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We present a perturbation scheme for evaluating the ground-state characteristics of Neel and collinear
phases of the spin-2 J&-J2 model. Using the Dyson-Maleev formalism and performing a canonical trans-

formation to exclude strong interaction between bosons, we convert the Hamiltonian of the Ji-J2 model
to the Hamiltonian HDM =Ho+ VDM, where Ho represents a noninteracting gas of quasiparticles and

VDM is a normal-ordered quartic operator. The description, based on the zero-order Hamiltonian 80,
turns out to be equivalent to the description of ordered phases, obtained earlier in the framework of
modified spin-wave theory (MSWT). We carry out perturbation-type calculations up to second order in

VDM for the ground-state energy and magnetization and obtain small corrections in a wide range of the
frustration parameter a ( =J, /Ji). It is shown that near the phase boundaries the spin-wave interaction
causes an essential melting effect. The corrected value of magnetization of the Neel (collinear) phase
goes to zero at a=0.52 (a=0.57). Thus, within a second-order approximation a window 0.52&a &0.57
instead of the MSWT overlap between Neel and collinear phases is found.

I. INTRODUCTION

The Hamiltonian for a square-lattice frustrated Heisen-
berg antiferromagnet, namely,

H=J) g S;Sj+J2 g StS

where positive J& and J2 correspond to the nearest-
neighbor (NN) and next-nearest-neighbor (NNN) cou-
pling constant between spins, has attracted much atten-
tion in recent years. ' ' It is believed that the investiga-
tion of the ground state and excitations of S =

—,
' square-

lattice frustrated models may lead to a better understand-
ing of the nature of high-temperature superconductivity.
Semiquantitative arguments about how the effect of dop-
ing can be described by including further couplings into
the quantum Heisenberg model, the couplings being pro-
portional to the doping of cooper oxide materials, have
been presented in Ref. 12.

The classical ground state of the model (1) is Neel or-
dered up to a=J2/J& =0.5. For a&0.5, J2 dominates
and the system separates into two sublattices, each of
them having Neel order. The classical energy is indepen-
dent of the angle between the two sublattices, and there is
a continuous degeneracy between all canted states. In
systems with large frustration, zero-point fluctuations
favor the collinear phase, namely, the phase with stripe
ordering. In the spin- —, model (1), which will be discussed
in this paper, the quantum fluctuations can destroy classi-
cal structures and some other type of ground state may
be possible. Several states, interesting for high-T, super-
conductivity, have been proposed for the ground state of
this NNN model at an intermediate range of the parame-
ter u (see Ref. 10 and references therein).

Recently, the frustrated Heisenberg model (1) has been
studied by various approximate and numerical methods,

including conventional spin-wave theory (SWT), '

modified spin-wave theory (MSWT), ' symmetric-
sublattice spin-wave theory (SSSWT), Schwinger-boson
mean-field theory (SBMFT), exact diagonalization tech-
nique on small systems ' finite-size scaling,
renormalization-group methods, variational ap-
proaches, "and so on. There exist, however, a significant
discrepancy between published results for the ground-
state characteristics of the model (1). For example,
whereas mean-field theories ' ' predict an overlap be-
tween Neel and collinear phases, SWT (Ref. 1) and other
approaches lead to the existence of a rather large win-
dow between these phases. As a matter of fact, it is not
clear yet if Neel and stripe orders are stabilized or not by
quantum fluctuations and if there is some room for other
states, ordered or disordered, in the J&-J2 model. More
consistent methods, which will permit one to control ap-
proximations in the calculations of fundamental charac-
teristics of frustrated models, are needed.

In the last few years, many authors ' have demon-
strated how precise analytical estimates of the ground-
state characteristics of the NN Heisenberg model may be
obtained by calculation of corrections within the frame-
work of SWT. The so-called third-order spin-wave re-
sults for the ground-state energy, ' *' magnetization, '

spin-wave velocity, ' ' spin-stifFness constant, ' and
transverse susceptibility' coincide very well with the
most precise Green-function Monte Carlo and series ex-
pansion estimates. However, spin-wave expansions
turned out not to be well-behaved series ' ' for model (1).
In order to develop a consistent method for investigation
of frustrated antiferromagnets, it is useful to reveal and
analyze the reasons for this breakdown of standard S%T
in the description of the J&-J2 model.

