
3 163.6(2.2)

2.76
2.99
3.16

2.27(2)
2.14(2)
2.12(2)

1.54(2)
1.57(2)
1.47(2)

20000
20000

0.92
0.92

0.92(1)
0.94(1)

0.78
0.75

0.77(1)
0.76(1)

5 743.7(4.8)
5 666.3(4.2)

2.87
2.83

2.31(2)
2.34(2)

1.68(2)
1.69(2)

80000

1.04

1.26

1.06(1)

1.28(2)

0.82

0.93

0.82(1)

0.92(1)

10693.7(8.1)

18 810.0(18)

2.67

2.35

2.54(3) 1.64(2)

2.80(3) 1.78(2)
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Useful scaling information can also be extracted from the
logarithmic derivatives

and

d ln& lml & & lmlE &

&lml&

dln&m &
& &

&m E&
dK &m2&

(5)

(6)

We further looked at the maxima of the specific heat,

(7)

and at the minima of the energetic fourth-order parame-
ter

Vi(E)=1- &e4&

3 e

Note that this ratio is usually considered only at first-
order phase transitions. As will be demonstrated below,
however, it carries useful information at a continuous
phase transition as well.

In the simulations in the disordered phase we concen-
trated on the approach to criticality of the specific heat
and the susceptibility, as defined in (3) or, since & m & =0,
more properly as

g(K}=KN & m

For the latter definition an improved estimator is avail-
able, being simply the average cluster size,

y;,(K)=E& lcl & . (10)

III. RESULTS IN THE FINITE-SIZE SCALING REGION

In this section we describe the analysis of our data near
criticality, using reweighting techniques ' and FSS
ideas.

A. Binder parameter and estimates for K„U,and v

It is well known that the UI (K) curves for different
lattice sizes L should intersect around (K„U') with
slopes UL =dUL IdE ~L' ", where U' is the (universal)
"renormalized charge" and v is the critical exponent of
the correlation length. More precisely, due to corrections
to the leading FSS behavior, the curves for L and L'
should cross in points K"=K "(L,L'} which approach
K, for large lattice sizes. Our results for E (L, ,L') ob-

correction terms). We analyzed the maxima, y', „,of the
(finite lattice} susceptibility,

(3)

and studied the (finite lattice) magnetizations at their
points of inflection, & lml & l;„r. These points follow from
the maxima of d & lml &/dE, which can be conveniently
computed by using the fluctuation formula

d&lml&
E

=
& ml & & E &

—
& lmlE & .

tained by reweighting the primary data at Ko =0.263 are
collected in Table IV. By looking through the table we
observe that there are rather strong fluctuations between
different replicas for a fixed number of sites E. Even
though these fluctuations decrease with increasing X,
with the present data it is impossible to apply the stan-
dard extrapolation formula for estimating E,. Hence
taking as our final estimate for E, the average of the five
values for K "(L,L') from the three largest lattices, we
obtain

U* =0.6123+0.0025 . (12)

The corresponding values at E=K, —0.0002
and E=E,+0.0002 are U' =0.6054(25) and U'
=0.6183(28), so that taking into account the uncertain-
ties in K, the error bar in (12) should probably be in-
creased to 0.0070. This then would be consistent with an
average over the five lower entries in Table IV, which
gives U'=0. 6176(60). Our value for U' is practically
indistinguishable from MC estimates for the regular sq
lattice which are U' =0.615(10) (Ref. 38} and
U'=0. 611(1) (Ref. 33). This good agreement may be
taken as a first indication of lattice universality.

To extract the critical exponent v several methods are
possible. One would, e.g., analyze the scaling of the
slopes UL (K)=d UL /dK ~ L '~" at K =E„or more gen-

erally at any sequence of K values for which the scaling
variable x =(K —K, }L' " is constant. Examples are the
locations of the specific-heat or susceptibility maxima
which are expected to scale as K,„(L)=K,+aL
with a being a constant. Another convenient choice of
such a sequence are the points where Ul (E) is maximal.
In this case one gets the desired slopes U',„(L)directly,
without explicit knowledge of the corresponding K
values.

We have tried all of these possibilities, but not all gave
sensitive results in our case. The errors on Ul at fixed
E=K, are clearly dominated by the replica fluctuations.
Without further simulations to increase the replica statis-
tics it is then impossible to obtain reliable fits. The
second, self-consistent method turned out to be much
more suited for our problem. With the simplest choice of

E, =0.2630+0.0002 .

