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We present a detailed study of the critical properties of the two-dimensional (2D) XYmodel with max-

imal frustration in a square lattice. We use extensive Monte Carlo simulations to study the thermo-

dynamics of the spin and chiral degrees of freedom, concentrating on their correlation functions. The
gauge-invariant spin-spin correlation functions are calculated close to the critical point for lattice sizes

up to 240X240; the chiral correlation functions are studied on lattices up to 96X96. We find that the

critical exponents of the spin-phase transition are v=0. 3069 and g=0. 1915, which are to be compared
with the unfrustrated XYmodel exponents v=

2 and g=0.25. We also find that the critical exponents of
the chiral transition are vx=0. 875, 2P=O. 1936, 2y = 1.82, and 2y'= 1.025, which are different from the

expected 2D Ising critical exponents. The spin-phase transition occurs at TU(l) =0.446, which is about

7% above the estimated chiral critical temperature Tz =0.4206. However, because of the size of the

statistical errors, it is diScult to decide with certainty whether the transitions occur at the same or at
slightly different temperatures. Finally, the jump in the helicity modulus in the fully frustrated system is

found to be about 23% below the unfrustrated universal value. The most important consequence of
these results is that the fully frustrated XYmodel appears to be in a novel universality class. Recent suc-

cessful comparisons of some of these results with experimental data are also briefly discussed.

I. INTRGDUCI ION

The critical behavior of the uniformly frustrated two-
dimensional (2D) XY model has been studied extensively
in recent years, both theoretically' and experimental-
ly. This theoretical interest has been due to the rich
variety of possible novel critical phenomena that can ap-
pear in this model depending on the frustration parame-
ter f=p/q, with p and q relative primes. Experimental-
ly, an understanding of the phase transition(s) that occurs
in this model is important to describe the physics of two-
dimensional periodic arrays of Josephson junctions,
and two-dimensional superconducting wire net-
works, 3 both in the presence of frustration f=4/4o.
Here 4 is the average flux per plaquette normalized to
the superconducting quantum of flux 4o=h/2e. These
arrays can be manufactured with high precision using
model photolithographic techniques. Of particular in-
terest is the f= —,

' fully frustrated 2D XY model
(FFXYM). This model has a continuous U(l) Abelian
symmetry, and a discrete Z2 symmetry leading to the
possibility of true long-range order in two dimensions. In
contrast, the unfrustrated 2D XY model (XYM) only
possesses a continuous U(1) Abelian symmetry: its low-
temperature phase is characterized by quasi-long-range
order rather than true long-range order. In spite of
the many experimental and theoretical studies of the
FFXYM, there are several questions that remain to be
resolved. For example, it is not clear whether one phase

transition exists at the critical temperature T„which is a
combination of a Berezinskii-Kosterlitz-Thouless- (BKT)
type transition for the U(1) symmetry plus an Ising-like
transition for the Z2 symmetry, or whether there are two
successive phase transitions at critical temperatures TU~ &~

and Tz . Even the order in which they may occur is con-
2

troversial. More importantly the nature of the transi-
tions, as characterized by their critical properties, is not
yet fully understood.

In their original work Teitel and Jayaprakash suggest-
ed that in a square lattice the two transitions occurred
very close in temperature. They carried out Monte Carlo
(MC) simulations to calculate the helicity modulus Y and
the specific heat C as a function of temperature and lat-
tice sizes L XL, with L up to L =32. They found that
the maximum of the specific heat appeared to increase as
lnL, characteristic of a 2D Ising-like transition. Related
studies in the triangular lattice antiferromagnetic XYM,
which could be expected to be in the same universality
class as the FFXYM, indicate that there is a combination
of BKT and Ising-like transitions. In Ref. 6, the two
transitions appear to take place at the same T, while in

Ref. 7 they are within 2%%uo of each other, with

Tz & TU& l ~
. In another investigation Berge et al. in-

2

troduced a frustrated XYM with variable frustration on a
square lattice. In this model the couplings along the
columns are chosen with strength J, while those along
every other row have strength —pJ, with 0(p~ l.
From a MC analysis of the specific heat they surmised
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that for p & 1 the model has separate Ising and BKT or-
dering with Tz ( TU~, ~, while for the FFXYM (@=1) the

2

two transitions appear to merge into one. The Berge
et al. model was studied in detail by Eikmans et al. '

who carried out MC calculations of the helicity modulus,
which is more sensitive to possible BKT-like ordering,
and interpreted their results using a Coulomb gas picture.
In another thermodynamic MC study of the related uni-
formly frustrated square lattice 2D Coulomb gas model,
Grest' carried out simulations for frustrations f=0, —,',
—,', and —,

