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The relaxation of the low-field thermoremanent magnetization has been measured, as a function of
temperature and system age, for a reentrant (Feo 65Nio 35)l „Mn„ ferromagnet with x=0.118. A dynam-

ic crossover is observed in the vicinity of the reentrant transition from a high-temperature ( T & 65 K) re-

gime of equilibrium dynamics, where the relaxation isotherms are compatible with a weak power law,

and exhibit no measurable dependence on system age, to a low-temperature (T(60 K) regime, where

the isotherms exhibit an age dependence symptomatic of nonequilibrium dynamics, and are describable

analytically by a stretched exponential. Moreover, temperature-cycling experiments clearly confirm the

instability of this low-temperature reentrant phase to variations in temperature, and thus support the ex-

istence of an overlap length scale, which is regarded by droplet scaling theories as a defining feature of
the spin-glass state. The data are compared with the functional forms predicted by various phenomeno-

logical models of relaxation dynamics in systems with randomness.

INTRODUCTION M(t)=M, 1+—
to

' —a

One of the most distinctive features of the spin-glass
state is its extremely slow approach to equilibrium: if a
spin glass is cooled rapidly through its ordering tempera-
ture TsG to some temperature T(T&6, and then probed
after waiting for a time t at constant T, the relaxation
response is observed' to vary with the age of the system,
as measured by the wait time t, indicating that true
equilibrium is never established on normal laboratory
time scales (t,b, &10 s). According to the phenomeno-
logical nearest-neighbor Ising model of Fisher and Huse,
which is based on a number of postulates regarding the
nature and energetics of the elementary (droplet) excita-
tions of the spin-glass state, this behavior is a conse-
quence of the slow, logarithmic, barrier-activated growth
of the spin-glass domains with time, R (t)-(Tint)'~~,
coupled with the extreme fragility of the spin-glass state
to arbitrarily small variations in temperature hT, which
causes the domain structure to fracture on length scales
greater than the overlap length lar —~b T~ ~. The model
predicts a crossover at observation times t —t from a re-
gime of quasiequilibrium magnetization decay,
rn(t)-(lnt) ~~, valid for lnt &&lnt, to a regime of
faster, nonequilibrium decay, m (t)-(lnt) ~ with A, )0,
valid for lnt))1nt . A sixnilar approach due to Koper
and Hilhorst, which postulates that a nonequilibrium
spin glass in a field H at a temperature T may be decom-
posed into a network of finite (T',H') domains for any
arbitrary pair (T',H'), which grow and fracture accord-
ing to specific rules but which may never exceed the over-
lap length l(T' T,H' H)- ~hT[ —~~EH

~

"—, also yields
a crossover from slow, power-law, equilibrium dynamics
to a more rapid, nonequilibriurn, stretched-exponential-
like decay in response to a small probing field:

n

X exp — [(t+t )' "—t' "]
t, (1—n)

where to, t„and t2 are temperature-dependent micro-
scopic times.

Until very recently, alternative theoretical approaches,
such as that of DeDominicis, Orland, and Lainee, based
on the mean-field solution of the long-range Sherrington
and Kirkpatrick (SK) Ising model, with its complex bro-
ken ergodicity and its infinity of quasidegenerate pure
equilibrium states, have failed to replicate the aging
phenomenon, although they have shown that the papula-
tions of a system of states with independent, random free
energies exhibit a stretched-exponential approach to equi-
librium. However, Bouchaud has developed a phenome-
nological theory of SK dynamics which links the aging of
a field-cooled system to the multitude of accessible meta-
stable magnetized states which tend to trap the system in
local energy minima as it evolves towards "true" equilib-
rium, and to their broad distribution of lifetimes r, which
is required to have a divergent mean value (r) (this is
termed "weak ergodicity breaking" ). In essence, the real-
ization that the deepest accessible minimum which is en-
countered traps the system for a time ~,„comparable to
the overall wait time and that its properties thus dom-
inate the system observables, coupled with the expecta-
tion that, when the field is switched o6'after waiting for a
time t, the system may, with finite probability, continue
to age by probing deeper and deeper magnetized wells be-
fore relaxing towards zero-magnetization states, leads
rather naturally to an observation time-dependent age
t, = t + t, and to an explicitly wait-time-dependent decay
of the form:
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M(r)=M, exp[ —
y I r "(r+r )" 'dh j . (2)

EXPERIMENTAL DETAILS

Thus this model also features a crossover between two
asymptotic relaxation regimes: a short-time (t « i )

stretched-exponential response, due to aging in the field,
and a long-time (t))t ) power-law response, due to ag-
ing during relaxation.