This value is in good agreement with the estimates in Ref.
12 from high-temperature series expansions
(E,=0.26303} and MC simulations in the disordered
phase [E,=0.2631(3)]. As already noted in Ref. 12 the
value for E, is very close to the exact critical coupling
In(3)/4=0. 27465. . . of the regular triangular lattice
whose coordination number is also q =6. The (rough} er-
ror estimate in (11) should also reflect the fluctuations
caused by the different random lattice realizations for
fixed N, which in our case are much larger than the sta-
tistical errors.

For the same reason, the estimates of U* in Table IV
show stronger Quctuations than our statistics would sug-
gest. Taking the average over all lattice sizes and replicas
at our estimate of the critical point, K, =0.2630, we ob-
tain
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TABLE IV. Estimates of v,s(L,L'), K "(L,L'), and U = UL (K "(L,L')) from the magnetic fourth-order Binder parameter for

pairs of lattices of size L and L'.

10000

1.008(16)
0.263 744(43)
0.61747(88)

1.O12(2O)

0.264 840(29)
0.637 64(33)

1.012(14)
0.264493(30)
0.632 38(41)

10000

0.993(17)
0.262 083(40)
0.581 4(14)

1.023(20)
0.263 155(23)
0.61498(46)

1.020(13)
0.262 811(31)
0.605 76(75)

10000

1.004(48)
0.260 813(81)
0.541 7(34)

1.039(32)
0.261 847(46)
0.586 5( 14)

1.042(34)
0.261 506(52)
0.573 3(18)

20000

1.002(13)
0.262 172(17)
0.583 78(74)

1.020(11)
0.262 615(13)
0.60457(38)

1.017(11)
0.262 474(16)
0.598 49(53)

20000

0.980(14)
0.262 346(24)
0.588 27( 86)

1.004(12)
0.262780(16)
0.607 94(41)

0.999(12)
0.262 641(15)
0.602 20(44)

1.010(12)
0.262 459(16)
0.591 07(66)

1.017(10)
0.262 704(10)
0.606 41(32)

1.0163(97)
0.262 626(11)
0.601 87(38)

80000

1.001 7(45)
0.262 8107(67)
0.599 31(40)

1.008 3(49)
0.262 959 2(54)
0.61141(21)

1.006 8(41)
0.262 912 3(49)
0.607 82(23)

10000 0.979(95)
0.261 104(10)
0.506 1(64)

0.918(58)
0.261 414(66)
0.527 5(39)

1.047(31)
0.262064(27)
0.5600(14)

1.003 9(69)
0.262 660 3(75)
0.584 75(55)

10000 1.011(27)
0.262 237(33)
0.587 1(14)

0.974(22)
0.262 527(36)
0.597 1(13)

1.015(15)
0.262 572(13)
0.598 53(57)

1.002 8(46)
0.262 928 4(66)
0.609 07(34)

10000 1.017(15)
0.263 157(27)
0.623 59(70)

0.997(17)
0.263 420(27)
0.628 76(62)

1.011 1(98)
0.262 954(12)
0.619 14(42)

1.004 5(56)
0.263 135 1(70)
0.623 14(28)

20000 1.010(20)
0.262 811(20)
0.612 20(83)

0.9984(62)
0.263 128 9(75)
0.622 77(31)

20000 1.055(39)
0.262 607(29)
0.600 7(15)

1.0106(90)
0.263 050 2(77)
0.617 81(39)

1.002(16)
0.263 352(15)
0.634 31(54)

the maxima of UL, however, we run into the problem
that they lie too far away from our simulation point, thus
allowing no safe reweighting. Choosing as sequence of E
values the locations of the specific-heat or susceptibility
maxima, K,„(L) or Kr,„(L) (see Table V), or the
inflection points of the magnetization, K;„r }(L) (see

(13)

(14}

(15)

Table VI}, we obtain the fits shown in Fig. 2. From the
inverse of the slopes we read ofF

v=1.021+0.033 (at Km,„),
v=0.996+0.028 (at Kr»),
v=1.02pyp. p20 (at K,&l~l& }

TABLE V. Extrema for the (finite lattice) susceptibility (y',„),the specific heat (C,„),and the ener-

gy moment ratio (V;„),together with their respective pseudocritical couplings.