' and with I. up to 50. He found that in the fully
frustrated case the jump in the inverse dielectric constant
eo

' is different from the XYM case. Specifically, the
jump in eo

' occurs at TCG =0.129+0.002 and takes the
value ez '=0.63+0.03, which is larger than the XYM
universal value of 0.52, and agrees with Minnhagen's con-
jecture. The determination of the jump was based,
however, on the criterion used for the XYM. Grest
found, as in previous studies, that the specific heat grows
logarithmically with I.. It is significant that his results
appear to indicate a clear separation of the two critical
temperatures with Tz & TU~ & ~, contrary to previous con-

jectures.
Granato et al. ' have studied the Z2 critical behavior

of a coupled XY-Ising system using MC and MC
transfer-matrix calculations. An important finding in
this study is the chiral critical exponent vr-0. 85(3),
which is clearly different from the 2D Ising model value
of v=1. ' Furthermore, they found that the XY and Is-
ing transitions occur at essentially the same temperature.
Lee, Kosterlitz, and Granato carried out MC simula-
tions of the FFXYM in the square and triangular lattices
and found that v is also different from the 2D Ising model
result.

In the XYM the nature of the BKT phase is character-
ized by the approximate analytic expression for the spin-
spin correlation functions. ' However, unlike in the
XYM case, it has proven to be very difficult to calculate
the correlation functions for the FFXYM analytically.
This difBculty exists partly because in order to carry out
the calculations one needs to include the basic excitations
of the frustrated problem, which consist of different types
of fractional charges as well as the Ising model related
domain walls. " Nonetheless, it has been possible to ex-
tract some qualitative information about the critical
properties using techniques such as the renormalization-
group approximation applied to an effective Hamiltoni-
an obtained from a Hubbard-Stratonivich transformation
of the FFXYM (Ref. 8) or by general symmetry argu-
ments. ' One worry about the effective Hamiltonian is
that it does not explicitly contain the same elementary ex-
citations as the original FFXYM, such as the fractional
charges. All of the studies mentioned above have mostly
concentrated on calculating thermodynamic quantities,
for it has been difficult to separate the Z2 from the U(1)
contributions.

The purpose of this paper is to fill this gap by explicitly
calculating the U(1) and Z2 correlation functions as well
as the separate Z2 contribution to the magnetic proper-
ties. We should mention at the outset that these calcula-

tions are significantly more demanding than the thermo-
dynamic calculations and are now possible because of im-
proved algorithms and computer power. One further
complication is that at present there is no available ana-
lytic theory for the fAO case that could suggest what
form these correlation functions should have and we need
to make an ansatz for them. Generally, we can either as-
sume that they decay exponentially or algebraically with
distance. We use different statistical measures to test for
the two possibilities. If our MC results for the correla-
tion functions are consistent with an exponential decay
we extract a correlation length g(T), while if they are
consistent with a power-law decay we extract the corre-
sponding q(T) exponent. In the case that g(T) diverges
at T, from above it can diverge as a power law or with
the BKT form -ex p[8( T T, )

—"j. In the f=0 case
the critical exponent v(f =0)=1/2. ' In the low-
temperature phase of the XYM the correlation function
decays algebraically with distance r as -r ", where the

g exponent is a continuous function of T and takes the
universal value q(f =O, T&xr)= —,'. Several experiments

have confirmed the f=0 picture and the values of the
measured critical exponents agree well with those
predicted by theory. In addition, recent MC simulations
have provided an accurate evaluation of the f=0 XYM
critical exponents. The most recent high-statistics
estimates for f=0 are v=0.4695(1) and rl=0. 235, with
the critical temperature T~K~ =0.8953.

In order to understand the nature of the phase transi-
tions in the FFXNVl we have studied a variety of quanti-
ties, several of which separately describe each particular
symmetry. The thermodynamic quantities calculated are
the helicity modulus, Y, and the square of both the stag-
gered chiral magnetization, At„and susceptibility, X, .
We have carried out an extensive analysis of the gauge-
invariant U(1) correlation function, gU~i~(r) and their
corresponding even and odd coherence lengths (to be
defined below). These calculations have allowed us to ex-
tract the U(1) critical temperature, TU~, ~, and its critical
exponents v and g. For the Zz freedoms we calculated
the chiral correlation function, gx(r), and its correspond-
ing coherence length, gr, which allowed us to estimate
the critical exponent v& and the critical temperature Tz .