Chamberlin and Haines have adopted a considerably
more general approach, pointing out that the "universali-
ty" of the empirical functions used to characterize relaxa-
tion dynamics in random systems suggests a fundamental
link to elementary excitations, and have proposed a mod-
el for activated relaxation of finite-size-quantized mag-
nons within a jinxed, percolation distribution of finite
mesoscopic domains, in which domain rotation and wall
motion play no role. In this model, a domain is defined
as a region of dynamically correlated spins, where the
spins all share a common relaxation rate, which varies ex-
ponentially with inverse domain size s, co=a„e-
where s is the number of spins in the domain, and co„ is
the relaxation rate of an in6nite domain. Percolation
theory provides a specific prediction for the domain-size
distribution, n, s—exp( —s ), with exponent values
8= —

—,
' and 5=—,', which, when combined with the ex-

ponential temporal decay typical of barrier-activated dy-
namics, yields two mesoscopically exact relaxation func-
tions,

An alloy of (Fe065Nio35)i Mn„with composition
x=0.118 was prepared by arc-melting the appropriate
amounts of 99.999% pure Fe (Johnson-Matthey Chemi-
cals, England), 99.99% pure Ni (Johnson-Matthey), and
99.98% pure Mn fiake (Aldrich Chemical Co. ,
Milwaukee) on the water-cooled copper hearth of a
titanium-gettered argon arc furnace using a tungsten
electrode. The alloy was repeatedly inverted and remelt-
ed in order to ensure a homogeneous consistency, and
melting losses were traced almost exclusively to Mn va-
porization. A portion of the original ingot was cold
rolled into a thin sheet, and a long thin needle-shaped
sample with dimensions 8. 14X0.36X0.24 rnm was cut
from the sheet. (Magnetization measurements performed
subsequently on other samples cut from widely different
locations on the same sheet yielded very reproducible re-
sults, thus con6rming the uniformity of composition of
the ingot. ) The needle was encapsulated in a quartz tube
in an argon atmosphere, annealed for 4d at 920'C and
then quenched rapidly into water. The static-
magnetization and remanent-relaxation measurements
were performed with a variable-temperature, variable-
frequency SQUID susceptometer, which has been de-
scribed in detail elsewhere in the literature. '

DATA ANALYSIS AND DISCUSSION

Mg(t)=M; f x' ~ exp( —x ~ )exp( ta)*„e— ~")dx,

for domains aligned (
—) or antialigned (+) with the

external field.
While the relaxation response of pure spin glasses has

been the focus of extensive investigation, comparatively
little attention has been devoted to random-exchange fer-
romagnets, particularly in their "reentrant"
configuration, ' where the ferromagnetic (F) state sup-
posedly collapses at low temperatures into a mixed
ferromagnetic —spin-glass (FSG) ground state. This is
somewhat surprising, since the validity of this sequential
F~FSG picture is still a matter of considerable dispute,
and relaxation experiments are expected to offer definitive
evidence for such a spin rearrangement. In this paper,
we present superconducting quantum interference device
(SQUID) measurements of the low-field thermoremanent
relaxation of a reentrant (Feo 6~Nio 35), „Mn„ ferromag-
net with x =0.118, over four decades of observation time
(2 & t & 10 s), and over a temperature interval spanning
the entire ordered phase, which show that the ferromag-
netic and reentrant phases are dynamically distinct, and
that the latter possesses the defining features of the spin-
glass state, as expressed by short-range droplet Quctua-
tion theories. The details of the magnetic phase diagram
of this ternary system are well established, " and the
choice of this particular composition was influenced by
the dynamic-susceptibility studies of Hesse and co-
workers, ' which, for similar values of x, exhibit all the
structural features symptomatic of a reentrant sequence.
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FIG. 1. Temperature dependence of the static magnetization
of the (Feo 6,Nio») & „Mn„sample with x =0.118 measured un-

der both field-cooled (FC) and zero-field-cooled (ZFC) condi-

tions in a field 0, = 1.0 Oe.