+max
X

5 000 0.259 772(39)
5 000 0.259 305(63)
5000 0.259448(39)

10000 0.260 930(28)
10000 0.260 446(30)
10000 0.260037(48)
20000 0.260 871(55)
20000 0.261 023(30)
40000 0.261 526(33)
80000 0.261 991(41)

I
Xmax

42.77(19)
43.09(29)
43.09(18)
79.27(29)
78.61(34)
78.17(65)

145.2(1.4)
146.3(1.2)
259.1(2.5)
492.2(6. 1)

C+max

0.262041(66)
0.261 41(12)
0.261 64(11)
0.262 421(49)
0.262 092(78)
0.261 723(73)
0.262 086(86)
0.261 98( 11)
0.262 310(84)
0.262 3(28)

max

2.0109(53)
2.017(10)
2.013 8(71)
2.1600(73)
2.1374(68)
2.1345(89)
2.276(13)
2.311(18)
2.421(22)
2.600(97)

V+min

0.260 43( 17)
0.25940(59)
0.260 05(22)
0.261 532(93)
0.261 31(11)
0.260 954(88)
0.261 60(16)
0.261 50(14)
0.262 081(90)
0.261 49(83)

~min

0.664 378( 12)
0.664 321(33)
0.664 354(22)
0.665 459 5(53)
0.665 472 0(74)
0.665 467 0(81)
0.666 034 7(66)
0.666 0199(82)
0.666 3340(43)
0.666 481(11)
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TABLE VI. Inflection points K;(„'f ') of the magnetization, and & Im I ) and d& Im I
)/dK at K;~„'f ). Also given are the extrema of

the logarithmic derivatives (5) and (6), and their respective pseudocritical couplings.

5 000
5 000
5 000

10000
10000
10000
10000
20000
20000
40000
80000

g (hami)
inf

0.260 943(47)
0.260 34{10)
0.260 525(71)
0.261 709(38)
0.261 298(52)
0.260 942(44)
0.260 942(44)
0.261 499(93)
0.261 529{62)
0.261 979(33)
0.262 244(92)

& I
m I & I;.f

0.4474(21)
0.4377{51)
0.4409(35)
0.4247(23)
0.4289(33)
0.4293(28)
0.4293{28)
0.4039( 84)
0.3985(58)
0.3980(45 )

0.359(15)

d& ImI &

dE

45.73(19)
46.6S(44)
46.43(31)
62.46(27)
61.76(35)
61.61(51)
61.61(51)
83.7(1.1)
85.7(1.2)

111.5(1.7}
156.2(2. 8)

gin(~mj &

max

0.258 59(26)
0.2S7 1(12)
0.25800(42)
0.260 14{14)
0.259 87( 16)
0.259 29(29)
0.259 29(29)
0.258 32(67)
0.260 38( 14)
0.261 359(86)
0.260 98( 83 )

dI(

114.9(1.8)
124.1(6.7)
119.5( 3.2)
164.9(2.5 )

159.5(3.2)
160.4(3.3)
160.4(3.3 )

288(57)
244.2(8.4)
305.8{9.2)
576(137}

g ln(m 2)
max

0.258 11(27)
0.256 4( 12)
0.257 55(42)
0.259 79{19)
0.259 55(21)
0.259 09(24)
0.259 09(24)
0.257 82(72)
0.260 14( 16)
0.261 247(83)
0.260 6(12)

d in&m'&

dI(

192.8(2.9)
211(13)
200.1(5.4)
277.2(4.6)
267.0{5.8 )

266.5(4.8)
266.5(4.8)
485(96)
409(14)
512(15)
972{276)

ln(L'/L )

in[ UL (K "
) /UL (K "

) ]
(16)

Our results for v,& are again collected in Table IV and
plotted as open circles in Fig. 3, where the x axis corre-
sponds to the 38 possible combinations of L and L'. We
see that within the error bars all entries are compatible
with v= 1. The average over all entries gives

v=1.008+0.022 (effective v's), (17)

where the error estimate is the standard deviation of the
v,z. If we take only the nine crossing points of the
N=80000 lattice with all other lattices into account

5.5

O atK

in very good agreement with the Onsager value for regu-
lar lattices, v=1. The quality of the fits, however, is rela-
tively poor.

We therefore used finally yet another approach which
is based on the e6'ective exponents

(filled circles in Fig. 3), then we obtain

v=1.0043+0.0036 (eff'ective v's) . (18)

K, =0.262 95+0.000 33 (from K,„),
K, =0.262947+0.000077 (from Kr,„),
K 0 26304+0 00014 (from K(lf-Il )

(19)

(20)

in good agreement with the estimate (11) based on the
Binder parameter intersections.

1.10

We can thus conclude that our estimates of the exponent
v for random lattices are fully consistent (at a 0.5%%uo level)
with the exact regular lattice value of v=1.

