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A general analysis is presented for angle-dependent photoemission from magnetic and oriented atoms

using linearly and circularly polarized x-rays. The anisotropy in the angular distribution in a localized

material is due to the polarization of the photon, the polarization of the shell from which the electron is

emitted, and the Coulomb and exchange interactions of the hole with the polarized valence electrons in

the final state of the photoionized atom. The angular dependence of the dipole excited photoemission

gives the same information about the multipole orbital and spin magnetic moments of the atom as exci-

tation with quadrupole or octupole radiation. It is shown that the photoemission spectrum at an arbi-

trary angle is a linear combination of the fundamental spectra, which contain all the physical informa-

tion of the atom. Redundancy in the measurements makes it possible to obtain these fundamental spec-
tra in completely difFerent ways, allowing to choose the most advantageous geometry and polarization,
e.g., the magnetic circular dichroism can be also be measured with linear polarization. Circular di-

chroism in the angular dependence, magnetic linear dichroism in the angular dependence, and spin po-
larization are treated using the same analysis. We explain the strong angle dependence observed in the
rare-earth Sp photoemission, in the circular dichroism of the 3d transition-metal 2p core-level photo-
emission and the rare-earth 4f photoemission.

I. INTRODUCTION

Natural circular dichroism in optical spectroscopy
arises from an interference between electric and magnetic
dipole transitions. The magneto-optical Kerr effect,
Faraday effect, and the recently discovered magnetic x-
ray dichroism' are caused by electric dipole transitions
from a magnetic polarized ground state with spin-orbit
interaction. The advent of intense sources of synchrotron
radiation with a high degree of polarization now makes it
possible to study circular dichroism in photoemission.
The presence of dichroism in the excitation of an electron
from a core level to a free-electron continuum level re-
quires an electrostatic interaction between the core and
the valence state. This interaction gives a final-state
multiplet structure, where each individual level has a
specific polarization dependence given by the alignment,
in that state, of the angular momenta of the created core
hole and the valence shell. ' This polarization depen-
dence can be used to disentangle the satellite structure
and multiplet structure, which are often simultaneously
present in the photoelectron spectra of correlated materi-
als, such as transition-metal and rare-earth compounds.
This paper describes a method to obtain the maximum
amount of information from the angle-dependent photo-
emission.

The study of the angular dependence in photoioniza-
tion and (in the case of negative ions} photo detachment
in atomic and molecular physics has a long history. For
nonoriented systems, Yang already showed that the
asymmetry parameter in conjunction with the partial

cross section gives a complete description for the dipole
excited photoemission. These two parameters can be
used to study the configuration interaction and vibration
modes of the photo excited state. The theory of the pho-
toelectron angular distributions for hydrogenic atoms has
been given by Bethe and Salpeter and was further
developed by Cooper and Zare for nonhydrogenic cen-
tral potentials. Jacobs and later Klar and Kleinpoppen
obtained expressions for the angular distributions and po-
larization of photoelectrons for an arbitrary atomic sys-
tem in terms of the density matrix, using the spherical
tensor operator formalism, ' which was developed in nu-
clear physics to describe the phenomenon of angular
correlation of y rays emitted in cascade transitions. " A
theory developed by Fano and Dill, ' which expanded the
photoionization amplitude into alternative transfers of
angular momentum from the photon to the electron, has
been extensively used in collision dynamics, photofrag-
mentation, and molecular photodissociation. Klar' ex-
tended this formalism to the spin polarization of the pho-
toelectrons. The angular dependence in the regions
around resonances was treated by Kabachnik and Sazhi-
na' and by Dill. '

The phenomenon of circular dichroism in the angular
distribution (CDAD} was predicted by Ritchie' in non-
chiral, but oriented, molecules in a collinear measure-
ment with the detection along the molecular axis. The
effect was small because it required an interference be-
tween electric and magnetic dipole transitions. A much
larger effect was predicted by Cerepkov' within the elec-
tric dipole approximation for oriented nonchiral mole-
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cules in a special geometry. The direction of the emitted
electron gives an additional vector in space, which can
make the experimental geometry chiral. When the light
polarization vector, the Z axis of the system (e.g., the
molecular axis) and the emission direction of the photo-
electron, are not coplanar, the geometries with left- and
right-circularly polarized light are no longer mirror im-
ages. Then the interference term between the I+1 and
l —1 photoemission channels gives CDAD with a magni-
tude that depends on the radial matrix elements and the
phase difference of these channels. A numerical calcula-
tion for the 40. orbital of an oriented CO molecule by
Dubs, Dixit, and McKoy' shows a pronounced effect
with maxima of almost 100%o asymmetry. Spin-
dependent interactions and spin-orbit interaction are not
required and this effect can be observed in adsorbates on
metal surfaces, ' systems prepared by photon and parti-
cle impact, ' and external fields and photofragmenta-
tion. These methods give systems with aligned or
oriented moments similar to that in (anti)ferromagnetic
materials, where the moments are polarized by magnetic
interactions producing long-range order. Thus, circular
polarization can be used when the time-reversal symme-
try of the orbits is broken, such as in magnetic materials
with spin-orbit interaction and nonmagnetic materials
with chiral symmetry or in a chiral geometry. A linear
analog of CDAD was recently reported by Roth et al.
at the Fe 3p level of ferromagnetic iron.

The spin direction measurement can also make the
geometry chiral. Lee predicted an angular distribution
in the spin polarization from unpolarized atoms excited
with unpolarized light. The influence of the spin is in-
direct because the electric dipole operator acts only on
the orbital. Because the spin of the emitted electron is
the same as the spin of the core hole, the photoelectron
spin is polarized when the core electron spin is polarized
which can be induced both by electrostatic interactions
with the valence shell or by spin-orbit interaction with its
own orbit.

Magnetic circular dichroism in core-level photoemis-
sion was reported by Baumgarten et a/. This technique
has the advantage over spin-resolved photoemission that
it does not require a spin detector, which has a low
efficiency. In papers I (Ref. 3} and II (Ref. 4} we present-
ed a general analysis of circular dichroism and spin polar-
ization in angle-integrated photoemission from closed
and open shells, respectively. With the use of many-
particle theory, general equations were derived for the six
fundamental spectra which are special linear combina-
tions of the spin-polarized photoemission spectra mea-
sured with left-, Z, and right-circularly polarized radia-
tion. These fundamental spectra, which are the isotropic
spectrum, spin spectrum, magnetic circular dichroism,
spin-orbit spectrum, anisotropic spectrum, and anisotrop-
ic spin spectrum give the correlation between the spin,
orbital, and quadrupole momenta in the ground state and
the spin and orbit of the hole created after photoemis-
sion. For emission from an incompletely filled shell the
integrated intensities of the fundamental spectra are pro-
portional to the expectation values of the number of elec-
trons, spin magnetic moment, orbital magnetic moment,

the alignment between orbital and spin magnetic mo-
ment, the quadrupole moment, and the correlation be-
tween quadrupole and spin magnetic moment, respective-

4

Recently, Schneider, and co-workers ' observed a
strong angular dependence in the magnetic circular di-
chroism of the 2p photoemission from ferromagnetic
iron. Using a one-electron picture they showed that the
circular dichroism of the 2p&&2 core level is composed of
an isotropic term, which depends on the relative orienta-
tion of the incident light and the magnetization, and an
angular-dependent term which depends on the relative
orientation of the incident light and the magnetization
direction with respect to the detection direction. In this
paper we will extend the analysis given in paper I and II
to the angle dependence of the photoelectron and the
photon. We will show that the angular distribution mea-
sures higher poles than the angle-integrated photoemis-
sion. By selecting specific emission angles we can obtain
the same information about these higher moments as by
using multipole radiation. The angular distribution in a
localized material is due to the polarization of the pho-
ton, the polarization of the shell from which the electron
is emitted, and the Coulomb and exchange interactions of
the hole with the polarized valence electrons in the final
state of the photoionized atom.

We will assume a continuum state which has only in-
teractions with the emitting atom, thus we neglect angu-
lar structure induced by the nonspherical potential of the
molecule or lattice. We will also not consider the loss of
"memory" of the excitation process by the emitted elec-
tron due to scattering in the solid or due to refraction at
the surface. The scattering of the photoelectron by the
nonspherical environment can be used to study the sym-
metry of the atomic site, such as in photoelectron
diffraction ' and photoelectron holography. ' In
spin-polarized photoemission the scattering lengths of
photoelectrons with spin up and down may be different
depending on the filling of the majority and minority spin
bands. The main aim of this paper is to show that all in-

formation is contained in the fundamental spectra, and
we give only a short discussion of special effects due to
the structure of the continuum wave function.

The outline of this paper is as follows. The theory of
the angle dependence without spin detection is given in
Sec. II, and the extension to spin polarization is given
separately in Sec. III. Section IV discusses the effects of a
nonspherical environment. The interpretation of the fun-
damental spectra is discussed in Sec. V. The influence of
the symmetry of the atom is treated in Sec. VI, and the
analysis of the angular distributions in Sec. VII. Severa1
recent measurements are analyzed in Sec. VIII and con-
clusions are given in Sec. IX. The appendix gives some
technical information on the necessary angular algebra.