2

Our result for the exponent v& is in very good agreement
with the recent MC transfer-matrix calculation.

We will now outline the main results of our study. Our
extensive analysis is consistent with a U(1) BKT-type
transition but with exponents v(f=

—,
'

)=0.3069 and

q(f = ,', T, )=0.1915. —These results clearly differ from
those obtained in the XYM case. ' We have also cal-
culated the Z2 critical exponent 2P=O. 1936(35) for JN„.
2y=1.82(13) and 2y'=1.025(79) for X„and the coher-
ence length exponent v&=0. 875. These exponents are
also different from those expected for a 2D Ising model.
The critical temperatures found in our study are
1 U~, ~

=0.446 and Tz =0.4206. One could be tempted to
2

say that the transitions take place at two different tem-
peratures, and this may indeed be the case. However,
after a detailed assessment of the size of the statistical er-
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rors from the nonlinear fits and considering the small
difference between the two temperatures we cannot be
certain if they are different or not. Furthermore, the
transitions are reversed from their expected order. We
suspect that more extensive simulations with algorithm
improvements, better statistics, and larger system sizes
are needed to clarify this point. The results mentioned
above were obtained from extensive MC simulations on a
square lattice of size L, with L ranging from L =8 up to
240, and with periodic boundary conditions. What
emerges from our results is that the FFXY.VI is in a novel
universality class different from either a pure XYor an Is-
ing universality class. A brief description of some of the
results presented here has appeared elsewhere.

%e have also recently reanalyzed the experimental re-
sults of the Delft group s for f=0 and —,'. We have con-

cluded that the values of ri(f =0)=—,
' and ri(f =

—,')
=0.1915=—,

' are in good agreement with the experimen-

tal data. However, the fits of the experimental resistance
versus temperature data cannot distinguish between a
v(f =

—,')= —,
' from a v(f =

—,')= —,'. Moreover, as men-

tioned above, recent MC transfer-matrix work has pro-
vided further evidence that the chiral exponents are not
equal to the 2D Ising model exponents and even quantita-

tively the value of vr has begun to converge on values
close to 0.85.

The organization of this paper is as follows: In Sec.
II A, we define and briefly review the general properties
of the uniformly frustrated 2D XYM. In Sec. IIB, we
define the thermodynamic quantities calculated in this
paper, while in Sec. II C we give the expressions for the
calculated gauge-invariant U(1) and Z2 zero-momentum
correlation functions, of central interest here, together
with their possible asymptotic behaviors. In Sec. III A,
we describe briefly the MC algorithm used in our calcula-
tions. Since there are no analytic results for the correla-
tion functions to guide our analysis, we proceed by devel-

oping an approach that consists of using several indepen-
dent checks of the results obtained. As a test, in Sec.
IIIB, we successfully apply our strategy to the unfrus-
trated XYM and compare our results to those obtained in
the more extensive recent MC studies. In Sec. IV,
we present the bulk of our numerical MC results applied
to the FFXYM. In Sec. IVA, we discuss the thermo-
dynamic results for both the U(1} and Z2 freedoms. In
Sec. IVB1, we give the correlation function results for
the U(1) freedoms, including a finite-size scaling analysis
for the correlation length. In Sec. IV C2 we present the
corresponding correlation function results for the Z2
freedoms. Finally, in Sec. U, we present a critique of our
results and a possible outlook for the future.

II. THE FULLY FRUSTRATED XYMODEL

A. DeSnition of the model

The uniformly frustrated 2D XYM is defined by the
Hamiltonian

0= —g Jcos[8(r)—8(r')+f(r, r') ], (1)
(r, r'}

where 8(r) is the angle at site r, (r, r') stands for a sum
over nearest-neighbor lattice sites, and I is the exchange
constant. In the Josephson junction array representation
of the model in a transverse magnetic field, the bond vari-
ables f(r, r'} are given by the line integral
f(r, r')=(2ml@p) f,'A.dl, with A the magnetic vector
potential. For uniform frustration these bond angles are
required to satisfy

f(r, r') = (2)
aquette 4 0 plaquette

A 11=2' .

The Hamiltonian defined in Eq. (1}is invariant under the
transformation, 8(r}~8(r}+2mn (r}and

f(r, r'}~f(r, r')+2m [n(r'} n(r—)],
where n(r) and n(r'} are integer numbers. Choosing the
gauge A=( —By, 0,0) so that B=Bz and assuming a
square lattice, the bond angles f(r, r'} are given by

f(r, r')=+2m f(j + —,') for r'=r+api

and

f(r, r')=0 for r'=rkapj . (3b)

Here f=Bap/0 p with r=(iapjap), i j integers, and ap
the lattice spacing. The uniformly frustrated model is
periodic in f with period one, and with refiection symme-
try about f= ,'. The XYM corr—esponds to the unfrustrat-
ed f=0 case.