Figure 1 shows the temperature dependence of the stat-
ic magnetization of the (Feo.ssNi0. 35)o.ss2Mno. iis sample
measured under both field-cooled (FC) and zero-field-
cooled (ZFC) conditions, in a static applied field H, =1.0
Oe. The pro61e is very similar to that observed in other
reentrant versions of this system, ' and is also consistent
with the magnetic phase diagram, "which predicts a Cu&

rie temperature Tc =—150 K and a reentrant temperature

Tlt —=70 K for this composition (vertical arrows in Fig. 1).
For all temperatures T & 160 K, M„c(T)& Mzpc(T), in-

dicating the presence of significant irreversibility
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TABLE I. Best-fit parameters to the stretched exponential in Eq. (4).

40
45
50
52
55
57
57
57
57
57
60

(s)

60

60
60
60
60

300
900

3 600
10 800

60

Mp
(10 3 emu/g)

117.90+0.05
110.70+0.08
101.90+0.11
97.30+0.09
87.80+2.70
85.30+0.15
86.00+0.16
82.40+0. 18
73.80+0.35
58.00+2.00
81.80+0.08

M;
(10 ' emu/g)

15.10+0.06
22.90+0.10
34.50+0.16
39.30+0.16
51.00+0.28
60.90+0.43
58.00+0.36
62.30+0.33
72.60+0.53
89.50+2.59
84.80+0.42

0.650+0.005
0.680+0.005
0.730+0.003
0.740+0.005
0.790+0.005
0.820+0.005
0.810+0.005
0.830+0.005
0.850+0.005
0.880+0.005
0.870+0.005

(s)

(2.83+0.05) X 10
(2. 12+0.04) X 10
(1.37+0.02) X 10'
(8.56+0.09)X 10'
(3.57+0.03)X 10'
(1.62+0.02) X 10
(3.13+0.04) X 10'
(6.42%0. 10)X 10
(3.09+0.13)X 10
(2.89+0.70) X 10'

23.4+0.5

throughout the entire ordered phase.
Figure 2 shows the decay of the thermoremanent mag-

netization at a sequence of measurement temperatures in
the range 40~ T ~110 K, and with a common experi-
mental age, plotted on a logarithmic time scale. Each re-
laxation isotherm was obtained by cooling the sample in
an applied field H, =5.0 Oe from a reference temperature
T„t=160 K in the paramagnetic regime, where relaxa-
tion efFects were negligible, to the measurement tempera-
ture T (the cooling procedure was very reproducible
and yielded cooling times consistently close to t, =900 s),
waiting for a time t =60 s at constant temperature T,
then abruptly removing the applied field and recording
the decay over four decades of observation time
2~t ~10 s. These isotherms can be grouped into two
distinct thermal regimes with completely different relaxa-
tion characteristics:

(a) For temperatures T &60 K [Fig. 2(a}], which cor-
responds closely to the reentrant phase, the relaxation
isotherms all exhibit a shape which may be described
qualitatively as some portion of an S-shaped curve with
an inflection point (vertical arrows), and quantitatively by
the superposition of a stretched exponential and a con-
stant:

(a)

2 3
Log«t

52

55

57

Ma(t)=MD+M;exp[ —(t/r)' "] . (4)

This empirical representation, which is frequently in-
voked in analyses of pure spin-glass relaxation, ' provides
an excellent description of the experimental data over the
entire observation window [solid curves in Fig. 2(a)]. The
best-fit values of the parameters n and ~ listed in Table I
are indeed typical of pure spin glasses; in particular, the
exponent n increases with increasing temperature, and
the trend towards unity indicates that the system is ap-
proaching its glass temperature. The necessity to supple-
rnent the stretched exponential with a substantial baseline
term Mo, which accounts for approximately 90—95 % of
the entire remanent signal, is consistent with vector spin
models of bond-disordered systems, ' which predict a
longitudinal ferromagnetic spontaneous magnetization to
coexist with transverse spin-glass freezing. Furthermore,
the relaxation response in this regime is not unique, but
rather exhibits a dependence on system age (t„}which in-
dicates that the low-temperature phase is a nonequilibri-