II. SPIN-INTEGRATED THEORY

A. Recoupling the moments

Consider an atom in a ground state (g ~. Applying ra-
diation we assume that there is a part of the spectrum
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which can be considered as arising from the process of
taking an electron from a shell with orbital momentum I
and putting it into a continuum state with orbital
momentum c. In the dipole approximation c can be I+1
and I —1, and there can be interference between these

channels. In order to remain more general we will con-
sider Q-pole radiation where c can be I+Q I —Q with
I+Q+c even. The probability of detecting the emitted
electron in the direction s (a unit vector) leaving the atom
in the final state

If & is then [c.f. Eqs. (Al) and (A2)]

0 mm'yy'cc'

I
&glI' If &&fII Ig&( —1)" Yc Yc,(s) , (e)

l

&glI'. If &&flI .Ig &
'- (1)

o mm'cc' r. a'

where I and I denote the creation and annihilation operators for an I shell electron with orbital component m and
spin component 0. The Y' (z) are spherical harmonics, which in the graphical representation 5 of the 3-j symbols are
represented by the dotted lines [c.f. Eq. (A3}]. Introduction of I and I' would describe the case of hybridized valence
shells or molecules. Our formulas can be easily extended to these cases but we will only treat the more highly sym-
inetric case I =I' here. The interference between the Q+1 final-state channels c and c' with their orbital components y
and y' is taken into account. We will not study here the interference between difFerent multipoles of the radiation, thus
we will take Q'=Q. The components of the polarization of the light are q= —

Q +Q, for dipole radiation

q = —1,0, +1 denote right-circularly, Z-linearly, and left-circularly polarized radiation, respectively. For generality we
introduce both q and q, which are required in Eq. (6) for the dependence on the direction of the light, when it is not
along the Z axis. Except for this, Eq. (1) is sufficient to calculate the whole spectrum in any geometry but the main aim
of this paper is to recouple it to show the symmetry aspects more clearly:

xger mm 'cc'
(2)

where we a~plied the theorems of Yutsis, Levinson, and
Vanagas [see Eqs. (A14)-(A16)] introducing sums
over the auxiliary quantum numbers a, b, and x of the
photon, photoelectron, and atom, respectively. [abx] is
shorthand for (2a +1)(2b+1)(2x+1).

C. Angle dependence

The angle-dependent factor in Eq. (2) giving the depen-
dence on the polarization of the light and on c, is

B. Fundamental spectra Uqq']" (s }—= gyes'
Q

..n.b'n b'4~[cC']'"

It is now possible to separate the physical properties of
the atom from the part describing the geometry of the ex-
periment. The physical properties are what we are in-
terested in and the geometry is something that has to be
chosen in an optimal way to measure them. The physical
properties are the spectra I& defined as

r", =n,„'y&glI.'.-If &&flI...lg &

X a —abx

0
(4)

where the dotted line with double cross bar denotes the
normalized spherical harmonic

X( —1)i—m
I x I

—m g m' (3) C„(8,p)= 4m

2k +1

' 1/2

Y„"(H,y),
where we used the normalization factor n&„ to remove
square roots from quantities we deSne [Eq. (A7)]. Here,
as in the following, these factors have been chosen such
as to produce neatly normalized quantities. For example,
the I& spectra are of the same order of magnitude for
different x. This can be understood when we observe in
Eq. (3} that the 3-j symbol divided by the factor ni„gives
1 for m =m'=I for each value of x. The interpretation
of the spectra is discussed in Sec. V.

n is defined such as to give a neat normalization of the
angle dependence, see Eq. (A9}. Note that the result does
not depend on cc' anymore.

Terms with different a can be separated by changing
the polarization of the light. For this we will define spe-
cial linear combinations of the U factors and explain how
these can be measured.

Defining the coefBcients
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1
—1

1

1

0
—2

TABLE I. The values of rq~'(Z) [Eq. (7)] which give the
coefBcients for right-circularly, linearly, and left-circularly po-
larized dipole radiation along Z for measurement of the a =0, 1

and 2 spectra.

aQq

These functions are the "bipolar spherical harmonics"
normalized such that when c. and P are along the Z axis
we have U' &(Z, Z)=5@. They are quite complicated
functions of the angles defining the mutual directions of
P, E, and the Z axis except for small values of a, b, and x.
However their calculation is straightforward and can be
considered a trivial part of the problem. For /=0 their
values are equal to the functions U' "(P,e, Z), some of
which are given in Sec. VIII (Table IX).

0
rqq'(P) =ng. '

p ~+a
Q a Q= g ng, 'C'(P)( —l)g q, , (5)

a

we can take the following linear combinations of intensi-
ties:

Jg'(P, e ) = g rqgq'( P ) I Dqq (e ) I

'
~

qq'

D. Total intensity

Finally Eq. (1) has to be multiplied by the reduced di-
pole matrix elements and the phases of the outgoing
waves

= [l][cc']'~ n& n& R 'g'R 'g' e ' ', (9)

where 5, is the phase shift of the c wave and R are the ra-
dial matrix elements. Defining the numerical factors

The interpretation of the particular linear combina-
tions of spectra chosen in Eq. (6) can be found by rotating
the coordinate system such that the Z axis is along the
vector P. Then because C'(Z) is nonzero only for a=0,
forcing q =q', we have for the coefficients

A f|'„'=( —l )g "[lcc'bx ]n&„n,b„ng,

l x I
IX7lb 7llg nlg 'C 6 C (10)

r ~ (P)=5 .ng, ( —1)ga —i g —q —
q 0 q'

which for dipole transitions (Q =1) are given in Table I.
We see that for a =0 we add q = —1,0, and 1 and so mea-
sure the isotropic spectrum. For a=1 we subtract the
spectra for q=1 and —1, i.e., left- and right-circularly
polarized light propagating along P and so measure cir-
cular dichroism. For a=2 we measure the linear di-
chroism, subtracting the intensity for light polarized per-
pendicular (q =1 and —1}and parallel (q =0) to P. The
coefficients for quadrupole (Q=2} and octupole (Q=3)
transitions are given in Tables II and III. The angle-
dependent factor in Jg'(P, e) now is

qq'a'

a b=nb- PEN.
a b x

Qpt b p g
C (P)C)q(e)

aP

g Ql ~ g Qcc'lg lgcg lgc'* ' c c'
e

CC

(12)

When a +b +x is even the A factor is symmetric in c and
c' and so the phase shift factor gives 2 cos(5, —5, ).
When a+6+x is odd, A is imaginary and antisymmetric
in c and c' and so we obtain a factor 2 sin(5, —5,.}.

From Eq. (11},which is our main result, the factors
governing the angle dependence are immediately clear.
The expression for the angular-dependent photoemission
is a sum of terms containing energy-dependent factors
(i.e., spectra) I, which are the fundamental spectra intro-
duced in paper I and which contain all the physical infor-
mation about the many-electron system that can be mea-
sured in these experiments. The angular distribution is

which are independent of g, [see also Eq. (A13)] we ob-
tain for the total emission intensity in direction e for the
light polarization specified by a and P

Jg'(P, e)= QI( g U' ~(P, s)Bg,'„,= 1

xg b

where

TABLE II. The values of r ~'(Z) [Eq. (7)] which give the coeScients for q-polarized quadrupole radi-
ation along Z for measurement of the a spectra.

aQq

1
—1

1
—1

1

1
—1/2
—1/2

2
—4

1

0
—1

0
6

1

1/2
—1/2
—2
—4
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TABLE III. The values of r~q (Z) [Eq. (7)] which give the coefficients for q-polarized octupole radia-
tion along Z for measurement of the a spectra.

1
—1

1
—1

1
—1

1

1
—2/3

0
1

—7/3
4

—6

1
—1/3
—3/5

1

1/3
—5

15

1

0
—4/5

0
2
0

—20

1

1/3
—3/5
—1

1/3
5

15

1

2/3
0

—1
—7/3
—4
—6

essentially derived in a one-electron calculation since the
photon polarization and the angle distribution act on the
same electron.

Each I produces a limited set of angular distributions
U with coeScients 8 containing contributions from each
channel as a numerical factor A times the radial matrix
elements R and phase shifts.

Each spectrum I& contains the probabilities of reach-
ing the final states of the atom by annihilation of elec-
trons of kinds specified by x and g. So if, e.g., we go to a
final state with a high L value this means that core hole
(and thus photoelectron} and valence shell have their or-
bital moments parallel in this particular final state and if
the valence shell is polarized then so is the core hole and
this will show up in Io.

Figure 1 gives a schematic picture of the angular
dependence U as is given in Eq. (8}. The three polariza-
tions which appear in the photoemission process are
given in the circles. The light polarization P, the photo-
electron direction c, and the atomic shell multipoles with
respect to the Z axis have moments a, b, and x, respec-
tively. The moments a =0, 1, and 2 represent isotropic,
circular, and linear light. The moment of the angular dis-
tribution b is even because the shell I has a definite parity;
b =0 represents the isotropic distribution. Odd x values
denote oriented magnetic moments and even values
denote aligned moments.