Let us start the analysis with the spin-wave expansions
for the basic characteristics of the square-lattice NN
Heisenberg model, where the ground-state energy per
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bond, ' ' 8=Ea /2N, is

4 = —S —0. 157947S —0.006 237

+0.000 107S '+0 (S )

and magnetization' m is

(2a)

m =S —0. 196602+0.000 866S +O(S ) . (2b)

Expansions for the spin-wave velocity, ' ' spin-stiffness
constant, ' and transverse susceptibility' have a similar
structure.

The last terms in the series (2) are very small even at
S =

—,'. Therefore one may suppose that the effective ex-
pansion parameter in (2) cannot be simply 1/S, 1/zS, or
(n )/zS (z =4 is the number of neighbors; (n ) =0.2 is
the average number of spin flips on one site), as is com-
monly assumed, but it is instead a more subtle quantity,
which we expect to be proportional to the interaction be-
tween spin waves.

The series (2) may be rewritten as a power series of the
spin-wave interaction. In the Dyson-Maleev (DM} for-
malism, the Harniltonian of the NN Heisenberg model,
after introducing a and P bosons by the standard pro-
cedure, takes the form' '

HDM =Ho+ VDM, where Ho
describes noninteracting gas and the interaction VDM is a
normal-ordered quartic term. Then, introducing a formal
parameter A, in HDM, HDM HO+~ VDM, and accounting
for the Hartree-Fock renormalization of the spin-wave
energy in the formulas of third-order SWT, we write, in
the case of S =

—,', the series (2) as

eluded by introducing new, better-behaved quasiparticles.
A positive answer to this question is given in this work
for the Neel and collinear phases of the J

&
-J2 model.

In the case of a Neel or stripe-ordered ground state, us-
ing the DM formalism and performing a canonical trans-
formation to exclude the quadratic part of the interaction
between bosons, we convert the Hamiltonian (1) to the
Hamiltonian HDM=Ho+ VDM, Ho being a noninteract-
ing gas of quasiparticles and VDM being a quartic
normal-ordered term. We show that the description,
based on the zero-order Hamiltonian Ho, is equivalent to
the well-known ' MSWT description of ordered phases
of the J&-J2 model. We perform perturbation-type calcu-
lations up to second order of VDM for the ground-state
energy 8 and magnetization m and show that the pro-
posed theory is self-consistent and presents an efficient
perturbation scheme for evaluating the characteristics of
Neel and collinear phases of model (1).

The paper is organized as follows. In Sec. II we intro-
duce the basic formalism and derive the zero-order re-
sults. In Sec. III we compute corrections to the ground-
state energy and magnetization. Section IV contains a
short discussion.

II. FORMALISM
AND ZERO-ORDER APPROXIMATION

For brevity, we will present below the equations in the
case of Neel ordering. The formulas for the collinear
phase can be derived in a similar way.

and

8= —0.335211+0.000185K, +O(A, ) (3a) A. Heisenberg Hamiltonian
in the DM boson representation

m =0.303398+0.002583K, +O(A, ) . (3b)

From Eqs. (3) it is seen that the corrections, caused by
the interaction, are small at A, = 1. Therefore the a and P
bosons, defined by standard SWT relations, seem to be
well-behaved quasiparticles in a NN antiferromagnet,
namely, quasiparticles with very weak interaction be-
tween them. In this case the precise estimates of the
ground-state characteristics can be obtained in a sys-.
tematic way, calculating the corrections, caused by the
interaction.