Assuming v= 1, we can use the asymptotic FSS
behavior of the pseudo-transition points, e.g. ,

K,„(L)=K,+aL '~', to obtain further estimates of the
critical coupling K, from linear fits in 1/L. Our results
from fits to the data (see Tables V and VI) of the three
largest lattices are

~ 4.5

0
Q
CL
D
cn 40

1.05

() ()
~ i.oo-

() () () () ()w()

35

3.0
4.0

I

4.5
I

5.0
In L

I

5.5 6.0

0.95

FIG. 2. Finite-size scaling of the Binder parameter slopes at
sequences of E(I.) values for which the scaling variable
x = [K(L) K, ]L '~" is constant. —From the inverse slope of the
least-squares fits we obtain estimates of v=0.996(28)
[K(L)=Kr' (L.)] = I.O2O(20) [K'(I.) =K'~ ~'(L)] d
v= 1.021(33) [K(L)=K,„(L)],respectively.

0.90
0

I

10
I

20
combination of L and L'

I

30 40

FIG. 3. Results for the effective exponents v,s defined in Eq.
(16). The x axis labels the 38 possible combinations of lattices of
size N and N', starting with 5000/10000, 5000/20000, and so
on. The filled circles show all possible values for N'= 80000.
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B. Susceptibility and y /v

To extract the ratio of exponents y /v we used that the
maxima of the susceptibility should scale for sufKiciently

large L like

C. Magnetization and P/v

The standard way to extract the exponent ratio P/v is

to consider the FSS of the magnetization at K„
(24)

y', „(L) =y'(E ",„(L),L )= AL r ~" . (22)

Our results for E~,„and y',„are collected in Table V,
and the y', „are plotted vs L on a log-log scale in Fig. 4.
The straight-line fit shown in Fig. 4 gives

y/v= 1.7503+0.0059, (23)

with an amplitude A =0.02491(67), and a goodness-of-
fit parameter (Ref. 39) Q =0.035. This is again in excel-
lent agreement with the exact value for the two-
dimensional Ising model on a regular lattice, y/v=1. 75.
Even though the Q value of the fit is quite low, we do not
see in Fig. 4 any trend with increasing lattice size. In
fact, if we discard the data for IV=5000, the fit yields
y/v=1. 7468(91) with Q =0.015, and if we further dis-
card the data for N=10000, we obtain y/v=1. 735(19)
with Q=0.005. Constrained fits with y/v=1. 75 held
fixed at its theoretical value, are equally acceptable and
yield for the amplitude A =0.024938(45) with

Q =0.071, or, discarding the N =5000 data,
A =0.024952(59) with Q=0.037. We can thus con-
clude that universality also holds as far as y/v is con-
cerned.

Notice that in these fits (whether linear or not) it does
not matter whether we fit over all ten data points or first
compute the weighted replica averages for N=5000,
10000, and 20000 and then fit over five data points. It is
easy to show that the results must be identically the
same, apart from the Q values. Here and in the following
we always quote the Q value for first computing the repli-
ca averages.

We tried this also here, but due to the replica fluctuations
the resulting scaling curve was difBcult to analyze. As a
solution to this problem we decided to study the scaling
behavior of ( lml ) at the point of inflection, i.e., at the
point where d( lml ) /dE is maximal. Since these points
should scale as usual, (K (~P ~ } I, )L—'~"= tL '~'= const,
we expect

(lml)l;„f=L g 'f(tL' ')~L (25)

and, since a derivative with respect to K picks up a factor
L '~' from the argument of the scaling function f,

and

d ln(lml) d& lml &/dhdx,„(lml &

(27)

d ln&m2& d&m )/dK
max ( m ) max

(28)

thus providing another means to estimate the correlation
length exponent v.

Our data for these quantities are given in Table VI.
The scaling of ( l

m l ) at the inflection point is shown in
the log-log plot of Fig. 5. The linear fit through all data
points gives

P/v =0.1208+0.0092, (29)

—L —glv+ 1 lvf i( rL 1/v
) ~ L ( 1 g) /v (26)

max

Consequently, the scaling of the maxima of the logarith-
mic derivatives (5) and (6) should be given by

-0.8

c 5

A -09
E
V

-1.0

3
'

4.0
I

4.5
I

5.0
In L

I

5.5 6.0

-1.1
4.0

I

4.5
I

5.0
In L

I

5.5 6.0

FIG. 4. Finite-size scaling of the (finite lattice) susceptibility
maxima y',„. The slope of the linear least-squares fit yields

y /v= 1.7503(59).

FIG. 5. Finite-size scaling of the (finite lattice) magnetization
( l

m l ) at its point of inflection. The filled circles show the repli-
ca averages. From the slope of the linear least-squares fit we ob-
tain P/v=0. 1208(92}.
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with Q =0.10. This value is again perfectly compatible
with the exact result for regular lattices, P/v=0. 125.
Omitting the data of the smallest lattice, we obtain
P/v=O. 122(15), with Q =0.04.