The fully frustrated case corresponds to f= ,'. The-
effect of f in this case is to produce alternate rows with
ferro- and antiferromagnetic couplings, while the cou-
plings along the columns are all ferromagnetic. Each pla-
quette has one antiferromagnetic and three ferromagnetic
bonds, or vice versa, leading to a ground state that has a
twofold degeneracy with half-integer vortices of opposite
circulation or chirality. Thus, the system displays two
symmetries: the underlying continuous U(1) Abelian
symmetry for the phases and a discrete Z2 or Ising-like
symmetry associated with the chiral degrees of freedom.

B. Thermodynamic properties

The helicity modulus Y is defined by the response of
the system to a twist in the spins at its boundaries. In our
case Y is calculated explicitly from the formula

T=— g x, , cos[8(r }—8(r')+f(r, r'}] — g x, , sin[8(r) —8(r')+f(r, r') ]
1 2, , 1

kB ~ (r, r' }

+ Z x, rsirr[8(r) —e(r')+f(r, r')))s
(, ')

(4)
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where ( ) stands for a thermal average, and ks is Boltzmann's constant, and x, , =x, —x, . Another informative quan-
tity associated with the supercurrent loops around a plaquette in a Josephson array is the staggered magnetization

l R„+R
M„, s=—g ( —1)"

P(R) ( r, r'
& EP[R)

sin[8(r) —8(r')+ f(r, r')]

where (R„,Rr) give the coordinates at the center of the
plaquette P. The index P(R) runs from 1 up to N, the to-
tal number of plaquettes in the lattice.

%'e now turn to the definition of the quantities associ-
ated with the chiral degrees of freedom. The chirality of
a plaquette gives the direction of circulation of the super-
currents induced by frustration. Each plaquette has a
definite chirality which can be +1, and it is calculated
from'

y(R) =sgn
(r, r'

& EP(R)
sin[8(r) —8(r')+ f(r, r')], (6)

Our numerical results for the thermodynamic quanti-
ties characterizing the chiral degrees of freedom will be
presented in Sec. IV A2. It will be seen that close to the
critical region their behavior is quantitatively different
from an Ising ferromagnet on a square lattice.

with the dual lattice vector R=[(i+1/2)ao, (j+1/2)ao]
with i,j integer numbers. At zero temperature the chiral-
ities are ordered like a 20 Ising antiferromagnet. At
finite temperatures there are line or domain-wall defects
separating regions with different chiralities.

The order parameter describing the Z2 phase transi-
tion is the staggered chiral magnetization, defined by

1 R„+R
X(R)) .

&R
It is diScult to study this quantity numerically since it
oscillates rapidly between positive and negative values. A
more stable quantity to study is Binder's second-order cu-
mulant, Af, and its fluctuations. These fluctuations are
given by the square of the staggered chiral susceptibility,
calculated as

while if one follows trajectory 8 the phase factor is given
by

IIe'~"'=exp g f(s, s')
I ~ I~

The total frustration contained in the area enclosed by
both trajectories is then

(s,s'&eI q

f(s, s')+ g f(s, s') =2mMf,
&s,s'&sr

(10)

where M represents the number of elementary plaquettes
inside the area encircled by the paths, and f is the frus-
tration of each plaquette. In this case the phase in Eq. (9)
is shifted by an additional amount 2vrMf when the corre-
lation along trajectory 8 is calculated instead of A.

To evaluate the effect of frustration on the correlation
functions at low temperatures one can use duality trans-
formations to obtain a lattice Coulomb gas representation
of the model.

After doing so one obtains

amount of frustration enclosed by the two paths. The
gauge-invariant phase correlation function along a path
I' that accounts for the frustration in the system is given
by2~ 3

eius s') '
&

—i8(r')

(s,s &eI.