In the frustrated antiferromagnet, the large O(1/S)
correction to m, calculated in Refs. 2, 8, and 9, signals for
the existence of a strong interaction between bosons in
the standard SWT scheme. A strong interaction between
bosons in this scheme can be established even without
calculating corrections. Indeed, it is easy to show that
the interaction term in standard SWT of the frustrated
model (1) involves a quadratic part

Qk=4$[yk(uk+vk) 2ukvk[1 ~—(1 9k)]]

+4(Ri —R2)[yk(uk+v ~) k2ukvk]—
—8uk vka(R2 —Ri )(1—

gk )

=0. (5)

To deal with the Hamiltonian (1), we use the DM for-
malism, which is the most tractable in terms of the num-
ber of well-behaved interaction vertices. ' ' For small a
we assume that the Neel-ordered square lattice of spins is
divided into A and B sublattices. Having introduced bo-
sons through the DM relations, we perform a Bogoliubov
transformation and obtain HDM as a sum of a diagonal
quadratic term, a normal-ordered quartic term, and a
nondiagonal Hz-like term [see Eq. (4)]. Following the line
discussed in Sec. I, we require Qk to be zero. This brings
us to the equation for parameters of Bogoliubov trans-
formation uk and Uk.

(4) The quantities R; are defined as~2 g Qk(~k~k ++k~k )
k

=2 =2 2 =2R, =—g ykukvk, R2= —g vk, Ri =—g rlkvk,
k

(6)
yk =

—,'( cosk„+ cosky ), gk = cosk„coskY

The second equation for uk and Uk has a standard form:

which is comparable with the zero-order Hamiltonian at$-1 and a- l. It can be proven (see Sec. III} that it is
precisely H2 that causes the large O(1/S) correction to
the magnetization in the standard SWT scheme. Then it
is natural to ask if this strong interaction H2 can be ex-
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uk [( I+sk )~2sk ] & Uk [(1 sk )~2sk ]

ek =(1—
yk Ifk )', fk =1—«(1—'qk ) . (8)

Equation (8) has been earlier obtained in Ref. 2, where
MSWT of the Neel phase of model (1) has been
developed. It has been analyzed numerically, and its
solution a(a) has been tabulated there. It is worth em-

phasizing that this equation has been derived in Ref. 2 as
a self-consistent equation on the basis of the well-known
Takashi assumptions, ' which include a mean-field-type

I

Qk Uk =12 2—

The Bogoliubov transformation, determined by Eqs. (5)
and (7), can be performed only if a solution of Eqs. (5)
and (7) exists. In the case considered here, the analysis of
this problem turns out to be very simple. Equations (5)
and (7), after some algebra, can be rewritten as an equa-
tion for one parameter cz:

S+R3—R2

S+R R

decoupling of quartic terms and a variational procedure
for the minimization of the free energy at an additional
constraint (S,'& =0.

Having the solution of Eq. (8), we write the Hamiltoni-
an HDM of the Neel phase in the J, -J2 model as

~DM = ~0+Ho+ ~0M . (9)

The quadratic part of HDM has a diagonal form

Ho= QEk(akak+PkPk),

where the spin-wave energy can be written as

Ek =4(S+R( —R2)fksk . (12)

The normal-ordered quartic operator in (9) is given by
the expression

The constant term is

WO=2%6'O=2X[ —(S+8,—R2) +u(S+R2 —R3)2] .

(10)

Q(1+2—3 —4)[4"'(z(azpp4+4' 'a3aptpz —2(p' 'ap4a)a2 —24' 'apt@33
(1234)

(13)

The explicit expressions for the vertex functions
4"(1234)of the Neel phase are given in Appendix A.

The Hamiltonian (9) will be treated by employing per-
turbation theory, the interaction part VDM being the per-
turbation.

MSWT, the Neel ordering of the ground state of the
J&-J2 model is stabilized by quantum fluctuations.

In the following section, we try to answer how the in-
teraction between spin waves changes these zero-order re-
sults.