The 3-j symbol imposes the condition
~a b~ ~x & a+b.—Because of parity a+x must be even
for an in-plane geometry but can be odd in an out-of-
plane geometry giving CDAD and magnetic linear di-
chroism in the angular dependence (MLDAD), where x is
odd and even and a is even and odd, respectively. This is
discussed in more detail in Sec. VII.

E. Measurements

It has been our aim to define the I& in such a way that
we may expect them to be generally of the same order of
magnitude for all x and g typically consisting of a set of
peaks with an (integrated) intensity of the order of unity
each, but of difFerent signs, except that the isotropic spec-
trum I has all peaks positive and integrates to the num-
ber of I electrons. Further the U' "also have comparable
magnitudes. For example, for a+b+x is even and (=0
their maximum value is 1 for P and c along the Z axis
and except for U these functions have nodes and so
their range is between 1 and 2. Therefore, within each
"channel" (c,c'} we can immediately see from the value
of the Ag' ' involved, which spectrum x and which kind
of light polarization a gives an important contribution to
the angle dependence. The ease of detection of a com-
bination abx will generally be determined by its intensity
compared to the isotropic signal a =b =x =0, where we
have

~L'=[c]~fg,
max(l, c}

[I]

y g gcc/

(13)

(14)

So any spectrum with a factor of about unity should be
measurable, provided we can find an energy for which the
appropriate radial integral(s) are large enough. For an
interference term chic' the radial integrals R involved
should be of about equal magnitude.

In the literature the derivation of the angular distribu-
tion is usually given in terms of linearly polarized light as
a combination of a =0 and 2 polarizations. We can ob-
tain this using

Jt~(P e)=—[J (P s) J (P s)]
—i ylx y [ UobxJI i/ U2bxg i/

]
xg b

(16)

FIG. 1. Schematic picture of the angular dependence. The
light polarization P, the photoelectron direction c and the
atomic shell multipoles with respect to the Z axis have moments
a, b, and x respectively.

which directly gives the intensity for light linearly polar-
ized (q =0) along P. Likewise the intensity for "unpolar-
ized light" [—,'(q =—1)+2(q =+1}]is

(17)J (P,E}=—,'[J (P,e)+ —,'J (P, s)] .
Alternatively, we may analyze the data using three spec-
tra with mutually perpendicular polarization and so ob-
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tain J (P, E) (which is independent of P) and J (P, E) for P
along the three directions. This procedure shows im-
mediately that the sum of J (P, e) for P in three perpen-
dicular directions is zero which is equivalent to the state-
ment that the sum of the intensities for linear polariza-
tion in three arbitrary perpendicular directions gives the
isotropic spectrum.

III. SPIN-POLARIZED THEORY

If we take the spin polarization of the emitted electron
into consideration Eq. (1) becomes

(E)I' & &gII If &&f11
mm'

x & & — (is)
aX Ea

The spin of the emitted electrons is the same as that of
the annihilated l electron. We have again, as in the case
of q and q', introduced both cr and a' in order to be able
to consider spin measured in a direction other than the Z
axis. In Eq. (1) the Z axis was sufficient because a sum
over the two values of cr is independent of the direction.
Recoupling gives

x gyqmm'0 cr'cc'
&gl&'.

If &&flI Ig &(
—I)™I x I

i )1/2 —n—m g m'

1

V2 2

CT 'g 0

I x I

X g[abx] c b c'

Q a Q a

1/~2~1/2

0 (T

(19}

We see that we now measure the spectra

I",'„=nh 'n(i/z)y X &g~4. ~f &&f~1 .Ig &(
— )'

a 0'mm'

I x l
( 1)1/2 —cr—m g m'

1 1
V2 2

CT 'g CT
(20)

with the angle dependence

7l

U~, "y(e)—gyygqs '~&& ~~~ n b n $,
g 0'

Q

(21)

I

this is the signal when we do not measure the spin polar-
ization. For V= 1 the signals are subtracted so the spin
polarization along Ps is measured.

The angle dependence is then

U' (yv(P, e, Ps)
To introduce explicitly the dependence on the light polar-
ization vector P and the photoelectron spin direction Ps
we again introduce linear combinations of the U factors,
using as coefficients

Qa (1/2)y — —1
Q

r ~ (P)r (Ps) =
n(2, , —a n()/p)y

—1

P
'Ps

a'
1/2 (22)

TABLE IV. The values of r"/" (Z) [Eq. (22}]which give the
coe%cients for spin up and spin down along P for measurement
of the y =0 and 1 spectra.

The interpretation of these linear combinations for the
photon part is the same as in Eq. (7},i.e., the photons are
polarized along P. For the spin part we take the coordi-
nate Z axis along Ps and see from Table IV that for y =0
the signals for spin up and down along Ps are added, so

=n-abx

a b x
=n,b„'g ( Ca(P)CP(s)Cyv(Ps)

aP

(23)

giving for the total intensity of photoelectrons in direc-
tion c. with spin detection along Ps using light with a po-
larization

J' (P, e, P )= Q IPCy„(P }gU' ~(P, e)B,)'„.(24)
1

xg'g b

Because the light acts on the orbit the waves emitted
do not have the shape of the distribution of the annihilat-
ed electron (b=x} but also extra waves are emitted
b=~x —a~. . . x+a. For spin the emitted distribution
(i.e., polarization direction) is the same as the distribution
of the annihilated electron inside the atom, giving the
simple shape of the spin part in Eq. (24).

In the case without spin-orbit coupling in the ground
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and excited states the orbit and spin part are indepen-
dent. This means that I&«can be written as I&I» with or-
bit and spin separated, or that if we measure the spec-
trum for spin-up minus spin-down along some quantiza-
tion axis Ps, the shape of the spectrum and the dependen-
cy on Ps is the same in any geometry P, s. So the spin
spectra can essentially be measured independent of the
orbital part. The ratio of spin-polarized spectra and
spin-unpolarized spectrum is independent of the kind of
light and the emission direction.

When we do not observe such simple relations between

the I&„there must be spin-orbit coupling. Although all
possible information is contained in the I&~, we again ob-
tain more insight by taking suitable linear combinations

U(„"«(P,E,ps)= g [z]n b„' (25)X

~s

We can incorporate one 3-j symbol and the summation
over g and g into the spectrum

1 x 1
I"'&=n,„—'n, »2„n„„'g (g~l ~f )(f~l . , ~g)

mm

'crier'g'g
y

j 1

2 2 x y z
(26)

with the angle dependence

Z

U' "«Pp, s, p )=[z]n, „'n„,' ~ ~/~.
b s

(27)

J+«(P s P )
— g n2 I&«~ g Uabx«z(P & P )ggl

1

ZZg b

(28}

The new spectra are linear combinations of the I"
x y z

Ix«s y Ix« 1 (29}

These combinations have as integrals p&"' which give the
coupling between the xth moment of the orbit with the
yth moment of the spin. For y=0 we have the trivial
case

pZOZ —pZ

For y = 1 we have, e.g.,
011

110 y ( 1 . )

(3O)

(31)

(32)

which gives the "directed" angle between 1 and s,

p"~= g ([1;Xs;]~), (34)

which gives the spin-orbit coupling (mutual orientation of
1 and s),

(33)

angle between 1 and s of the electrons. This will have a
value when (L ) and (S) have different directions,
which could occur in a material that has L and S aligned
to which we apply a magnetic field perpendicular to the
easy direction. This might bend L and S in different an-
gles because of their different mechanisms of anisotropy.
The combinations with x+y+z=even with x =0, 1,2
can also be studied in x-ray absorption and angle-
integrated photoemission. ' In angle-resolved emission
the range of x is extended and x +y+z can be odd.

From Eqs. (32)—(34) we can see that the spin-orbit
spectra can be obtained more directly from the experi-
ment by analyzing the data in terms of coupled angular
distributions. This should give us the possibility to find
geometries that give a desired spectrum most sensitively.
For example, for I" the angle dependence is

~s

U'" (P, s, ps) = 1-

a b y= g C~(p)Cp(s)C»v(ps)s

(35)
with y =1. For aby we can have 101, 121, 221, so we can
measure with circular polarization in even distributions
for P, c., Ps or with linearly polarized light in the odd dis-
tribution U '(P, s, Ps}, which means that Ps has to be
outside the plane P s (Sec. VII}. In this way the spin-
orbit spectrum I" =I

~ ]+Ioo+I ], can be measured
without measuring the I&„' separately. The measurement
of the other spectra is straightforward but because the
waves now depend on four vectors (i.e., P, s, Ps, and the
Z axis) the strategy for ffnding optimal or even sufficient
geometries to separate the spectra is highly technical and
wi11 not be considered here.

which gives the mutual alignment (parallel versus perpen-
dicular) of 1 and s.