In Fig. 1, we show two possible trajectories I'„(r,r') and
I s(r, r') joining the points r and r'. The phase intro-
duced in Eq. (9) when going around the trajectory A is

II e'~"'=exp g f(s, s')
r„

C. Correlation functions

It is known that the hallmarks of the BKT ordering
can be given in terms of the phase correlation functions.
An analytic evaluation of these quantities appears to be
mathematically intractable for uniform frustration.
Nonetheless, for random frustration it has been possible
to analytically calculate the correlation functions at low
temperatures in the limits where the density xf of frus-
trated plaquettes is xf (&1 or xf-—,'. Given that the
Hamiltonian of the frustrated XYM is gauge invariant,
the phase correlation functions should also be gauge in-
variant. The correlation functions are defined along a
path connecting the correlated spins and are therefore
path dependent. In fact, gauge-invariant correlation
functions along two different paths differ by the total

FIG. 1. Possible trajectories I ~(r, r') and I ~(r, r') used in
evaluating gv(l)(r, r', I &) and gv(l«(r, r', I z).
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gU~, ~(r, r')=exp i g g —,'n(r)8(r —R)f(R) goo(r, r'),
r R

0 —r/$0
gp(r)= Xe

Yjpr
(16)

(11)
where goo(r, r') is the lattice Coulomb gas correlation
function for the XIVI (Ref. 37) and f(R) is the frustra-
tion at the plaquette with center at the dual lattice site R.
The number n(r} is zero everywhere, except at r and r',
where it takes the values n(r) = —n(r') =1. The angular
potential 8(R) is given by i8(z)=ln(z) —G(~z~), for
large R. Here z =R„+iR and R=(R„,R„}.Notice that
in Eq. (11) there is an extra phase factor appearing in the
phase correlation function. This factor weights the con-
tributions to the correlation function coming from
different trajectories going between r and r, and it is a
consequence of gauge invariance or, equivalently, the
Aharanov-Bohm effect. We shall see that this extra
phase factor in the correlation function appears naturally
in the results discussed in Sec. IV A 1.

In the evaluation of the correlation functions we can
have important contributions from more than one
Lyapunov exponent, which makes the extraction of the
largest exponent difficult. However, this problem is not
present if we evaluate the zero-momentum correlation
function defined by

(12)

with no =—,
' and the coherence length diverging as

gp( T)= A pexp
TBKT}

'

In the XYM the critical exponent vp= 1/2. i6 In the low-

temperature phase (T & TiirT ) the long-distance correla-
tion function decays as

Co
gp(r)= &r,

~

r"'
(18)

(19)

The exponent qo is a function of temperature, represent-
ing a continuous line of critical points. In the XYM go
takes the universal value rip(T=TaKT)= &.

' This re-

sult is directly related to the universal jump predicted for
the superfluid density.

In the disordered phase of the 2D Ising model (T) Tz),
the asymptotic behavior of the correlation function close
to TI is givenby

where

S,„(i)= g S(i,j )
1

y J
(13) Al

(T TI) '— (20)

again with pl= —,
' and with a power-law divergence for

the coherence length

is the average spin along the ith column. In this case r
denotes the distance between the columns being correlat-
ed.

From the definition of the gauge-invariant phase corre-
lation function, Eq. (9), the expression for the zero-
momentum correlation function is gr(r}= Xe '+ (Ml )

II
(21)

where the critical exponent vz= 1. In the ordered phase
(T & TI), the asymptotic behavior of the correlation func-
tions is given by

Z

gU(ll~ll X X cos[IPi+, J ell+ll' j+ ill'l) 'I.„Ly

(14)

where we have used Eqs. (3).
A similar reasoning applies to the zero-momentum

chiral correlation function given by

(15)

We have used Eqs. (14) and (15) to evaluate the correla-
tion functions in our numerical simulation.

As mentioned before there are no known explicit ana-
lytic expressions for gU&, ~(r} and gr(r). Nonetheless, we
can make an ansatz for the analytic form of these correla-
tions close to the critical region. Our ansatz is based on
what is known about the XYM and about general proper-
ties of standard second-order phase transitions. In the
XYM as T~T~zT the asymptotic form of the spin-spin
correlation function for r ))1 is

valid for ez=(TI T)/TI «1 an—d err &1. The correla-
tion function critical exponent at Tz is pl= 4, as in the
XYM.

Based on previous studies of the thermodynamics of
the FFXYM it is reasonable to assume that their asymp-
totic behavior for f= ,' can be describe—d by either BKT
or Ising-like forms described above. In our calculations
we checked for the best fits to our MC data by either
form.