65
70
80

I I

2 3
Logiot

FIG. 2. (a) Thermoremanent relaxation isotherms for a se-
quence of temperatures T 60 K and for a common wait time
t =60 s. The solid curves are fits to Eq (4) and ver.tical arrows
mark the characteristic times (inflection points) ~. (b) Ther-
moremanent relaxation isotherms for a sequence of tempera-
tures T ~65 K and for a common wait time t =60 s. The
solid curves are fits to Eq. (5).
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um phase. This is illustrated in Fig. 3 for a typical mea-
surement temperature T =57 K and for a sequence of
wait times in the range 60~t ~10800 s; the effect is
clearly visible in the relaxation rate
S(t}=—BMs(t)/Bint, shown in Fig. 3(b), as a propaga-
tion of the in6ection point towards longer observation
times with increasing system age. The solid curves in
Fig. 3(a) are best fits to Eq. (4}, and an inspection of the
corresponding parameters in Table I confirms that the
aging process primarily affects the location of the
inflection point (r), without significantly altering the
overall shape (n}, at least for wait times t & 10 s.

(b) Over the temperature interval 65& T &160 K,
which is essentially coincident with the ferromagnetic
phase, the curvature of the relaxation isotherms is uni-

formly positive [Fig. 2(b)], and all are accurately de-
scribed by an empirical function consisting of the super-
position of a simple power law and a constant (solid
curves}:

Ms(t)=Mo+M;r ™,

OAO-

CD

035-

0.30-

7K

t (s)

10800

3600

900
300
60

t„(s)
10800

3600

900

300

TABLE II. Best-fit parameters to the power law in Eq. (5).

(s)
Mp M;

(10 ' emu/g) (10 ' emu/g)

65
70
80
90

1($
110

60
60
60
60
60
60

55.4010.30
73.40+0. 10
85.90+0.19
95.00+0.14
97.70+0.12
90.90+0.15

63.80+0.28
43.80+0.10
34.10+0.18
33.60+0.13
29.80+0.12
27.70+0.14

0.072+0.001
0.088+0.001
0.082+0.001
0.066+0.001
0.064+0.001
0.060+0.001

with best-fit parameters listed in Table II. The functional
form of the decay and the values of the exponent m are
both typical of glassy relaxation dynamics in the extreme
equilibrium limit of infinite age. ' In fact, in contrast to
the reentrant phase, the isotherms in this regime exhibit
no measurable dependence on system age, for wait times
t 10 s, indicating that, within the slow-cooling con-
straints of the current investigation, equilibrium is estab-
lished far more rapidly in the high-temperature phase.
This behavior is also consistent with that observed in
"good" random ferromagnets, like Pdp 986Fep p~4 which
is not reentrant and has "ideal" Heisenberg critical ex-
ponents, and with the droplet fluctuation model of Huse
and Fisher, which predicts' a power-law decay of the
average temporal autocorrelation function in Ising fer-
romagnets with quenched bond disorder.

While the observation of a thermally driven crossover
from equilibrium to nonequilibrium relaxation dynamics
certainly offers compelling preliminary support for an
orientational collapse from parallel to random spin align-
ment, it does not constitute conclusive evidence for
genuine spin-glass freezing, since aging is also a feature of
other types of systems, such as amorphous polymers,
high-T, superconductors, ' and charge-density ~aves.
However, as mentioned earlier, the spin-glass state exhib-
its a unique sensitivity to temperature, so that neighbor-
ing states at temperatures T and T+bT share nearly
identical equilibrium spin correlations (S; S ) T only up

0.25 I I

2 3
LOgiot

FIG. 3. (a) Wait-time dependence of the thermoremanent re-
laxation at T= 57 K. The solid curves are fits to Eq. (4), and the
vertical arrows mark the inflection points ~. (b) The relaxation
rate S(t) for the isotherms in (a).