These combinations allow one to study the spin of ini-
tial and final states, the spin-orbit coupling, etc., includ-
ing the exotic p"&, which measures the average directed

IV. CONTINUUM WITH NONSPHERICAL STRUCTURE

When the continuum levels are nonspherical because of
interaction with the nonspherical environment of the
atom (scattering) we obtain very generally



9620 B.T. THOLE AND GERRIT van der LAAN 49

D«(s)= g &glut If&( —1)™
mcyk

XR &"[Icc ]

l Q c
—m q y

(36}
producing a radial integral

R,'~" =f dr P'(r)r~P" (r)

(37)

(38)
where k denotes the energy and angular quantum num-
bers of a continuum wave function which can be expand-
ed into spherical harmonics at each distance r from the
nucleus of the excited atom as

where P' is the radial part of the I-shell wave functions.
The total intensity can be rewritten in the same way as
Eq. (1) giving

J'(P, e) ~ Q I& g p~~~~~ Ag' 'gR,'2"R,'~" 4"(s)%"(e) .
by' ', kk'

(39)

Because the l level is again spherical, being a localized
level, the intensity is still a linear combination of the
same I& but now with a more complicated angle depen-
dence containing more parameters. The light is again an
exact dipole and so a is still a relevant quantity.

We will not study here the degeneracy and symmetry
of the 4 (e) but only observe that in the presence of
scattering very generally the study of localized level pho-
toemission separates into two disciplines. The first dis-
cipline measures and studies the I& which contain the
physical information of the electronic structure of the
atom independent of the kinetic energy. This discipline
would preferably measure in a structureless continuum at
constant kinetic energy. The other discipline measures
and studies the continuum parameters which contain in-
formation on the potential of the ionized atom/molecule,
which is directly connected to its geometry. This discip-
line would seem to be mostly interested in s core levels
because even for an s shell which has interaction with the
valence shell there is only one spectrum, i.e., Io or in the
case of spin polarization there are Ioo and Io„'.This sepa-
ration in disciplines is easily discernible in the literature
and may serve to avoid confusion about the origin of new
e8'ects.

V. I¹KRPRETATION OF THE FUNDAMENTAL
SPECTRA

Our formulas are given in terms of creation and annihi-
lation operators in order to separate the analysis of angu-
lar distributions, which is merely a technical problem,
from the analysis of the spectra, which is a problem for
the quantum theoretician generally involving many-
electron theory. For any theory it should be possible to
calculate matrix elements of the annihilation operators.
This has been done in paper II for LS coupled states in
rare earths. The rest of the angular analysis is simply a
one-electron calculation and so the theory of, e.g., Ref. 29
on the angular dependence of circular dichroism, which
was demonstrated for one electron, is for a large part
very general. By the use of the 2nd quantization formal-
ism we are able to give a general analysis without consid-
ering details of individual cases. This is in contrast to the
approach in paper I where we studied four diferent cou-

pling schemes in order to find general properties.
We can consider

I = g&glI— lf)& fll lg &, (40)

as the fundamental properties of the system and deter-
mine them from Eq. (1}. These I contain the informa-
tion about all one-electron properties connected with the
shell 1 of the atom in the state lg ) and also about the re-
lationship between these properties of lg ) and those of
all the final states

l f ). The one-electron properties of the
ground state are obtained by sum rules summing over a11

l f ) using the closure relation. Although this formally
represents an integral over the infinite energy range the
only contributions to the sum will be from states lf )
with one I electron less than lg ), which are mainly in the
part of the spectrum that we call l level photoemission.
We thus obtain the elements of the one-electron density
matrix

(41)

The p ~ contain all information about what electron
states are occupied in lg ) because they tell what states
can be annihilated. This matrix is diagonal in cylindrica1
symmetry. In other symmetries diagonalization of this
matrix gives the "natural orbitals" and the eigenvalues
are their occupation numbers. The expectation value of
any one-electron (orbital) operator T can be expressed in

the p

&T)= g p &mlTlm') .
mm'

(42)

So we know everything about the shell I when we know
a11 p . But in photoemission we do not directly mea-
sure the p ~ but rather the expectation values of certain
operators which, by Eq. (42), are simple known linear
combinations of them. Understanding these operators is
important. First because they provide a direct physical
intuition of what is measured and second, because by
symmetry they normally contain such combinations of
the p ~ that are nonzero while the rest are zero.

From Eq. (42} we see that the operators (or spectra)
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p~—=ni. ' X p..( —1}' (43)—m g m'
mm'

so

that are naturally measured are the I&. Measuring all the
I

&
allows us to calculate all I ~ if we would like to.
The integrals of the I

&
are the p&,

I x l

mental spectra and to give alternative ways to calculate
them, we consider the expressions for the intensity for ra-
diation with moments higher than dipole. When we con-
sider 1-pole radiation polarized along the Z axis, emitting
l electrons into an s continuum level we obtain from Eq.
(11)using Eqs. (A10}and (A13)

(47)

po= &n( &

(L &1
—1

p~= (Q( & [—,'l(21 —1)]

(45}

(46)

taking the radial integral to be 1. This is independent of
s (only b =0 is present}. Therefore

Io=[l]f de J+(Z, s), (48)

These are the expectation values of the number of / elec-
trons, the orbital angular momentum, and the quadru-
pole moment, respectively. The operators are normalized
such that the rn =I diagonal matrix element of the zeroth
component equals 1.

The I& can be considered as the spectral decomposition
of the operators p&. The final states in the photoemission
process are the "parents" of the ground state. That is,
the ground state can be constructed by adding a suitable l
electron to each final state and taking a linear combina-
tion of the resulting states. The I& contain all the infor-
mation on what l electron has been added to each final
state. This is discussed in paper II. For example, the ID
spectrum shows whether the added electron, which is the
same as the escaping electron, has its orbital momentum
parallel or antiparallel to other electrons. For final states
with a high-L value the extra electron is antiparallel, and
when it has a low-L value it is parallel. This shows why
the I& are the spectra we want.

In order to gain further understanding of the funda-

u~~~= —g ~~,~ [j ] ' '( —1)'
jm. J,m cr —m

and we obtain

(49)

which is the angle-integrated intensity for /-pole excita-
tion to an s continuum and so from this formula we can
calculate the ID without explicitly using creation and an-
nihilation operators using l-pole radiation instead. This
is trivial when 1=1 and should be a simple extension in
all those cases where one can already calculate dipole ma-
trix elements. Only (=0 is found here because b =0 and
P was along the Z axis. For other values of g we have to
choose a different P.

Until now we used creation and annihilation operators
with azimuthal quantum numbers m and cr. For core lev-
els with large spin-orbit coupling j and mj are more in-
teresting. For this we expand the operators

jX 1/2

Ig = g ng„(glag, If &&flu,, Ig &

jm j'm'.
J j X

nrem &glugJ~, If &&flu, Ig&
jm. j'm'.

g n,.'&gin, ',.If &&flu„., lg&(-1)'
jm.j'm '.

—mj
I

mj
(50)

In the limit of large spin-orbit coupling the j=l —
—, edge

is a region in the spectrum where the
~f & have only holes

with j=j'=1—
—,
' and because of the triad (jxj) we have

O~x +2l —1 which means that x=2l is not present in
the j=l —

—,
' edge.

The fundamental spectra I"" in papers I and II have
been defined as special linear combinations of signals
measured with polarized light and spin detection. There-
fore these spectra diS'ered (by a simple constant factor)
for emission into c=l+1 and c=l —1. Our present
definitions are made '- Dependent of c by dividing them by

A„.Further they are rescaled like in Eqs. (44)—(46) and
so

I'&=Io~/A, ,

I '~=I,'~/( IA, ),
(51)

(52)

I ~=I@/[1(21—1)/3A~], (53)

where the subscript 0 denotes the definitions in papers I
and II. This means that the fundamental spectra for the
c =l —1 channel are on the same relative scale as those in
papers I and II, because
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I "=(21+1}IP (c =l —1) . (54)
Gd3'4f XPS

Figures 2—5 show some results for the fundamental
spectra of the rare earths in spherical symmetry calculat-
ed using the atomic multiplet program of Cowan. It is
clear that for every level each spectrum I has a unique
structure describing the probabilities of reaching the final
states of the atom by annihilation of electrons of a kind
specified by x.

Figure 2 gives the example the 4f photoemission for
the transition Yb 4f ' ~4f ' ad. The Hund's rule
ground state 4f' F7/2 (Mz= —7/2) is a single Slater
determinant with n =2 for —3&m ~2 and n3=1. Sub-
stitution of n~ into Eq. (43) and using Table III gives the
integrated intensities p =13 and p" = —1.

Figure 3 shows the 4f photoemission for the transition
Gd 4f S7/z (Mz= —7/2), where n =1 for all m, so
that the integrated intensities of all fundamental spectra
are zero, except I . However, the spin-orbit split J' level
intensities still have a large x dependence.

Figure 4 shows the fundamental 3d core-level spectra
for the transition Tm 4f ' +3d 4f—' ap. This spectrum is
split by the large core-hole spin-orbit splitting into a
313/2 and 3ds/2 structure. The multiplet structure is due
to the Coulomb and exchange interactions between the
3d and 4f electrons. The integrated intensities p" are
zero because the d shell is initially full. The I4 spectrum
is very small in the 3d3/z edge because of the triad (jxj}in

Eq. (50). The experimental core-level spectra may display
large satellite structure due to hybridization in the initial
and final state, however in this case our analysis in terms
of fundamental spectra remains valid since it only as-
sumes that the core shell is spherical.