B. Zero-order approximation

The quadratic part of HDM, Ho from Eq. (11), de-
scribes a gas of noninteracting spin waves of two difFerent
species having the same dispersion (12). The magnetiza-
tion m 0 of such a noninteracting gas can be expressed as

mo=S —Rq . (14)

From Eqs. (10), (12), and (14), it follows that the
ground-state energy A'o, spin-wave energy E„, and mag-
netization mo are determined in the same way, as in
MSWT. ' Thus the MS%'T of the Neel phase in model
(1) turns out to be a zero-order theory of the Hamiltonian
(9).

The MSWT results are presented in the literature, '

and we shall brie6y mention only the main features of the
relations (10) and (14) (see also Tables I and II). The
ground-state energy 60 is an increasing function of u,
( o= —0.3352 at a=O and 6o= —0.2346 at a=0.60.
The magnetization mo vanishes when a has reached 0.62
instead of the classical point a=0.5. Thus, according to

III. FIRST- AND SECOND-ORDER
CORRECTIONS TO 4' and m

A. First-order corrections

It is easy to show that the first-order corrections to 8
and m, caused by the interaction (13), vanish. The nor-
mal ordering of the quartic terms in (13) leads to the re-
sult b,F.O'=0, because (O~VDM~O&=0, ~0& being the
ground state of the unperturbed Hamiltonian Ho. We
may prove that m'"=0 in the following way. The per-
turbed ground-state function ~1t & in the lowest order of
the interaction VDM has the form

where ~g, &, as can be easily seen from the structure of
V in (13), includes only four-particle states

a,agtAt~O& ( YDM does not contain a nondiagonal quad-
ratic term). Therefore the operator of the sublattice mag-
netization, namely,
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2 2 1
m =S——g vk

——g (uk+ vk }(akak+pkpk }
Nk Nk

+—g uj, vk(akpk+akpk ),2
N

(15)

does not connect the states l0) and lP, ), and conse-
quently, &Olm lg&) =0 and m"'=0. This simple analysis
proves also that the large 0 (1/S) correction to m, evalu-
ated by the Holstein-Primakoff transformation and SWT
for model (1) in Refs. 2, 8, and 9 is caused only by a non-
diagonal quadratic term in the Hamiltonian.

B. Second-order corrections

We shall perform the calculation of second-order
corrections to the ground-state energy and magnetization
of the Neel phase of the J,-J2 model in a way similar to
that used for the evaluation of the 0(1/S) correction to
8 and also for the 0(1/S ) correction to m in SWT of
the NN antiferromagnet. '

We begin with the calculation of the second-order
correction to the ground-state energy. It is well known
that the expression for the second-order correction to Eo
in the case of the Hermitian operator of the interaction

&ol vip) &pl vlo)
0

(p) P

r}EEom= ——
N ah h~0

(18)

where EEo is the second-order correction to the ground-
state energy of the antiferromagnet (1) in the presence of
a staggered magnetic field h. In terms of a and p bosons,
the corresponding Hamiltonian has the form

HDM(h) =HDM —hQ, (19)

where HnM is given by Eq. (9}and 4=Nm; m is defined
in Eq. (15}. After some manipulations (the details are
presented in Appendix B), we obtain the following ex-
pression for hm:

states of Ho, respectively (Eo ' =0). Further analysis re-

peats the analysis performed in Ref. 17 for an unfrustrat-
ed model, and we shall only give the final result for EEo:

Eo = —(2/N} g b(1+2—3 —4)
2N (1234)

4"'(1234)4' '(3412)
E, +E2+E3+E4

The explicit expressions for 4"are given in Appendix A
[Eqs. (Al), (A2), and (A7)]. The spin-wave energy Ek is

obtained in Eq. (12).
The second-order correction m ' ' —=hm to the magneti-

zation can be defined as

may be applied as well to the case of the non-Hermitian
interaction operator considered here, namely, VDM from
(13). In (16), l0) and lp) are the ground and excited

I

am =am("+am(")
where

(20a)

and

16 4"'(1234)4' '(3412) 1 1 1 1hm'"= — g 5(1+2—3 —4) —+—+—+-
N (1234) (E)+E2+E3+E4) ei s2 s3 s4