to the overlap length l&T, beyond which the signs of the
correlations at T are uncorrelated with those at T+hT.
Temperature-cycling experiments provide a particularly
direct method of detecting the overlap length through the
limitations it imposes on the growth of spin-glass
domains. If a spin glass is field cooled to a temperature
T and, after a wait time t has elapsed, is subjected to a
brief temperature cycle T ~T +hT ~T, of duration

yz]e ((t+ immediately prior to field removal, then the
subsequent behavior depends on the magnitude of hT as
follows: (a) If b, T &ET,„„,„„d then laT&RT(t } (the
overlap length is larger than the typical domain size at
T ), and there is only one type of domain and hence one
maximum in the relaxation rate S(t) at t-t . (b) If
b, T&b,T,~«, »~h, then IaT &RT(t } and some of the T
domains will fracture into smaller ( T +ET) domains of
dimension 1&T, so S ( t) will exhibit two maxima at
t-t,„,&, and t-t, corresponding to the two distinct
domain sizes. (c) If hT »b, T,&„, &

hvdirtually all the T
domains will be annihilated, and there will be one max-
imum in S(t) at t-t,„„,due to the (T +ET}domains
alone.

Figure 4 shows the results of such a temperature-
cycling experiment performed at a measurement temper-
ature T =58 K within the reentrant phase for t =10 s,
t,„,&,

=300 s, and temperature increments hT listed in the
figure. The curves labeled ET=0 and ~ represent the
two extreme single-domain configurations, the former
with a single maximum at t =—10 s due to the large
domains only, and the latter, which was obtained by heat-
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FIG. 4. The relaxation rate S(t) measured at T =58 K,
after an initial waiting period t =10 s at T followed by a
temperature cycle T ~T +LT~T of approximate dura-

tion t,„,i, =300 s. Note that the disappearance of one maximum

is accompanied by the simultaneous growth of the other.

0.7 '

ing above the Curie temperature T„then cooling and ag-
ing for t~ -=t,„,&, at T, also with a single maximum, but
at t =—300 s due to the small domains only. For inter-
mediate values of hT, the isotherms evolve systematically
between these two limits and exhibit behavior which is
consistent with a coexistence of the two types of domains;
thus a weakening of one of the component maxima
(reflecting a decline in the corresponding population) is
invariably accompanied by an enhancement of the other.
(The absence of multiple maxima in any of the intermedi-
ate isotherms is not entirely unexpected in reentrant sys-
tems, particularly ferromagnets, where the comparatively
large cooling intervals, T„f—T =—100K, and corre-
spondingly slow cooling rates combine to broaden all the
structural features. } The data in Fig. 4 represent empiri-
cal evidence for a thermal instability in the reentrant
phase of a ferromagnetic system, and, as such, provide
definitive evidence that this phase satisfies the Fisher-
Huse criteria for a spin glass.

%'e conclude with a few critical remarks on the appli-

cability of the various specific analytical expressions for
the relaxation of the remanent magnetization mentioned
in the introduction. %hile the droplet scaling theory of
Fisher and Huse, and the related mesoscopic domain
model of Koper and Hilhorst, are indeed able to account
qualitatively for many of the complex experimental sys-
tematics of pure spin-glass relaxation, in terms of a physi-
cally appealing picture of domain growth and fragmenta-
tion, a fact which motivated the adoption of the overlap-
length criterion in the current reentrant investigation,
neither offers a satisfactory functional representation of
the measured decay. In particular, double-logarithmic
plots of MR(t) versus lnt for the reentrant data in Fig.
2(a) show continuous negative curvature and thus no evi-
dence for an inverse logarithmic decay over any apprecia-
ble time interval, as predicted by the Fisher-Huse model
(although the monotonic increase in the magnitude of the
local slope with observation time is generally consistent
with the Fisher-Huse predictions ). Fits to the Koper-
Hilhorst expression (1), plus a constant baseline, were
reasonable only in the limit of very short wait times
t &60 s, where the exponential factor in Eq. (1) reduces
to a stretched exponential, and deteriorated very rapidly
with increasing t, as the discrepancy between Eqs. (1)
and (4} became progressively more severe, indicating that
some of the specific model assumptions relating to
domain growth may be unrealistic.