)0

CD

C'.

12

)
3

)4

)5

)6

k

2 1 0
relative binding energy (eV)

FIG. 3. The fundamental spectra for the photoemission Gd
4f'~4f6ad. Hartree-Fock parameters and convolution from

paper II. All spectra are on the same scale.

Figure 5 shows the fundamental spectra calculated for
the photoemission Tb 4f ( Fs)~5p 4f as. The isotro-
pic spectrum shows a good agreement with the one mea-
sured by Thole et al. ' The 5p spin-orbit splitting and
the 4f Sp electrost-atic interactions are of comparable or-

Yb3' 4f XPS
Tm3'3d X

3d 3/2

)0
(5

)

CD

I

)2

)
3

)5 )4

8 6 4
relative binding energy (eV)

FIG. 2. The fundamental spectra for the photoemission Yb
4f"~4f' ad. Hartree-Pock parameters and convolution from
paper II. All spectra are on the same scale.

~ ' ~

60 50 40 10 0

relative binding energy (ev)

FIG. 4. The fundamental spectra for the photoemission Tm

4f ' ~3d 4f ' ap. Hartree-Fock parameters from paper II and

Ref. 55. Convolutions with a Lorentzian of I =0.4 and a
Gaussian of cr =0.4 eV. All spectra are on the same scale.
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Tb+5p XPS

Spsrz

V)

0
C:

12

~ ~ I

10 8 6 4 2 0
relative binding energy (eV)

FIG. 5. The fundamental spectra for the photoemission Tb
4f~(7F6)-+Sp54f~ss. The Hartree-Fock values for the 4f8
configuration are FR=14.915, F4=9 360, F6.=6 734, $.~=0 221.
eV, and for the Sp'4f' are F2{ff)=15.186, F (ff)=9.544,
F (ff)=6.871, gy=0. 224, g =3.186, F (fp)=6.852,
G (fp)=3.415, and G (fp)=2. 673 eV. Slater integrals were
reduced to 80%. Convolution with a Lorentzian of I =0.2 a
Gaussian of cr =0.22 eV. All spectra are on the same scale.

der of magnitude, so that the 5pt&2 and Sp3/i characters
are strongly mixed. For the p level there are only three
fundamental spectra and in this case all spectra can be
measured in angle-integrated photoemission.

VI. SYMMETRY OF THE ATOM

The theory in Sec. II is general in that it applies in any
point-group symmetry. By assuming that we have only
emission from the l shell, that we have dipolar radiation
(which has moment 1) and that the continuum functions
have no interaction with the lattice, we use the spherical
symmetry to decide that there is only emission into
c=lkl, that we can use total moments a, b,x in the
ranges a =0 . . 2, b = lc —c'I . lc+c'I, x =0 21,
and that a, b, and x have to fulfill the triangle relation.
The parity symmetry (—1) of functions of space limits b
to even values and a+b+x to even values for c=c'.
This holds irrespective of whether the valence shell is lo-
calized or delocalized (we consider the I shell not to be a
valence shell).

This use of 03 as a supersymmetry only means that the
orbitals and the light polarization we use are subspecies
of (branch from) one single c, I, and Q value. A conse-
quence is that there are (21+1} spectra for x =0 2l
and g'= —x x, which means that the emission in
(21+1) geometries has to be measured in order to
separate them all.

Symmetry has the efFect of making certain linear com-
binations of the I"with the same x equal to zero and so
we have to measure in correspondingly fewer geometries.
We can see that only totally symmetric combinations
contained in x are allowed by studying the symmetry
properties of Eq. (3) where lg ) and

If ) belong to repre-
sentations of the point group and the sum over the mm'
is spherically symmetric (c.f. appendix). We can also un-
derstand it by considering the emission using isotropic
light (e.g., three equally intense beams of I, Y, and Z po-
larization} so a =0 and b =x. Then the emitted intensity,
which has a distribution with momentum x, must have
the symmetry of the atom because the light can give no
direction and so, when the atom is in equivalent positions
we must obtain equal intensities. This means that x has
to contain the totally symmetric representation of the
point group. When the atom is spherical this means that
only x =0 can contribute and thus only Io is nonzero.
When the atom has cylindrical symmetry, e.g., a free
atom in a magnetic field (along Z), then all x contribute
but g has to be zero. So only the Io exist giving the 2l + 1

spectra called I"in papers I and II which treated only cy-
lindrical symmetry.

In other point groups there is a spectrum for every to-
tally symmetric function contains in any x. We can see
this and calculate the corresponding angle dependencies
in the point group G when we expand the 6 symmetry
functions llry ) into spherical harmonics llm ) (Ref. 42)

liry&= g lim &&Imlry), (55)

where I is a representation of 6 and y is a subspecies la-
bel needed when I is degenerate. Then if we consider as
shorthand for Eq. (11) the intensity

J= QIfUg = g I~&xglxry &&xrylxg&U&,
~rqg

(56)

we may define new linear combinations of the spectra and
angle dependencies

I"„=gq&xglxry &,

U"„=y U", &xrylxg&,

(57)

(58)

and rewrite the intensity as

J—g Ix Ux

xry
(59)

Because U has to be totally symmetric in G we must have
I y=A& andso

J—QIx Uz (60)

When x branches to A
&

more than once we have

J= Q I"„tdU"„~d,
xd

(61)

where d is a multiplicity label. This shows explicitly that
the number of spectra is equal to the number of times l(3) I
contains A &. The spectra and their angle dependencies
are given by Eqs. (57) and (58) with I'y = A, d.
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Likewise, including again the photon polarization,

1J'(e, P)= gI"„dg U~""~(e,P)8$,'„,
xd b

with

(62)

(63)

For the rare-earth compounds the splitting by the crys-
tal Geld or magnetic field is so small that it cannot be
resolved in the final state. In such a case, even though x
(or z) may contain A, many times, the shape of the I"„d

1

is independent of d and only its size changes proportion-
ally to the expectation value of the corresponding opera-
tor. For example, in low symmetry X, Y, and Z are the
A

&
component of x =1 and then the spectra Ix, Iz, and

Iz' have the same shape, but are proportional to (Lz),
(L„),and (Lz), respectively. Knowledge of this prop-
erty reduces the number of data needed to measure the
spectra. These can be calculated in any symmetry but
SO& is the best choice because for each x it gives exactly
one fundamental spectrum (c.f. Table V}.

In the localized open shells of the 5f and 3d metal
compounds the crystal-field interaction cannot be
neglected and Table V gives the number of fundamental
spectra. At high symmetry this is always small, e.g., the
icosahedral symmetry gives only fundamental spectra for
x =0 and 6. If we observe more spectra this must be due
to lower symmetry, e.g., due to the surface. In Oz and Td
only x =0, 4, 6 contain A &, so from a p core level there is

only the isotropic spectrum and from a d level we have an
additional spectrum from x =4, describing the difference
between e and t2 holes.

In the literature one often finds statements about the
number of independent measurements necessary for a
complete experiment. But those cases normally consider
a completely known ground and excited state. Also in
our case, if we have information on, e.g., the ground state
such as its spin or symmetry we can use this to reduce the
number of spectra and waves (angular distributions} to be
taken into consideration.

VII. ANALYSIS OF ANGULAR DISTRIBUTIONS

From Eq. (11) we see the redundancy of the measure-
ment. Consider measurement at one energy. Then for a
chosen value of a each I& sends out a set of different
"waves" U& "with b = ix —a

i

. x+a and b even. Thus
for a=0 there is one wave, b=x, for each even x, for
a=1 there is one, b=x, for each even x and there are
about two, b =x —1,x+1 for each odd x. Likewise, for
a=2 for each even x there are three values of b,
b=x —2,x,x+2, and for each odd x there are two, viz. ,
b =x —1,x + 1. So for a =0 there is just enough informa-
tion to obtain only the even x and a = 1 is just sufficient
to obtain the odd x but a =1 also contains twice the in-
formation for the even x and a =2 further increases the
redundancy. If the R and 5 were known then the relative
intensities of the redundant waves would be fixed, so
effectively each I& sends out only one composite distribu-
tion. If the R and 5 are considered unknowns then the
relative coefficients would be determined by only two un-
knowns, the ratio between the two R values and the value
of 5, —5, The absolute value of the R cannot be deter-
mined because we may multiply the R with any (energy-
dependent) factor and divide the I& by its square and ob-
tain the same intensity. If we treat the R and the 5 as
constant over the energy range we have only two parame-
ters for the whole energy range. It would not be possible
to solve for them by a measurement with a =0 alone be-
cause then there are as many waves as there are unknown
I~. (N.B. x is even only). But for a =1 and 2 there are
more waves than unknowns. Because in solids we
cannot do absolute intensity measurements, or only with
great difficulty, we cannot determine the absolute values
of the R nor determine the shape of the I& to within an
arbitrary function of energy. This is a serious drawback
because much of the information we obtain from the
spectra comes from the study of the shape and the satel-
lite structure, which cannot be obtained from asymmetry
parameters, as are usually determined in other discip-
lines. For example, for the application of sum rules for
the I& we need the shape of the spectrum. So in order to
obtain the information we need we have to make assump-

TABLE V. Number of fundamental spectra in point-group symmetry. This is the number of times

that x branches to the totally symmetric representation A
&

in the point group G.