Having discussed the expected analytic forms for the
different correlation functions of interest, let us now turn
to a discussion of their numerical evaluation. %e should
notice first that, strictly speaking, for finite lattices the
asymptotic behavior of the correlation functions is not
accessible. Even in rather large lattices the subleading
power-law behavior of the correlation functions can be
non-negligible. Thus, the evaluation of the coherence
length extracted from a numerical calculation of the
correlation function is nontrivial. A common procedure
is to take periodic boundary conditions and then fit the
behavior of the correlations to
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G(r) =g (r)+g (L r—), (22}

where g(r) is any of the correlation functions of interest.
We should note that, in general, it is not suScient to ac-
count for the closest images to the source along the r
direction but we must also account for the images farther
away as well as those in the direction transverse to r. In
fact, their contribution becomes more important as the
coherence length g grows since the number of relevant
images increases.

HI. CAI CULATIONAI STRATEGY AND TEST

Our strategy is to carry out several independent con-
sistency checks of our results, for there are no analytic re-
sult with which to guide the analysis. To test the reliabil-
ity of our consistency checks, we start by applying them
to the extensively studied XYM. Although there is a
basic consensus about the physical nature of the BKT
transition, relatively reliable and thorough nonperturba-
tive numerical studies of the critical exponents of the
XYM became available just recently. Here we tried
to follow some of the basic ideas of these approaches, in
particular the one used above T„complemented with
other tests implemented here. We must stress that we are
on less firm ground in the FFXYM case than in the XYM
and thus we need extra consistency checks that were not
needed in the XYM studies.

A. MC algorithm

Different acceleration algorithms that have worked out
well in the XYM were constructed with special regard to
the nature of the basic excitations in the model. In the
FFXFM we have a less definitive idea about the basic ex-
citations in the model and therefore the same type of al-
gorithms have not proven any more efficient than the
standard Metropolis approach. ' Our simulations were
then carried out using the standard Metropolis algorithm
in square lattices of sizes L XL with L =8, 16, 32, 60, 72,
84, 96, 180, and 240, with periodic boundary conditions.
The lattice sizes L=120 and L=180,240 were con-
sidered only at two temperatures that are about 3 and
2% away from the estimated critical point, respectively.
These relatively large lattices were studied in order to get
a better estimate of the U(1) correlation function critical
exponents. For the thermodynamic and chiral degrees of
freedom a full set of temperature values was considered
for L up to L =84. Since we expect to have critical slow-
ing down similar to that seen in the XYM, which has
decorrelation times growing as g, we performed reason-
ably long runs, although no detailed attempt was made to
calculate the FFXYM dynamic critical exponent.
Nonetheless, our consistency and self-consistency checks
give support to the reliability of our results. The equili-
bration time of a typical run was at least 10 K
MCS/angle far from criticality and at least twice as much
for temperatures close to T, . The statistics were calculat-
ed from runs of at least 50 K MCS/angle, and up to 290
K MCS/angle. Details of the length of the runs are given
in the tables. It is important to note here that since we
are interested in extracting critical exponents from non-

linear fits, plots of the results are sometimes not as infor-
mative as looking at the numbers themselves.

B. Unfrustrated 2D XFmodel

We begin by presenting our results for the XYM to-
gether with the tests of our consistency checks for both
Y and the correlation functions. We compare our XYM
results to those obtained recently by more extensive
analysis. In the next section we shall present the bulk
of the results of our calculations with the FFXYM. Note
that in terms of the correlation functions the difficult cal-
culations are those for the U(1) symmetry, for in that case
the correlation length may diverge exponentially rather
than algebraically as one gets close to T, .

We now describe the numerical approach to calculate
the coherence length, the critical temperature and critical
exponents from the U(1) correlation functions. We have
to some extent repeated the recent, more extensive calcu-
lations for the XYM (Refs. 43-46) critical exponents for
T & Taxi, and we have extended the calculations to the
T (TaKr region. To facilitate the comparison of our re-

sults, given in Table I (top}, to previous findings we have
summarized the results of Refs. 43-46 in Table I (middle)
and (bottom). Basically, we have followed the method of
analysis used in those references, although the lattices we