(20b)

hm~ ~= — (S+R&—R2) g b(1+2—3 —4)
N (1234)

The function F(1234) is defined as

(20c}

F(1234)=4'"(1 324) 4' '(3412)+ 4' '(3412}
E2 E2

+ 4' '(1234)+ 4' '(1234) 4' '(3412) .
E2 E2

(20d)

The vertex functions 4" are determined by Eqs.
(Al) —(A7) in Appendix A. Equations (20) are consistent
with the formula for the 0 (1/S ) correction to the mag-
netization of the unfrustrated model, obtained earlier by
Castilla and Chakravarty' and by Hamer, Zheng, and
Amdt. "

The investigation of the long-wavelength singularities
of the integrands in (17) and (20) can be most easily stud-
ied by using the parametrization of the DM vertices, pro-
posed in Ref. 13. By using this parametrization, one can

prove that lb,Eo l
( ao and ibm l & ~; i.e., the calculation

of EEo and hm in the DM formalism does not lead to a
divergence.

We calculated numerically the six-dimensional in-
tegrals in Eqs. (17}and (20} in a wide range of parameter
a by the method used in our paper' for the calculation of
the 0(1/S) correction to the ground-state energy of the
Heisenberg model. The results for b, C ( =bEo/2N) and
hm are presented in Tables I and II, respectively.

Having obtained the corrections ht and b,m, we can
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TABLE I. Ground-state energy of the Neel phase (a 0.53)
and collinear phase (a) 0.57): zero-order result 6p, correction
hC, and corrected value @=@o+5@,5 =—'.

TABLE III. Zero-order magnetization mo, correction hm,
and corrected magnetization m =m p+ km of the collinear
phase for various a.

mo

0.00
0.10
0.20
0.30
0.40
0.45
0.50
0.51
0.52
0.53

0.57
0.60
0.70
0.80
0.90
1.00

—0.335 21
—0.31543
—0.296 52
—0.278 70
—0.262 24
—0.254 62
—0.247 46
—0.24608
—0.244 73
—0.243 40

—0.231 90
—0.23604
—0.258 21
—0.285 84
—0.315 72
—0.346 78

0.000 18
0.000 38
0.000 61
0.000 85
0.000 87
0.000 64
0.00005

—0.000 12
—0.000 33
—0.000 56

—0.003 54
—0.001 21
—0.00009
—0.00000
—0.00004
—0.000 10

—0.33S03
—0.31506
—0.295 91
—0.277 85
—0.261 36
—0.253 98
—0.247 40
—0.246 21
—0.245 06
—0.243 96

—0.235 44
—0.237 25
—0.258 31
—0.285 84
—0.315 76
—0.346 88

0.565
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.70
0.80
0.90
1.00
2.00

50.00

0.1074
0.1298
0.1639
0.1894
0.2095
0.2259
0.2393
0.2507
0.2963
0.3206
0.3298
0.3334
0.3273
0.3045
0.3034

—0.1373(33 )
—0.1003(20)
—0.0589(9)
—0.0374(4)
—0.0250(2)
—0.0174(1)
—0.0126( 1)
—0.0093
—0.0020
—0.0011
—0.0015
—0.0021
—0.0051(1)

0.0025
0.0026

IV. DISCUSSION

—0.0299(33 )

0.0295(20)
0.10SO(9)
0.1520(4)
0.1845(2)
0.2084(1)
0.2268(1)
0.2414
0.2942
0.3195
0.3283
0.3313
0.3222( 1)
0.3070
0.3060

write the following expressions for the ground-state ener-

gy and magnetization of the Neel phase of the J&-J2 mod-
el:

6 =60+b8+ 0 ( VnM ),
m =ma+6m+0(VDM),

(21)

TABLE II. Zero-order magnetization mp, correction Am,
and corrected magnetization m =mp+hm of the Neel phase
for various a.