Gix

SO3
K
Oa, T
D6
D4
D3
D2
S02
C,
C4
C3
Cq

CI

0

0
0
1

1

2
1

1

3
3
5

11

0
1

1

2
2
3
4
1

3
3
5

7
13

0
0
0
0
1

2
3
1

3
3
5

7
15
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(64)

Because M is along the Z axis we have C~(M)=5@ and
so

a b x
U' g(P, E)= gn b„'

p ~
C'(P)Cp(s)C((M)

uPg

—=U' "(P,e, M) . (65)

This function is totally symmetric for rotation of the
coordinate system ' and so M does not have to be
along Z anymore; the result only depends on the angles
between e, P, and M. Using this property we can prove
relatively easily that U is zero for certain geometries.
The best known case is that of a+b+x odd in a coplanar

tions about the values of the R, e.g., that the largest one
is constant or has a prescribed energy dependence. The
ratio of the R will then be determined by fitting and may
give a check on our assumptions. The variations in R are
considerably smaller if we measure at constant photoelec-
tron energy, scanning the photon energy, such as in con-
stant final-state spectroscopy (CFS}. This mode is prob-
ably preferable in any photoemission experiment but
especially so in regions where R and 5 vary strongly. The
magnitude of these variations can be estimated from the
tables of Goldberg, Fadley, and Kono. Note that in
many cases in the literature known initial and final states
were considered to study R and 5 measuring essentially
U and U times the "simple" spectrum I . In our
case we wish to consider R and 5 as known and study the
initial and final states.

For the analysis of angle dependence its symmetry
properties will be important. From the symmetry section
we know that the maximum number of different I& is
(21+1) . By point-group symmetry this number is gen-
erally strongly reduced, e.g., to 21+1 in cylindrical sym-
metry where )=0. The angular distribution then con-
tains correspondingly fewer waves and we need to mea-
sure in fewer geometries.

Parity is another important source of symmetry that
simplifies the analysis. The intensity of U&

"changes sign
whenever one of the vectors corresponding to an odd mo-
ment a, b, or x is inverted. For P and c this can be seen
from Eq. (8}because the spherical harmonics of odd mo-
ment have odd parity. At reversion of the magnetization
M the U~s" do not change but all I

&
with odd x (the mag-

netic spectra) change sign. Inverting an even moment
does not change the signal. So because b is even inver-
sion of c never gives a change. When a =1 inversion of P
is equivalent to exchanging left- and right-circularly po-
larized light and so the change of sign is trivial. The only
interesting inversion is that of M. We can separate odd
and even values of x by reversing M and adding or sub-
tracting the signals.

The above is valid in any symmetry but in any actual
symmetry more can be said about equivalent geometries.
In cylindrical symmetry we have /=0 and we may write

a b x
U'"&(P, s)= gn s„' 0 C'(P)C (s)Co(M) .

geometry. Here the intensity must be zero because when
a +b+x is odd one of the moments, say a, must be odd.
Inverting that moment gives a change of sign. But the
same geometry can be obtained by inverting b and x,
which are even together and give no net sign change, and
afterwards rotate 180' in the plane, which leaves U un-
changed. Therefore U= —U=O. This result is usually
expressed as the requirement that the geometry must be
chiral to measure an odd wave. The same property is ex-
pressed by the fact that an odd wave contains a factor
e, PXM which is denoted s,z3 in Sec. VIII (Table IX).
This factor is zero in a planar geometry. However it
would suggest that the most chiral geometry is the one
where c., P, and M are mutually perpendicular. This is
not true when two of the moments, say b and x, are even.
An even moment has no direction and may be denoted by
two arrows in opposite directions. Then it is clear that
the perpendicular geometry is equal to its mirror image
and that it is not chiral Mor. e generally: The intensity of
an odd wave with two even moments is zero when one of
the even moments is perpendicular to the other two mo
ments. Formally this is proved by observing that inver-
sion of the odd moment, which gives a sign change, fol-
lowed by a rotation leads to the same geometry as inver-
sion of the two even moments, which gives no sign
change. The maximum intensity is obtained in a
geometry in between coplanar and perpendicular.

The measurement of these odd waves, which occur
only in interference c =1+1 gives two important applica-
tions which are not present in noninterference measure-
ments. These are CDAD and what we will call MLDAD
(magnetic linear dichroism in the angle dependence). In
CDAD we use a =1 in order to measure even moments x.
Odd moments, if the sample is magnetic, can be separat-
ed by reversing the magnetization. In MLDAD odd mo-
ments are studied using a =0 and 2. Even moments are
again separated by reversing the magnetization.

We can show that for even waves with two moments odd
and one even the intensity is zero when one of the odd mo
ments is perpendicular to the two other moments, which
can make an arbitrary angle This is .so because inversion
of the two latter moments, which changes the sign be-
cause one of them is odd, leads to the same geometry as
can be reached by a rotation.

When the point-group symmetry is not C
„

the intensi-
ty does not only depend on the angles between P, e., and
M but also on the angle of rotation of the atom around
M. When there is an axis of symmetry C3 or higher all
properties in C„stillhold for x =1. Then I& is a vector
which is oriented along the axis and has only a /=0 com-
ponent when we take the symmetry axis as the Z-
coordinate axis. When there is no symmetry, it is always
possible to define the direction of M in the ground state,
and we may normally assume that the Snal states will be
quantized along the same direction. Then for x =1 the
C analysis is still applicable. However for x =2 and
higher it is not generally possible to choose a quantiza-
tion axis which gives only g =0 components and then the
atom has no rotational symmetry around the quantiza-
tion axis and the full form U'

&
has to be taken into con-

sideration.
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(ab0)

cc'=00

(000)

TABLE VL The values of A,g'„'' [Eq. (10)] for 1=1.

cc' =20

(220):2
3

(220)

cc'=22

(ab1)
g 1cc'1

abl

(101) (121)
—1

3

(221)
5.—14

(101)
—1

3

(121)

(ab2)
g 1cc'1

ab2

(202) (022)
—1

3

(122)
5 ~—1
12

(222) (022)
—1

3

(202)
1

15

(222)
:2
21

(242)
36
35

VIII. APPLICATIONS

The angular dependence of J' is given by Eq. (11)
where only a finite number of waves U&

" can contribute
because a, b, x, and g are restricted by momentum cou-
pling and symmetry. For p, d, and f photoemission the
allowed values of A,'b„' [Eq. (10)] are given in Tables VI,
VII, and VIII, respectively, where they are ordered in
rows of increasing x, corresponding with the fundamental
spectra I&. The imaginary values of A can only be mea-
sured in chiral geometry. The three columns cc' in the
tables correspond to the 1 —1 channel, the interference
term, and the 1+1 channel. Values for the R and 5 can
be found in, e.g., Ref. 43.

It is instructive to show the relation between the A,'b„''

values and the values A„derived in Paper II (Table I) for
angle-integrated photoemission. Due to the factor in Eq.
(9) and a different normalization [see Eqs. (51)—(54)] of

I

the operators in Eqs. (44)—(46) A„is not equal to A„'0'„'
but

A 1ccl I

A 1ccl I I101 & 1

A 202'=1) 1(21—1)/3 A2,

where

(66)

(67)

(68)

1 =[lc]n&„=max(l,c) . (69)

A. Angle dependence in p photoemission

As an example we will now write out the angle depen-
dence of emission from a p level for dipole radiation and
discuss three cases from the literature. We will only con-
sider cylindrical symmetry and so g is zero.