The percolation model of Chamberlin and Haines,
which is also a theory of activated dynamics, but for
dispersive excitations within a inixed distribution ofPnite
domains, is based on such general geometric considera-
tions that it is difBcult to appreciate the physical origins
of either the aging or temperature-cycling effects within
this theoretical framework. Nevertheless, the two model
relaxation functions (3) do provide a reasonable descrip-
tion of the isotherms in Figs. 2 and 3, since each is reduc-
ible to one of the empirical expressions (4) or (5) in an ap-
propriate limit: for Cro+t & I, M+(t)~ a stretched ex-
ponential, while for C~ t &&1, M (t)~ a power law.
In fact, least-squares fits of the ferromagnetic relaxation
data in Fig. 2(b} to M (t), plus a constant baseline, are
indistinguishable in quality from the power-law flts, as il-
lustrated in Fig. 5(c) for the T=70 K isotherm. Table III
summarizes the best-flt parameters for all the ferromag-
netic isotherms, and the vertical arrow in Fig. 5(c) shows
the relaxation time for the average-sized aligned domains,—:I /r0 = [ro„exp( —C/x }] . Within the reentrant
phase, the situation is more complex. In the extreme
nonequilibrium limit of short wait times [such as the data

TABLE III. Best-fit parameters to Mo+M (t) in Eq. (3).

65
70
80
90

100
110

Mo
(10 emu/g)

49.40+0.70
61.80+0.84
75.60+0.88
87.20+1.09
89.30+1.37
83.10+1.27

M;
( 10 emu/g)

24.10+0.52
27.30+4.65
24.60+4.29
21.20+3.57
19.00+3.75
17.60+3.08

{7.3+0.2) X 10'
(5.9+0.1)X 10'
(7.6+1.5) X 10'
(2.4+0.6) X 10
(5.9+1.8)X 10'
(1.9+0.5)X 10'

71.4+1.0
65.1+1.2
69.3+2.7
82.6+2.0
89.9+1.7
96.9+1.8
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u/g

Tm, tw

50K,60s

57K,10 s

57K,60s

50K,60s

57K,10 s

57K,60s

70K,60s

0 1 2 3 4 5
Log«t

FIG. 5. (a) Some typical fits of the Bouchaud model relaxa-
tion function {2) to reentrant isotherms. (b) Some typical fits of
the antialigned percolation relaxation function M+(t) in (3),
plus a constant Mo, to reentrant isotherms. The vertical arrows
mark the location of the relaxation time ~+ for average-sized
antialigned domains. (c) A typical fit of the aligned percolation
relaxation function M (t) in (3), plus a constant Mo, to a fer-
romagnetic isotherm. The vertical arrow marks the location of
the relaxation time F for an average-sized aligned domain.

in Fig. 2(a)], fits to the antialigned function M+ (t) alone,
superposed on a constant baseline, are reasonable, but
measurably inferior to the stretched exponential
(in'+/g, -l. 1); however, the quality of these fits im-

proves systematically with increasing system age until,
for t ~ 300 s, the two representations become essentially
interchangeable. We interpret this behavior (which
would have been unobservable in the Chamberlin-Haines
study, performed at a single, relatively long wait time
t =103 s) as evidence for the inadequacy of a static
domain-size distribution due to the possibility of domain
growth in the early stages of aging. (A six-parameter fit