The scaling of the maxima of d (
~
ml ) /dK is shown in

Fig. 6. Here we obtain from the fit

Op i E

0 p=2 slope = 0.960(28)

(1—P) /v=O. 8704+0.0081 (30)

with Q =0.39, in agreement with the regular lattice result
(1—P)/v=0. 875. Omitting the data of the smallest lat-
tice our estimate even improves to (1 —P)/v=0. 875(13)
with Q =0.24.

Finally, using the maxima of the logarithmic deriva-
tives (5) and (6) we obtain two further estimates for v.
From the linear fits in the log-log plots shown in Fig. 7
we read off

6-
A

CL

E
V
C

4
4.0

I

4.5
I

5.0
InL

(28)

I

5.5 6.0

v = 1.037+0.031

with Q =0.06, and

v= 1.042+0.030

(31)

(32)

FIG. 7. Finite-size scaling of the maxima of the logarithmic

derivatives din(~mi)/dry (p=l) and din(m )/de (p=2).
The slopes of the linear least-squares fits are estimates of 1/v,

resulting in v=1.037(31) (p=1) and v=1.042(30) (p=2), re-

spectively.

with Q =0.04, respectively. The two values for v are ful-
ly consistent with our previous estimates and with the
regular lattice result of v= 1.

D. Specific heat and a/v

C,„(L)=C(K,„(L),L ) =Be+811nL . (33)

The semilog plot in Fig. 8 clearly demonstrates that our

We now turn to the specific heat which is usually the
most difficult quantity to analyze. The reason is that,
compared to the susceptibility, the critical divergence is
much weaker and regular background terms become im-
portant. Recalling our result v=1 and assuming hyper-
scaling to be valid for the random lattice as well, we ex-
pect a=2 —dv=0, as for a regular lattice. The corre-
sponding FSS prediction is then

data in Table V are consistent with this prediction. A
linear fit through all data points gives 80=0.346(52) and

B, =0.391(12) with Q=0. 84. It should be remarked,
however, that the confirmation of a =0(log) is not really
conclusive. Due to the small range over which C,„
varies we can fit the data also with a simple power-law
ansatz Cm, „~L ", yielding a/v=0. 1824(53) with

Q =0.93; see Fig. 8. Discarding first only the data points
for N=5000 and then also those for N=10000, we ob-
tain a/v=0. 180(10) with Q=0. 83 and a/v=0. 168(27)
with Q =0.72, respectively. There is thus a small down-
ward trend, but our data is obviously also consistent with
a power-law ansatz. We also tried a nonlinear three-
parameter fit to the more reasonable ansatz
C =b 0 +b

&
L '. As a result we then obtain an ex-

5.5
2.8

2.6

log
-- -- power

5.0

2.4

A 4.5
E
V

2.2

4.0 2.0

3.5
4.0

I

4.5
I

5.0
In L

I

5.5 6.0

1.8
4.0

I

4.5
I

5.0
In L

I

5.5 6.0

FIG. 6. Finite-size scaling of the maxima of d(~ml)/dK,
used to determine the points of inflection of ( lml ). The slope
of the linear least-squares fit is an estimate for
(1—P)/v=0. 8704(81).

FIG. 8. Finite-size scaling of the specific-heat maxima C,„.
Also shown are least-squares fits to a logarithmic ansatz,
C,„=BO+B &lnL [with Bo =0.346(52), B,=0.391(12)],and to
a pure power-law ansatz, C,„=eL i" [with c=0.926(22),
a/v =0.1824( 53 )].
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E. Energy cumulant

We also looked at the fourth-moment parameter
VL (K) defined in (8}, involving the energy moments. By
rewriting VL as

1 1+6&5 '&+4&5 '&+&5 '&

3 1+2(ge2)+(fie2)2
(34)

with 5e —=(e —(e ) )/( e ), it is easy to see that in leading
order

ponent ratio a/v=0. 17(16) consistent with zero, but the
errors on all three parameters are much too large to draw
a firm conclusion from such a fit.

To convince ourselves that these problems are not a
special property of random lattices, we have compared
our results with similar fits for the Ising model on a regu-
lar sq lattice, employing its known analytical solution for
L XL lattices with periodic boundary conditions. ' The
results for Km,„and Cm» for various L are collected in
Table VII. The values of L that roughly correspond to
our random lattice sizes are L =80, 100, 140, 200, and
280. If we fit the corresponding five values of C,„ to the
ansatz (33), we obtain BO=0.1831 and B,=0.4976, in
reasonable agreement with the exact results '

Bc=0.201359. . . and B&=8K, /m=2[in(1+~2)] /m
=0.494358. . . . The small discrepancies can be attri-
buted to the neglected correction terms of the type
B2L 'lnL +B3L '. While B2=—3V 2B ) XO. 317 75
=0.333222 is also known analytically, B3 has not been
worked out explicitly. Using all data in Table VII and
keeping the parameters Bo, B&, and B2 fixed at their
theoretical values, we estimate numerically B3=—2. If
we try to fit the regular lattice data for L =80, . . . , 280
to a power law L'~" (which is definitely wrong in this
case), we obtain a/v=0. 1941, i.e., a value of roughly the
same size as for the corresponding random lattice fit.