4~JQ IOUmo( A 1001ROO+ A 1221R 22)+I2U022[ A 1201(R20+R 02)+ A 1221R 22]

=I ( 'ROO+ 'R )—+I ( ', c———')[ ——'(—R R cos5) ——'R ]

4o'Jl —I1[U101( I R M 1 R 22)+ U121( zR OR 2cos5+ —R )]+I U 2( —R R s1n5)
3 3 3 3 6

=I'[c2(—,'R —
—,'R )+(—,'c1c&—

—,'c2)( ', R R cos5+——',—R ))+I c1s,23R R sin5,

4~J2 IOU220[ 2 (R 02+R 20) 2R 22]+I1U221[ & &(R 02 R 20)]
3 3 4

+I2[ U202( I R 00+ 1 R 22) + U222( 2 R QR 2cos5 2 R 22) + U242( 36 R 22
) ]3 15 3 21 35

=I ( 'c ——')( ', R R—cos5 —'—R— )+—I'( ——'s c )(R R sin5)+I ( )

(70)

(71)

(72)

47rJ =I (')R-
4rrJ' = I'( ,'c2 —c,c3)R-
4~J2 IO( & c2 )R 22

3 2

(73)

(74)

(75)

ce' — c c' ' c ~c'
where 6—=50 52 R —=R'R'e ' ', and s123 and an-
gles c1,c2, c3 are defined in Table IX. U' " is used here

for U p(P, c.,Z) taking the magnetization to be along Z.
Because for in-plane geometries U' is zero J' is then

purely proportional to I'. Neglecting the spectrum I
(which is small in the j=

—,
' edge, c.f. Sec. V) and the tran-

sition to the s continuum (R =0) we can compare to Ref.
29,

J1 I1 ( —', c2 —c1c3)
(76)

This is the same angle dependence as given in Ref. 29 and
46

Schneider and co-workers ' have measured the angu-
lar dependence of the circular dichroism of the 2p core
level of ferromagnetic iron. The prediction by the theory
that for coplanar geometries there is only one spectrum,
i.e., I0, seems to be confirmed. However, the authors plot
and analyze the asymmetry ratio —,'J'/J, which is not
well suited for our analysis in terms of linear combina-
tions of fundamental spectra. For the angle dependence
of the magnitude of the signal the authors use a one-
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(ab0)
g 1cc'2

abO

cc'=11

(000) (220)
—2
25

TABLE VII. The values of A P' ' [Eq. {10)]for / =2.

cc'=13

(220)
—18
25

cc'=33

(000) (220)
—12
25

(ab1) (101) (121) (121) (221) (101) (121)

g lcc'2
ab1

—4
25

—6
25

3—l
2

:2
5

16
25

(ab2) (022) (202) (222) (022) {122) {222) (242) (022) (202) (222) (242)

g lcc'2
ab2

—2
5

—4
35

—6
35

5 ~—l14
138
245

72
245

—24
35

6
35

—48
245

216
245

(ab3) (123) (123) (143) (223) {243) (123) (143)
a1cc 2
aab3

—6
25

12
175

6
35 4

—9 o—l20
18
175

—12
35

(ab4) (224) (044) (144) (224) {244) (044) (224) (244) (264)
g 1cc'2

ab4
—36
175

6
35

—27 —18
1225

—6
49

3
35

—12
1225

12
539

—30
77

electron-like model which fixes the ratio of the I, I', and
I2 spectra by assuming the m =2—', levels to be degen-
erate with m~ =+—,'. In a many-particle model these ra-
tios may be difFerent and vary with the final state,
influencing the J angle dependence which appears in the
asymmetry. So it is hard to judge whether the deviations
from their model fit into our theory.

Another case is the Sp emission of rare earths between
0 and 100 eV above threshold. ' Assuming only I to
be nonzero we have

4~JII = 'io[R ~+(6c —2)R R cosf+(3c2 + 1 )R 2]

(77)

When the R and 5 are constants we measure an undis-
torted I, but when they vary with energy the I appears

distorted because it is multiplied by an energy-dependent
function. But when R and R are different functions of
energy the distortion depends on c3 which is the cosine of
the angle between light polarization and emission direc-
tion. This is indeed the case in the energy region con-
sidered and a change in peak ratio can be produced by
this efFect. In order to analyze these spectra this effect
should be taken into account, e.g., by making an assump-
tion about one of the parameters R, R2, and cos5 and
measuring at a few difFerent values of cs. It may be
simpler to measure in constant final-state (CFS) mode,
where the parameters are expected to be much more con-
stant.

B. MLDAD in p photoemission

In a recent experiment by Roth et al. a different
emission intensity was measured with linearly polarized

(ab0)
g 1cc'3

abO

cc'=22

(000) (220)
-6
49

TABLE VIII. The values of Ag' ' [Eq. {10)]for 1=3.

cc'=24

(220)
—36
49

cc'=44

(000) (220)
—20
49

(ab1)
g 1cc'3

abl

(101) (121)
—12
49

(121) (221)
45 ~

28

(101) (121)
30
49

(ab2) (022) (202) (222) (242) (022) (122) (222) (242) (022) (202) (222) (242)
g 1cc'3

ab2
—30
49

—60
343

18
343

—5
49

25 ~ 235—l84 343
150
343

—125
147

5
21

—250
1029

270
343

(ah 3) (123) {143) {123) {143) {223) (243) (123) (143)
g 1cc'3

ab3
—18
49

4
49

4
49

10 —5.
49

—l12
3 ~—l4

10
49

—24
49

(ab4) (044) (224) (244) (044) (144) (224) (244) (264) (044) (224) (244) (264)
g lcc'3

ab4
9

49
—108 180
343 3773

90
539

—81 . —18
308 343

—11 430
41 503

—90
847

162
539

—180
3773

3 240 —450
41 503 847

(ah 5) (145) (145) (165) (245) (265) (145) (165)
g 1cc'3

ab5
5

49
—20
539

—5
77

3 ~—l28
13 .—l84

—15
539

10
77

(ab6) (246) (066) (166) (246) (266) (066) (246) (266) (286)
g 1cc'3

ab6
45
539

—5
77

65 l 30
924 5929

5
121

—5
231

135 —2 56
77 077 363 429
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E1E2E3TABLE IX. The function U ' (P1,P2, P3) where c 1
=P2-P3,

2 P3 1 c3 1 P2 and s123 P1 (P2 XP,), which is the
volume of a block spanned by P„P2,and P3. Other functions
can be obtained by permutation of 1, 2, and 3. Note that an odd
permutation changes the sign of s,23 s213 The forms
given here are nicely symmetric in 1, 2, and 3 but especially the
forms with high I values are difficult to analyze and plot. For
those purposes the original expressions Eq. (70)—(72) evaluated

by computer with P1 along Z and P2 in the XY plane are more
suited, although they are unsymmetric.

UOOO

U011 —C1
2

2C1 2
rr112 3 1

U222 1 (2 3c2 3c2 3c32+ clc2c3)2

U 4 = —(]—5c +2c —5c& —20c1c2c3+35c c )8
r r122 6

q C1S123

P

light (a =0 and 2, so a is even) when the magnetization
was reversed which means that there must be a term with
an odd value for x. From Eq. (72) we see that this has to
be the term with I'U '. This term, like any term with a
even and x odd, has an odd angular dependence and so
there is no signal when light polarization, magnetization
and emission direction are coplanar. Indeed in the
geometry used the light polarization was 16' out of the c,
M plane. We expect for the intensity difference

(gJo1

3 )
., U 1()1+ 3() U

1'1
7 49

I Lk

p

b) lp U 123 24 U 143

49 49

=—bJ =— I —c s R R sin5 .
1 2 2 1 ] 3 0 2

3 123 (78)

The angle dependence is c3s&z3, which has its maximum
value of 0.5 when 8—:Z(e, P) =45' and M is perpendicular
to the plane c.,P. When 8= 16' the value of
c3$ ]23 0.265. Therefore we expect that the effect can be
increased further. The important conclusion here is that
with linear dichroism in the interference channel we in
fact measure the I' spectrum, the same spectrum one
measures with circularly polarized light in coplanar
geometry (by U' ' and U' '). It is the counterpart of the
term U' which measures I using circularly polarized
light in an off-plane geometry (CDAD).

FIG. 6. Angular distribution of the coefficients for (a) I' and
(b) I in Eq. (79). The plots show the emission intensity from a
viewpoint perpendicular to the P,M plane. In the four plots M
is always in the vertical direction pointing upward while P is at
0, 30, 60, and 90' with M. The center of the circle gives the in-

tensity in the direction perpendicular to the P, M plane. The
radius of a plotted point is its polar angle with this direction.
Thus the boundary of the circle gives the emission in P,M
plane. The contours have intervals of 0.2, where the thick lines
are the contours of zero intensity. Dark (light) grey denotes
negative (positive) intensity. The approximate geometry used by
Starke et al. (Ref. 49) is indicated by 6. A geometry suitable
for measuring I is indicated by O.

C. Angle dependence in f photoemission

Recently Starke et al. measured the circular di-
chroism in Gd 4f photoemission. We will now give the
angle dependence assuming that only the f~g channel
contributes and that I does not contribute because its
coefficients are too small (see Table VIII).

4~J1 [11( 3 U101+ 30 U121)+I3( 10 U123 24 U143)]R
7 49 49 49

(79)

We have plotted the coefficient of I' and I in Fig. 6,
which shows that Starke et al. indeed measured almost
purely I' and that con6guration 0 is best suited to mea-
sure I .

From Table VIII, we see that also measurement in

LDAD looks promising in the region that the d channel
contributes, especially the coefficients for U ' and U
A drawback is that the d channel only contributes up to
about 10 eV above the edge where interaction of the
continuum level with the lattice may complicate the
analysis.