to a superposition of the aligned and antialigned relaxa-
tion functions yields unreliably high parameter uncertain-
ties, and thus reinforces the need to consider the contri-
bution from only one type of domain, at least over the
temporal range of this experiment. ) Figure 5(b) illus-
trates fits to M+(t) at T =50 and 57 K, for two extreme
wait times t =60 s and t =10 s, and the vertical ar-
rows mark the relaxation time of the average-size an-
tialigned domains, r+ =—I /co+ = [to+exp(+ C/x ) ]
which decreases monotonically with increasing tempera-
ture. Table IV provides a complete list of the best-fit pa-
rameters for all the reentrant isotherrns. The correlation
coeScient C increases with temperature, so that, with the
physically reasonable assumption of a temperature-
independent average interaction between the spins 6, the
percolation correlation length g ~ (b /CT) ", where
0 =0.45 and v=0. 88 are percolation scaling exponents,
decreases with increasing temperature throughout the
reentrant phase, which is consonant with its behavior in
pure spin glasses. Thus, a Chamberlin-Haines analysis of
the dynamic crossover suggests that the dynamics in the
ferromagnetic phase are dominated by domains which
are aligned with the field, presumably because the reori-
entation of antialigned domains on field cooling is rela-
tively unhindered in this phase. In the reentrant phase,
such antialigned reorientation is inhibited, and the decay
is due predominantly to slowly relaxing, higher-energy
antialigned domains.

The Bouchaud model of thermally activated hopping
between metastable, random, free-energy wells postulates
a physical mechanism for the aging process, and yields an
age-dependent maximum in the relaxation rate S(t) signi-
fying a crossover between two asymptotic relaxation re-
gimes, although it does not directly address the
temperature-cycling phenomenon. While the fits to the
model expression (2) are consistently a little inferior to
the percolation fits in the reentrant regime
(in'~/y+-0. 70), this model has the property, unique
among all the phenomenological models discussed here,
of not requiring the "artificial" constant baseline (in fact,
the fits are significantly degraded by the inclusion of such
a term), and thus may offer the most satisfactory analyti-
cal representation of the reentrant and/or spin-glass iso-
therms, with the fewest variable parameters. Figure 5(a)

TABLE IV. Best-fit parameters to MD+M+(t) in Eq. (3).

T
{K)

40
45
50
52
55
57
57
57
57
57
60

(s)

60
60
60
60
60
60

300
900

3 600
10 800

60

Mo
(10 ' emu/g)

119.80+0.08
113.40+0.08
104.60+0.10
100.60+0.05
91.10+0.08
88.60+0.10
89.80+0.10
88.80+0.16
85.40+0.31
78.80+0.75
85.40+0. 16

M;
(10 ' emu/g)

4.30+0.04
7.00+0.04

11.90+0.07
13.60+0.06
19.90+0.12
26.20+0.22
23.30+0.13
23.00+0.18
23.80+0.23
25.80+0.44
42.90+0.67

(s ')

(2. 1+0.1)x 10-'
(1.5+0.1)X 10
(5.4+0.2) x 10-'
(6.9+0.2) X 10-'
(2.5+0.1)x10-'
(8.0+0.6) x10-'
(9.5+0.6) X 10
(5.7+0.4) X 10
(1.3+0.2) X 10
(2.0+0.5) x 10-'
(4.7+0.6) x 10-'

20.7+0.3
25.4+0.2
37.2+0.3
39.7+0.3
57.9+0.4
78.1+0.8
69.1+0.6
68.8+0.6
72.8+0.8
80.2+1.2

130.9+2.0
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illustrates some typical fits to the model relaxation func-
tion {which exhibit deviations similar to those observed

by Bouchaud under comparable conditions}, and Table V
summarizes the best-fit parameters. The parameter x,
which provides information on the distribution of free en-
ergies in the reentrant and/or spin-glass phase, increases
monotonically with temperature and approaches unity as
T~60 K, which also appears to be the upper limit of sta-
bility of the nonequilibrium reentrant phase, thus sup-
porting the random-energy model of Derrida, over the
random-exchange SK model.

In summary, we have presented measurements of the
1ow-field thermoremanent decay in a reentrant
(Fe, Ni), „Mn„ ferromagnet which offer compelling evi-

dence that the reentrant transition actually corresponds
to a microscopic collapse of the ferromagnetic spin align-
ment into an orientationally random, glassy spin
configuration. In particular, the equilibrium relaxation
dynamics within the high-temperature ferromagnetic
phase are replaced, at low temperatures, by a nonequili-
brium regime where the relaxation response exhibits a
strong dependence on the age of the system, and is com-
patible with an analytical form commonly used in the
representation of pure spin-glass dynamics. More impor-
tantly, temperature-cycling experiments clearly confirm
the instability of the reentrant phase to arbitrarily small
variations in temperature. While this behavior certainly
supports the existence of an overlap length scale, which is
regarded by theories of mesoscopic domain growth as a
defining feature of the spin-glass state, the incompatibili-
ty of the specific functional forms predicted by these
theories, with the measured decay, prompted compar-

TABLE V. Best-fit parameters to Eq. (2).