2 4 C
3NK (e )

(35)

In the FSS region the energy (e ) = —1.9 varies very lit-
tle. As a function of K we thus expect to see a minimum
in VL at roughly the point where the specific heat C is
maximal. As can be seen in Table V this is indeed the

case. Assuming the usual scaling behavior of K;„and
v= 1, we obtain from a linear fit K, =0.26329(40} with

Q =0.25, in perfect agreement with our previous results.
Furthermore, recalling the FSS of the specific-heat

maxima, we expect that the minima V;„of VL should
scale according to N( —', —V;„)=bo+b,lnL with b, =2.
In the semilog plot of Fig. 9 we show the data for
N( —', —V;„) together with such a fit (with Q=0.29},
yielding b0=4.04(54) and b, =1.74(12). In view of the
neglected corrections in (35) and the ambiguities in the
fits of C,„, the agreement with the expectation is quite
satisfactory. Similarly to the specific-heat maxima, how-
ever, the data can also be fitted with an ansatz
N( —', —V;„)~L ~", yielding a/v=0. 144(10) and

Q =0.43; see Fig. 9.

IV. RESULTS IN THE DISORDERED PHASE

To supplement the FSS analyses near criticality we
have performed further simulations in the disordered
phase. Here we concentrated on the approach to critical-
ity of the susceptibility and the specific heat. Most data
were obtained from one random lattice with N=40000
sites in the inverse temperature range K =0.22-0.26; see
Table VIII. The quoted autocorrelation times refer to
the scale at which the measurements are taken. If this is
converted to a Metropolis scale (with the unit of time set
to N spin fiips} by multiplying with a factor
f=10(~C~)/N, we obtain r, =l —2 and ~r=0 07 (apart.
from the point at K =0.260}.

TABLE VII. Maxima of the specific heat, C,x, for the Ising
model on a regular simple square lattice of size L XL, and the
corresponding pseudocritical couplings E,„,as computed from
the exact expressions given in Ref. 41. The numerical errors are
of the order +1 in the last digit.

16

15
log
power

20
40
60
80

100
120
140
160
180
200
220
240
260
280
290

C+max

0.433 23
0.436 85
0.438 11
0.438 74
0.439 12
0.439 38
0.439 57
0.439 71
0.439 81
0.439 90
0.439 97
0.44003
0.44008
0.440 12
0.440 14

max

1.6659
2.0167
2.2200
2.3637
2.4750
2.5657
2.6424
2.7088
2.7673
2.8196
2.8669
2.9101
2.9498
2.9865
3.0039

E 14
I

C9
Gl

13

12

11
4.0

I

4.5
I

5.0
In L

6.0

FIG. 9. Finite-size scaling of the minima V;„ofthe energet-
ic fourth-order parameter VL. The solid and dashed lines show
logarithmic and power-law fits, which are closely related to the
corresponding fits to the specific-heat data in Fig. 8 (see text).
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TABLE VIII. Results in the disordered phase for a random lattice of N =40000 sites.

Simp

1 ~ 774{14)
2.311{25)
3.026(19)
4.129(39)
6.003(33)
9.447(59)

17.260(63)
189.71(40)

85(7)
77(6)
67(5)
60(4)
50(3)
35(2)
24(1)

3.30(5)

0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.260

12.8(4)
11.0(3)
8.0(2)
6.1(2)
4.06(7)
2.61(4)
1.49(2)
0.910(7)

—1.208 11(36)
—1.263 21(37)
—1.321 64{33)
—1.384 51{31)
—1.452 04(40
—1.525 11(27)
—1.605 38(31)
—1.808 66(10)

0.515(11)
0.589{13)
0.648(15)
0.715(16)
0.836(12)
0.910(12)
1.077(10)
1.8356(70)

0.018 850(77)
0.021 20(13)
0.024004{88)
0.027 89(15)
0.033 147(93 )

0.041 10( 12)
0.055 31(11)
0.213 71(29)

4.9825( 54)
6.3436( 65 )

8.337(11)
11.426(14)
16.593(29)
26.247(34)
48.006(87)

664.2(1.1)

4.901(35)
6.354(69)
8.326(52)

11.44(11)
16.550(84)
26.00(15)
47.86(17)

664.7( 1.6)

values of E,=0.2630. As expected the most precise
values result from fits to the improved susceptibility,

g; ~/K=(~C~). This is also illustrated in a slightly
different way in Fig. 10, where we plot the chi-squared
per degree of freedom (y per DOF) of linear least-
squares fits with axed K, versus K, . Actually we have
plotted +y per DOF in order to demonstrate that the
chi-squared increases quadratically as E, is varied
around its optimal value.