IX. CONCLUSIONS

Recent experimental work by Schneider, Venus, and
Kirschner and Roth et al. have kindled the interest jn
magnetic circular and linear dichroism in the angle-
resolved core-level photoemission from magnetic ordered
materials. We have presented a general model, where we
derived the angular dependence of photoemission from
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localized shells in the limit of spherical continuum states.
The angular anisotropy of the emission from a core lev-

el is due to the polarization of the photon and to the elec-
trostatic interaction between the hole created and the po-
larized valence electrons. In emission from a localized
open shell an additional anisotropy is caused by the ini-
tial polarization of the shell from which the electron is
emitted. In x-ray absorption and angle-integrated photo-
emission we can obtain the occupation number, the mag-
netic orientation (M ) and the magnetic alignment (M )
by measuring the isotropic, the circular dichroism, and
linear dichroism, respectively. However, in angle-
dependent photoemission, where the photoelectron distri-
bution carries away a higher momentum, we can observe
all moments up to (M ') or, with spin-orbit coupling, up
to (M"').

The expression for the angular-dependent photoemis-
sion can be written as a sum over energy-dependent fac-
tors, which are the fundamental spectra containing all
the physical information about the many-electron system.
In each geometry we measure a linear combination of the
same set of fundamental spectra. For example, in
cylinder symmetry the emission from a localized shell I
measured at an arbitrary emission angle is always a linear
combination of 21+1 fundamental spectra. Each funda-
mental spectrum produces a hmited set of angular waves.
These waves are a function of the angles between the
photon polarization, the magnetic orientation and the
emission direction. Special effects can occur when the
geometry spanned by these vectors is chiral and there is
appreciable signal in the interference between the l —1

and 1+1 channels. Whereas in a nonchiral geometry we
measure even moments with isotropic or linearly polar-
ized light, and odd (i.e., magnetic) moments with circu-
larly polarized light, in a chiral geometry we measure
even moments with circularly polarized light and odd
moments with linearly polarized light. The moment
analysis reveals the relation between these apparently un-
correlated experiments. For example, the spectrum I'
which is the magnetic dichroism usually measured with
circular polarization can also be measured by MLDAD
which uses linear polarization in a nonplanar geometry.
The latter measurement is more advantageous because
linearly polarized synchrotron radiation has much more
intensity and higher degree of polarization than its circu-
larly polarized companion. Moreover, MLDAD can
even be measured with "unpolarized" radiation.

We have shown how the angular dependence of these
spectra can be calculated in a simple and straightforward
way. This can be helpful to find those emission angles
which give the most intense fundamental spectra, i.e., the
strongest polarization effects and to find the magic angles
for which certain fundamental spectra are zero. The
magnitude of the different fundamental spectra and their
coefficients do not vary strongly so that each of them can
be measured in some geometry except for the I and I
spectra off shells which have very small coefficients.

Scattering by the environment can be included, but will
introduce additional parameters which make the analysis
less transparent. The influence of the potential has been
evidenced in CO adsorbate on a metal surface by the

APPENDIX

We give our fundamental spectra as being a function of
the final state

~f ). We can obtain the intensity as a func-
tion of photon energy co, photoelectron energy E, and ini-
tial and final-state energies Eg and Ef using

I(E,co) = Q I(f)5—(E+EI ro Es) . — —
f

(Al)

The measured intensity also contains radial integrals
which are a function of E. Our fundamental spectra do
not contain these and are a function of E—co. In order to
obtain the integral over the fundamental spectrum we
can use

JI(E,co)dE= JI(E,to)de= Q I(f ) .
f

(A2)

Further, when g and f are degenerate we implicitly as-
sume a sum over the degenerate levels or over the
Boltzmann distribution of g. This makes our spectra to-
tally symmetric where needed. Finally summation of the
spectra for equivalent sites produces a total spectrum
which has the symmetry of the crystal (or lower when the
surface contribution is important}.

The structure of angle dependencies is more clearly
shown if we use a graphical representation for the (nor-
malized} spherical harmonics. We use

1~(e)= m (A3)

where c is a unit vector, or it may be considered to

presence of a CDAD effect in the C 1s photoemission due
to the interference between the transitions to the pm. and
pa continua. We have only given a complete descrip-
tion of the first step, the excitation process from a local-
ized shell. Further developments of the theory of scatter-
ing mechanisms are highly desirable, and could push the
advancement of photoelectron difFraction and photoelec-
tron holography of magnetic materials.

In our analysis we have shown how to separate the
geometric factor from the spectra which give the physical
properties of the atom. The angular distribution can be
derived in a one-electron calculation since the photon
and the angle distribution act on the same electron. The
analysis is valid both for one-electron and for many-
electron systems. In paper I we used different derivations
for the various coupling cases in order to understand the
fundamental spectra. Here we use a second quantization
formalism which has the great advantage that the
analysis is valid independent of the theory that may be
necessary to describe the valence shell and its interactions
with the localized shell: Whether the theoretical analysis
has to be done in band-structure theory or by a localized
approach in any coupling scheme has no influence on the
way the experimental data have to be treated.

Spin-polarization measurements can be treated in the
same formalism and gives information on the spin and its
correlations with the orbital moments, such as spin-orbit
coupling. The technique of the analysis is the same but it
is more tedious.
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represent, e.g., polar angles (8,qr). For normalized spher-
ical harmonics we use a double cross bar

C' (s)=—
4m.

21+1

1/2

II (s)= m (A4)

lf

b ncbc'. (A5)

This can also be used to simplify the angle dependence in
Eq. (8) for special cases. For example, when P~~s:

Equation (8) shows an example of how to combine 3-j
symbols and spherical harmonics. A standard operation
is the coupling of two spherical harmonics of the same
vector, e.g. , in Eq. (4}

al. Instead of a 6 factor 3-j symbols of the forms

I x I a b x
—m 0 m 0 0 0

such as our nh and n,b, . factors, can be used which are a
rational factor times a 5 factor. These factors often ap-
pear as natural normalization factors as, e.g., the n&, fac-
tor in Eq. (7), but in complicated problems the search for
the correct 6 factor can give a clue to the solution.

In many cases there are "degenerate" triads (a, b, a +b)
where one of the moments is the sum of the other two.
Then we can often obtain simple formulas, e.g. ,

r

1 x I
' C b C '=ngana»

Q a Q

X
U' &(Pile)=Nb» p p~b

/
(A6)

(
—1)'+"nI„n,I, '[c] ' for c=l+Q

a+b —1
( —1}'+ n,bnI„'[I] ' for c=l —

Q .

This is essentially the result of Goldberg, Fadley, and
Kono '. Here we have expanded their square of a spheri-
ca1 harmonic into spherical harmonics.

For the normalization of the fundamental spectra we
define a numerical factor (c.f. Ref. 52)

n
I x I

—101 (21)!
&(21—x )!(2l+1+x )!

For the normalization of the angle dependence we define
the factors

a
n'b' 0

b c
0 0 (A8)

1/2
(g —2a )!(g 2b )!(g—2x )—!

%bx
(g +1)!

X
1l

(g —2a)!!(g 2b)!!(g——2x)!! ' (A9)

nlo nllo (2I + 1 ) (A10)

We have introduced such normalizations that make all
quantities rational numbers, removing all square roots.
This can always be achieved by balancing every triad
(I,1213) in all 3n jsymbols by -a corresponding b, (/, l213)

1/2
(L —21 )!(L—21 )!(L—21 )!

Al 1
(L +1)!5(1,1~1~)=

where I =I&+l2+ l3 So, e.g., a 9-j symbol can be multi-
plied or divided by six 5 factors to make the result ration-

where g =a+b+x. When g is even we have n» =n,»,
but when g is odd n,b„=0.So Eq. (A9) is a natural "ex-
trapolation" of n,b„.Because of the factor i, n is imagi-
nary when g is odd. This nicely cancels the factor i
present in the rest of the angle dependence. It appears
again in the A factor where it combines with the complex
phase shift factor to make it real. When one of the mo-
ments is zero we have the special values

=g[b] 4 b P
b

(A14)

Three of these steps produce

aX A g [abx]
dbX

(A15)

Application of theorem 3 of Yutsis, Levinson, and Vana-
gas (YLV3) (Refs. 35 and 36) then cuts the lines a, b, and
x and connects the ends in both parts

g [abx]
abx Qrkg

(A16)

This result is slightly rewritten in Eqs. (2} and (18).

(A13)
When Q=l this equation can be applied to the case
c=c', but for the interference case chic' we have not
found a simple formula.

Assuming that no equation between "normal" physical
quantities contains square roots these procedures provide
a check on our deviations. Furthermore, the equations
become easier to handle. Nonphysical quantities may
still contain square roots, e.g., CI = —(1/~2)(x+I'y)
and 3-j symbols that are not of the form of Eq. (A12).
This is because the m components other than zero are
"artificial" unitary linear combinations. A physical
quantity will always contain, e.g., x = —(C', +C', }/&2.
Likewise 3-j symbols will always be combined in such a
way as to give well-behaved numbers when multiplied by
b, factors, as in Eq. (8).

The transformation from Eq. (1) to Eq. (2) is the most
simple form of recoupling of six moments. It recon-
nects six outgoing lines, pairing the "natural" partners
(I, l },(c,c'), and (Q, Q), such as to give a multipole expan-
sion. The procedure essentially starts using the ortho-
gonality relation for 3-j symbols
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