T
(K)

40
45
50
52
55
57
57
57
57
57
60

(s)

60
60
60
60
60
60

300
900

3 600
10 800

60

M;
(10 emu/g)

131.80+0.01
131.70+0.02
133.10+0.04
133.70+0.06
139.80+0.16
161.70+0.49
165.90+0.36
164.00+0.30
159.80+0.24
155.50+0.23
402.10+5.69

0.015%0.001
0.021+0.001
0.029+0.001
0.033+0.001
0.038+0.001
0.038+0.001
0.039+0.001
0.041+0.001
0.042+0.001
0.044+0.001
0.042+0.001

0.29+0.01
0.43+0.01
0.59+0.01
0.69+0.01
0.82+0.01
0.90+0.01
0.91+0.01
0.91+0.01
0.91+0.01
0.91+0.01
0.96+0.01

isons with two other recent models of glassy dynamics
based on quite different physical mechanisms. While the
quality of the analytical fits is comparable for the two
models, the Bouchaud model of random traps appears to
be preferable, since it explicitly accommodates the aging
process within a more transparent physical framework.
However, the origins of the thermal instability have thus
far not been addressed within this formalism, and more
theoretical work is required in this direction.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
Natural Sciences and Engineering Research Council of
Canada.

L. Lundgren, P. Svedlindh, P. Nordblad, and O. Beckman,
Phys. Rev. Lett. 51, 911 (1983).

D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373 (1988).
G. J. M. Koper and H. J. Hilhorst, J. Phys. (Paris) 49, 429

(1988).
C. De Dominicis, H. Orland, and F. Lainee, J. Phys. Lett.

(Paris) 46, L463 (1985).
56. Parisi, Phys. Rev. Lett. 50, 1946 (1983).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 32, 1792

(1975).
J. P. Bouchaud, J. Phys. I (France) 2, 1705 (1992).
R. V. Chamberlin and D. N. Haines, Phys. Rev. Lett. 65, 2197

(1990).
T. C. Lubensky and A. J. McKane, J. Phys. A 14, L157 (1981).
B. H. Verbeek, G. J. Nieuwenhuys, H. Stocker, and J. A. My-
dosh, Phys. Rev. Lett. 40, 586 (1978).
A. Wulfes, Ch. Bottger, J. Hesse, J. Sievert, and H. Ahlers, J.
Magn. Magn. Mater. 104-107, 2069 (1992).

' B. Huck, J. Landes, R. Stasch, and J. Hesse, J. Phys. (Paris)
C8, 49, 1141 (1988).

H. P. Kunkel, R. M. Roshko, W. Ruan, and G. Williams, Phi-
los. Mag. B 63, 1213 (1991).

' R. D. Barnard, Ch. Bottger, S. Thamm and J. Hesse, J. Phys.
Condens. Matter. 4, 7219 (1992).
R. Hoogerbeets, W.-L. Luo, and R. Orbach, Phys. Rev. B 34,
1719 (1986).

M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201 (1981).
L. Lundgren, P. Nordblad, and P. Svedlindh, Phys. Rev. B 34,
8164 (1986).

' P. D. Mitchler, R. M. Roshko, and W. Ruan, Philos. Mag. B
68, 539 (1993).

' D. A. Huse and D. S. Fisher, Phys. Rev. B 35, 6841 (1987).
L. C. E. Struik, Physical Aging in Amorphous Polymers and
Other Materials (Elsevier, Houston, 1978).
C. Rossel, in Relaxation in Complex Systems and Related
Topics, edited by I. A. Campbell and C. Giovannella (Plenum,
New York, 1990).

K. Biljakovic, J. C. Lasjaunias, P. Monceau, and F. Levy,
Phys. Rev. Lett. 67, 1902 (1991).
B.Derrida, Phys. Rev. B 24, 2613 (1981).