(=ap Xexp[BpesKi]
Ap =0.205 0

o=1 61
Tqg~ =0.903 5

vo=0 4797
y'/DOF =0.446

DOF=8

I
V

g=ApXe, P

Ap =0.87
g(r) =Cp/r
Cp =0.7099

T, =0.9797
vp= 1 ~ 053 4 gp=0. 238 6

y /DOF=0. 35 23 y /DOF=0. 00826
DOF=9 DOF =46

T& TsKr

o =0-1806
Bp = 1.8727
TgKy =0.895 3
vp=0. 469 5
g2/DOF =0.933
DOF =29

X(T)l, ,+
BKT

vg=0. 287(3) (g& 5)
gp=0. 280(4) (g& 10)
gp (TgKy =0.894)=0.235
gp =0.236

T)T
Ap =0.87

T, =0.970
vp= 1.15

y /DOF=2. 4
DOF= 11

2
XDOF

2.05
2.22
MCRG
FSA

TABLE I. Critical exponents and critical temperatures for
the XYM. (Top) In the first and second columns we give the re-
sults obtained from fitting the T & TsKi gp data to Fqs. (17) and
(20), respectively. The third column gives the parameters ob-
tained from an algebraic fit to gp(r) at T= T&z&. (Middle) Same
as in (top) for the first two columns with results from Ref. 46,
obtained from unconstrained four-parameter nonlinear fits.
(Bottom) The first two lines are the gp exponents obtained from
a high-temperature analysis of the susceptibility, g (from Ref.
44). The third and fourth lines give gp obtained from MC
renormalization-group calculations (Ref. 46}.

T) TsK+
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have simulated are not as large as the ones considered
there. However, to reduce the finite-size effects and to
ensure meaningful results for the correlation functions,
we kept the ratio L/$0~4 in all the calculations. We
note that, even though the critical temperatures in the
FFXYM is about TuKT/2, we kept this ratio at L/g~ 5.
The calculational procedure is the following: First, the
periodic form of the zero-momentum correlation function
gc(r) given in Eqs. (14) and (22), with f=0, was calculat-
ed in the high-temperature phase. Next, we carried out
unconstrained three-parameter nonlinear fits of the data
to the form given in Eq. (16}. From these fits we deter-
mined go(T) and the parameters vh and Ao. To further
check the consistency of the nonlinear fits we performed
linear fits to the MC data of the form

25 I I I

t

I I I I

I

I I I I

(

I I I I

(

I I I I

20—

15—

10—

0
1 1.05

I i i i i I i i i & I

1.1 1.15 1.2 1.25 1.3

FIG. 2. Correlation length go as a function of temperature.
The circles denote the results from the fits to the correlation
function given in Eq. {16),with their corresponding statistical
errors. The solid line is the result of a fit of the data to the ex-

pression for go{T) given in Eq. {17). The specigc values of the
fitting parameters is given in Table I (top). The dashed line was

obtained using the fitted parameters from Ref. 43.

in[go(r)]=lnA&+ln[r "e +(L r) "e — ']

(23)

varying the values of go until we reached a minimum for
the y function. We found that go(T) is systematically
above the values of Ref. 43 (for the comparison see Fig.
2), and that v}0(T) oscillates nonmonotonically close to
the critical point, making its determination difficult. We
also carried out an unconstrained four-parameter non-
linear fit to the data to extract T&KT and vo, assuming a
BKT form for fc(T). As pointed out in a recent finite-
size scaling analysis of the XYM susceptibility, it is very
difBcult to distinguish between a BKT form and a
power-law divergence on the basis of data obtained from
MC simulations on lattices up to L =256, even for tem-
peratures 1% away from the critical point. Thus, we car-
ried out an additional unconstrained three-parameter
nonlinear fit to a power-law form [Eq. (20)]. The results
of these fits are summarized in the first and second
columns of Table I (top). Before proceeding with a dis-

go(r)-[r e +(L r) 'e ' —], (24)

at nine different temperatures. The results of these fits
are given in Tables II (top) and (second section). It is
found that the exponential fits appear to be of better qual-
ity, aud the corresponding values of i}0(T) are systemati-
cally above those obtained from the algebraic fits. How-
ever, the important point is that the values of the ex-
ponents a are smaller than 10, suggesting a coherence
length too large for the fit to be trusted. Moreover, the
algebraic fits agree with the low-T spin-wave prediction,
bio(T)-T. In Fig. 3(a), we show the results for v}o as a
function of temperature. To further analyze the nature
of the low-temperature phase, we calculated
v}o(TmtT ) =gp as a function of lattice size, using the

T&KT obtained at high temperatures and for reasonably
long runs. On the other hand, the exponential fits yielded
values of go, systematically above those calculated from
the algebraic fit, shown in Fig. 3(b}. Fits to the exponen-
tial form plus its image lead to better results in this case.
We found that the values of a are quite small and it ap-
pears that they become smaller as L increases. This sug-
gests that the algebraic contribution will dominate in the
asymptotic limit. Notice also that go increases slowly
with L and it does not seem to saturate for the larger lat-
tices in both types of fits. The values for the exponents
calculated from both types of fits in the largest lattices do
agree with those obtained in Refs. 44 and 46, with the
later results given in Table I (bottom} for comparison.
The value pc=0. 2386(2) calculated from our algebraic
fits is in very good agreement with MC renormalization-
group calculations. However, the value go=0. 2713(2)
obtained by assuming an exponential fit plus its images at

cussion of these results, let us emphasize that we carried
out a careful analysis of the stability of the parameters
obtained from the fits by trying to make sure that the

values obtained correspond to the minimum of the y
function, within the statistical errors of our simulations.
More details of the fitting procedure and related analyses
will be discussed below.