0.00
0.10
0.20
0.30
0.40
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53

mo

0.3034
0.2782
0.2465
0.2061
0.1544
0.1301
0.1237
0.1171
0.1104
0.1036
0.0966
0.0895
0.0823
0.0750
0.0675

0.0026
0.0044
0.0064
0.0070( 1 )

—0.0011(2)
—0.0120( 1)
—0.0160( 1)
—0.0207
—0.0261
—0.0324
—0.0398( 1)
—0.0482(2)
—0.0579(3)
—0.0691(4)
—0.0818(5)

0.3060
0.2826
0.2529
0.2131(1)
0.1533(2)
0.1181(1 )

0.1077(1)
0.0964
0.0843
0.0712
0.0568( 1)
0.0413(2)
0.0244(3 )

0.0059(4)
—0.0143(5 )

where Co and mo are, respectively, the ground-state ener-

gy (10) and magnetization (14) of the noninteracting gas,
described by the Hamiltonian Ho. For a=0, Eqs. (21)
coincide with Eqs. (3).

In a similar way, we investigated the collinear phase of
the spin- —,

' J&-Jz model as well. The results for b, 6 and

Am are presented in Tables I and III.

We see from the tables that the corrections b, C and b, m
are small in a wide range of parameter space. This pro-
vides some evidence that the quasiparticles, introduced in
the proposed scheme, are well-behaved quasiparticles.

The correction hm for the Neel state (see Table II) is
positive at small a. At a =0.38, hm changes its sign and
continues to decrease with increasing a, but it remains
relatively small up to a=0.48. The corrected value of
the magnetization goes to zero at a=0.52, which is sub-
stantially smaller than the MSWT result a =0.62. The
magnetization m =mo+b, m of the collinear phase (see
Table III) vanishes at a =0.57, which is higher than the
MSWT result ' a=0.55. A significant melting effect
(immi-m0-0. 1) produced by the interaction between
the spin waves in the collinear phase is clearly seen near
a =0.57.

Thus we conclude that mean-Geld-type theories overes-
timate the stability of the ordered phases in the spin- —,

J,-J2 model. The same conclusion has been drawn re-
cently by Ferrer. He analyzed some features of the
Schwinger-boson mean-field theory and supposed that
there i.s a spin-liquid phase in a very small region near
a=0.6 for the S =

—,
' J&-J2 model.

Within the second-order approximation, we have
shown the existence of a window 0.52(a (0.57 instead
of MSWT overlap between the Neel and collinear phases
of the spin- —, J&-J2 model. In principle, more precise esti-

mates of the phase boundaries can be obtained by the
evaluation of higher-order corrections. Other methods
should be employed to clarify the order of the phase tran-
sitions.

To conclude, we have found that near the boundaries
of the Neel and collinear phases the spin waves interact
in a complicated way, melt the ordering, and create the
possibility of the appearance of a new ground state in the
window between these phases. On the basis of exact-
diagonalization data, some evidence of the existence of a
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sions. This work was supported by the Bulgarian Science
Foundation (Project No. F2-91}.

nonclassical state in the spin- —,
' J&-J2 model at a =0.5 has

been presented earlier in Refs. 6, 10, and 25. Finite-size
scaling analysis, performed by Schultz and Ziman, leads
to an intermediate phase between a=0.4 and a=0.65.
This interval is much wider than the one obtained here.
The nature of the nonclassical states in the J,-J2 model is
actually still controversial. '

APPENDIX A: DYSON-MALEEV VERTICES
(NEEL PHASE}

When we write the bare operators ak and bk in terms
of the new operators ak and Pk, HDM is transformed into
a complicated form. After the normal ordering of each
term is performed, we obtain the expressions (5), (6}, and

"(1234),i =1,2, . . . , 6,
resent work, can be writ-
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4"'(1234)=y(4 —1)v, uzv3Q4+y(4 —2)u, v2v3u4+y(3 —1)v, u2u3v4+y(3 —2)u, U2u3v4