Regarding the critical exponent y we observe that the
estimates coming from the fits to y/K=N(m ) and
g'/K =N((m ) —( m~ ) ) are, within error bars, fully
consistent with the regular lattice values of y= —,

' =1.75.
The results for y obtained from fits to y; ~/K = (

~
C~ )

overestimate this value by about 3'. Thus, taking the er-
ror estimates at face value, these results are only barely
consistent with —,'. Since in absolute terms, however, the
deviation is only about 1.6%%uo, we have not tried to im-

prove the statistical consistency by doing a more refined
error analysis (with correlation effects between parame-
ters taken more properly into account), which usually
tends to increase the error bars.

Notice finally that also ( ~m ~) can be used to extract
the exponent y, even though this quantity should tend to
zero in the infinite volume limit. The point is that, since
g=N(m ) —A(K, K) r, we exp—ect that

A. Susceptibilities and exponent y

To analyze the data for the susceptibilities in Table
VIII we have assumed the leading singular behavior as
E, is approached,

(K K) r— (36)

and performed nonlinear three-parameter fits. On the
one hand, this requires E values that are sufBciently far
away from E, to guarantee negligible finite-size effects.
On the other hand, they should be suSciently near to E,
to avoid confiuent and analytical correction terms in (36),
which are diScult to deal with numerically. Both con-
ditions are nonuniversal and can only be satisfied self-
consistently, relying on the goodness of the fits. Alterna-
tively, one may rewrite the ansatz (36) as a function of
temperature T, or one can consider y/E instead of y. In
effect this influences the importance of the analytic
correction term and thus the range of E or T values over
which the simple ansatz with only the leading singularity
can be applied. Our results of goodness-of-fit tests for
these different possibilities can be summarized as follows.
If we consider y/K=N(m ), y; /K=( ~C ), or y'/K
(as in most previous works), then fits to A(K, K) r are-
self-consistent in an interval K E(0.22, 0.25). The data at
E=0.26 clearly display finite-size effects. The inclusion
of the data at E=0.22 seems marginal in the sense that
the goodness Q of the fits [or, equivalently, their chi-
squared (y )] is still acceptable, but worse than for fits
omitting these data. For this reason we give in Table IX
the results for both fitting ranges, corresponding to four
and three degrees of freedom (DOF), respectively. We
see that all estimates for E, are compatible with our FSS

( ~m ~
) = (&m'& =&(m'& -a(K, —K) '",

with an amplitude a =&A/N which vanishes for large
N. In fact, a fit in the interval KG[0.22 0.25] yields
y=1.777(36) and a=0.0012(1) (with Q=0.41), con-

E=0.22-0.250
4 DOF

K,

E=0.225-0.250
3 DOF

Obs

0.084 9(18)

0.079 3(73)

0.027 2(28)

1.778 3(99)

1.741(44)

1.75748

Simp ~+ 0.262 81( 10)
Q =0.90

0.263 05(39)
Q =0.44

0.263 36(43)
Q=0.50

1.772 5(76) 0.083 6(23) 0.262 88(13)
Q =0.98

0.262 51{48)
Q =0.82

0.262 76( 52)
Q =0.97

1.795(33)

1.816(37)

0.093(12)

0.032 4(45 )

TABLE IX. Results of nonlinear three-parameter fits of the susceptibility data in Table VIII to the
leading singularity A(E, —E)
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TABLE X. Results in the disordered phase for a random lattice of N =80000 sites.

0.252
0.254

+e

36(2)
29(2)

2.2(2)
1.6(2)

&e&

—1.638 93( 19)
—1.675 74(21)

1.151(16)
1.223(14)

&fm[}

0.044 70(12)
0.053 549(91)

63.04(31)
90.86(29)

Ximp

63.546(35)
91.424(55)

22.77(11)
32.59(11)

sistent with &A lN =0.0014(1), as follows by inserting
N =40000 and recalling A =0.079(8).