—y(4)u, u2u3u4 —y(3)u &Q2Q3V4
—y(4 —1 —2)v &V2V3Q4

—y(3 —1 —2)v& vzu3V4

—ag (u, u2V3U4+U]U2Q3Q4}

4' '(1234)=y(4 —2)v, uzu3V4+y(3 —2)u, u2u3u4+y(4 —1}u,v2Q3v4+y(3 —1)u, uzv3Q4

—y(3)v& v2u3u4 —y(4)v&v2u3v4 —y(4 —2 —1)u &u2u3v4 —y(3 —2 —1}u&u2v3u4

—ag (u, uzv3U4+ U] v2Q 3Q4 }

4' '(1234)=y(4 —1)v, u2u3u4+y(3 —1)v t u2v3v4+y(4 —2)u, v2u 3u4+y(3 —2 }u,U2u3v4

—y(4)u, u2u3u4 —y(3)u &uzv3v4
—y(4 —1 —2)v, uzu3Q4 —y(3 —1 —2)u, vzv3V4

ag(Q ) Q3Q3V4+V]U2V3Q4 }

4' '(1234) =y(3 —1)u, vzu3Q4+y(4 —1}u,v2u3u4+y(3 —2)u, uzu3Q4+y(4 —2)v, uzv3U4

—y(3)v, vzu3Q4 —y(4)v, vzv3 v4
—y(4 —1 —2)u, uzu3V4 —y(3 —1 —2)u, u2u3u4

—ag (u, uzu3U4+ v] v2v3Q4)

4' '(1234)=y(4 —1)v, vzv3Q4+y(4 —2)u, u2u3u4+y(3 —1)v, vzu3V4+y(3 —2)u, u2u3v4

—y(4)u &v2V3Q4
—y(3)u &vzu3V4

—y(4 —1 —2)u&Q2V3Q4 —y(3 —1 —2)u&Q2Q3V4

—ag (u, vzv3U4+ v]Q2Q3Q4)

4' '(1234) =y(4 —1)u, u2u3v4+y(4 —2)v, v2u3v4+y(3 —1)u, uzv3Q4+y(3 —2}u,u3V3Q4

—y(4)v&u2u3v4 —y(3)v
& Q2v3u4 —y(4 —1 —2)u

& vzu3v4 —y(3 —1 —2)u
& v2v3u4

—ag (u, v2V3U4+v]Q2Q3Q4}

where

Q =ri(3 —2)+ri(4 —2)—ri(3) —ri(4) .

(A2)

(A3)

(A4)

(A5)

(A6}

(A7)

At a=0, these expressions reduce to the expressions of DM vertices' for the NN Heisenberg model. The expres-
sions (A 1 }—(A6) are presented in a form permitting the correct treatment of the umklapp processes.

APPENDIX B:
DERIVATION OF THE FORMULAS (20)

In the stag ered magnetic field h, the four-particle
states ~p) =a,a2t2IP4~0), contributing to the second-
order correction b,EO [Eq. (16}],change their functions
and energies. According to the usual perturbation
theory, in the case of the perturbation m [Eq. (15)], we
can write the new states and their energies as

~p&=~p&+h gc ~2&+h gc, ~6&+0(h'),
(2) (6)

~0)=(0)+hgd2(2)+0(h },
(2)

(B1)

E„—E,=E„+hE„'"+O(h') .

Here ~2) =a Pt ~0) is a two-particle excited state of IIV,
~6) is a six-particle state; c3, d2, and c6 may be calculated
by formulas like (B4). The correction to Ek is
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E"'=u'+ v'= 1—Qk Vk-
~k

(B2)
The coeScient d 2 is easily calculated as

Using (Bl) and Eq. (9) for the perturbed matrix ele-
ments (ol VDMlp& and (pl VDMIO&, one can write (2Q 0& 2u U 2y

(olv „Ip&=&olv
+h gd2(2IVDMlp&+O(h ),

(2)

& pl VDMIo &
=

& pl VDMIo&

+h gd2(pl VDMI2&+O(h') .
(2)

(B3)
After that, taking the corresponding DM vertices and

carrying out the summation in (B3), we obtain from Eqs.
(16), (18), and (B2)-(B4) formulas (20) for b,m.
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