C=Ao —A)ln(K, K) . — (37}

Using all data from K=0.22 to K=0.25, the results of
such a nonlinear three-parameter fit are Ao = —1.07(22),
A, =0.516(82), and K, =0.2657(41), with Q=0. 18.
Omitting the point at K =0.22 we obtain
Ao= —0.90(25), A, =0.455(89), and K, =0.2631(41),
with Q =0.14. Here we have also tried to include further
data from two additional runs at E=0.252 and
K=0.254 on a lattice with 80000 sites, see Table X. For
the susceptibility analysis we had to discard this data
since, due to the very small error bars on the y's, the sus-
ceptibility fits are much more sensitive. If the N =80000
data were taken into account, the goodness-of-fit parame-
ter Q decreased by about two or even several orders of
magnitude for fits to y' and y or to the more accurate

p respectively. In this data we thus saw either finite-
size e8'ects or, more likely, replica fluctuations, or a com-
bination of both. For the specific heat, on the other
hand, the relative errors are much bigger, and fits includ-
ing the N =80 000 data gave almost identical

B. Specific heat and exponent a

In view of our FSS results in Sec. III, we have assumed
that a=0 and tried to confirm this assumption by fits of
our specific-heat data to a logarithmic divergence of the
form

2.0

K,=0.2630

1.5-

Q 1.0

0.5

(a)

0.0
0.001

3,0

I

0.010
K,-K

0.100

results, with even improved Q values (Ao = —1.08(15),
A

&
=0.518(52), K, =0.2657(23), Q =0.36 for

K E [0.220, 0.254], and Ao= —0.99(18), A, =0.489(60),
K, =0.2647( 24), Q =0.31 for K E [0.225, 0.254] }.

The values for K, are compatible with, but consider-

ably less accurate than our previous estimates which all

gave approximately I(,=0.2630. In the semilog plot of
Fig. 11(a) we therefore show C vs K, —K with

E,=0.2630. The solid straight line is a linear fit of the
form (37) with K, held fixed at its best value. Using all

data points with K E [0.220, 0.254] this yields
Ao= —0.902(32) and A

&
=0.4544(82), with Q=0.28.

K,=0.2630

Fits to &Icl&

p 4

0
Q
1a 3

0.3
0.001

I

0.010
-K

0.100

0
0.262

I

0.263
K,

0.264

FIG. 10. The chi-squared per degree of freedom (y per
DOF) of least-squares fits with fixed critical coupling K, to mea-
surements of the improved susceptibility, y; ~/K=( ~C~), in
the disordered phase. The minima are the best estimates for K,
from these data.

FIG. 11. The specific heat in the disordered phase near the
critical coupling K, . The semilog plot in (a) demonstrates the
consistency of our data with a logarithmic scaling behavior.
The solid straight line shows a corresponding least-squares fit.
In (b) the data and fit displayed in (a) are replotted in a log-log
representation. Here a straight line would correspond to a
power-law behavior.
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The Fig. 11(b) shows the same data and the fit in a log-
log representation. Here a pure power law would result
in a straight line. Even though this is obviously not the
case at K, =0.2630, fits to a pure power-law ansatz,
C ~ (E,—I{.),with E, as a free parameter are still ac-
ceptable (Q =0.26, for K C [0.220, 0.254]). The parame-
ters, however, then take "unreasonable" values,
K, =0.305(18) and a=1.7(5), and the error bars are
very large. We also tried to include a constant back-
ground term by performing fits to the ansatz
C=ao —ai(l{, E)—, with E, held fixed at values
around 0.2630. This yields a consistent with zero,
a= —0. 13(9), albeit again with the drawback of huge er-
ror bars on all three parameters. Similar to the FSS
analysis in Sec. III, also here we cannot really exclude a
possible power-law scaling of the specific heat with an ex-
ponent aAO. We obtain, however, a perfectly consistent
picture if we assume logarithmic scaling, that is a value
of o, =O.

V. CONCLUDING REMARKS

We have performed a fairly detailed analysis of single-
cluster Monte Carlo simulations of the Ising model on
two-dimensional Poissonian random lattices of Voronoi-
Delaunay type. In the first set of simulations at criticali-
ty we have applied finite-size scaling methods to various
quantities to extract the critical exponents of this model.
At first sight our use of different quantities to estimate

the same exponent might appear redundant, since the
various estimates are, of course, not independent in a sta-
tistical sense. Their consistency, however, gives
confidence that corrections to the asymptotic scaling
behavior are very small and can safely be neglected.
Direct analyses of thermodynamic measurements of the
susceptibility in the disordered phase yield compatible re-
sults. From both types of simulations the results for the
critical exponent a of the specific heat are not really con-
clusive, but certainly consistent with a=O, i.e., with a
logarithmic scaling behavior. On the other hand, from
our estimates for the exponents v, P/v, y/v, and y, we
obtain strong evidence that the Ising model on two-
dimensional random lattices behaves qualitatively as on
regular lattices, i.e., that (lattice) universality holds for
this model.
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