Let us now turn to the results obtained by assuming a
BKT form for $0(T). We find that the values of the pa-
rameters Ao and 80 in the first column of Tables I (top)
and (middle) agree well, while the values of vo and TaKT
differ by 4 and 0.75%, respectively. The results obtained
assuming a power-law form are given in the second
column of Tables I (top) and (middle}. The values of T,
and vo are within 1 and 9%, respectively, whereas the
values for the A 0's are the same. All of these results indi-

cate that there is good agreement between our results and
those obtained from the more extensive MC simulations,
in spite of the fact that our simulations are in smaller sys-
tems and have less statistics. It is important to realize
that fitting the coherence length to a BKT or to a power-
law form leads to X2/DOF values of comparable quality.
Thus, from this analysis alone one cannot decide which
of the two fits is the correct one. To sort out this prob-
lein we also have calculated the low-temperature go(r, T).
The correlations, for L =60 lattices, were fitted to
go(r)-r ' and
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0.2 0.4 0.6 0.8

(b)
I I

I
I

0.24

0.22

r)oco zo:
0.18

0.16
I

X:

TABLE II. (Top) Results from fits to the data for the correla-
tion function go(r) to the form given in Eq. (18) for 2 =60.
(Second section) L dependence of gp and Cp at T=T&KT.
(Third section) Results from exponential fits to the data of gp(r)
for T & TzKT for L =60. (Bottom) L-dependent results for gp,
ap, and Cp from exponential fits to the correlations at T= T&KT.

1008040 60

FIG. 3. (a) Results for gp(T) obtained from algebraic fits to
gp(r) for L =60. The dotted line is the spin-wave results. (b)
shows go~{T= TzKT ) vs L.

NMCS
(K)y2/DOFCp analysis of the U(1}correlation functions, to be described

below. The results are given in Table III (top). We got
the extrapolated value of

gp

1.27X10 '
1.25 x 10-'
0 934 X 10
2.3x10-'
2.21X10 '
1.33 X 10
1.06 x 10-'
2.77 X 10
2.11x 10

0.903 5

0.875
0.850
0.825
0.800
0.750
0.700
0.650
0.600

0.1996
0.1844
0.180 8

0.1506
0.1404
0.133 6
0.1320
0.1060
0.088 8

0.667 8
0.685 2
0.706 2
0.696 2
0.707 0
0.741 0
0.776 3
0.770 3
0.7900

250
120
120
120
140
130
130
130
130

Y ( TaKr ) =0.5986(49 ) (25)

for the infinite system, by fitting a straight line to
Y (TaKT) versus L ', and using the L =48-96 results
[see Fig. 4(a}]. We also estimated the magnitude of the
jumP from the universal intercePt of Y (TaKr) with the
2Ta&r l~ line getting

NMCS
{K)y /DOFCpgp

0.73 x 10-'
1.35 X 10
1.27X10 '
1.24 x 10
1.14X 10
0.826 x 10

0.181 6
0.176 1

0.1996
0.214 7
0.216 8
0.238 6

40
48
60
72
84
96

0.653 2
0.644 9
0.667 8

0.6840
0.686 6
0.709 9

290
290
250
250
250

25
NMCS

(K)

TABLE III. {Top) Gives the finite-size results for f&KT,
while (bottom) gives the corresponding results for YT

U(1)

NMCS
(K)TBKT )

0.665 4(19)
0.645 5(34)
0.638 0(19)
0.627 9{33)
0.625 6(30)
0.622 5(24)
0.618 7(29)
0.618 1(28)
0.6104{23)

200
100
200
200
290
250
250
250
250

8

16
24
32
48
60
72
84
96

y /DOFCoapIp

4.02 x10-'
1.2x10-'
5.24 X 10
2.94x10-'
6.28 x10-'
3.69x 10
1.8x 10-'
7.06 X 10
9.6x10-'

0.903 5
0.875
0.850
0.825
0.800
0.750
0.700
0.650
0.600

0.743 6
0.762 0
0.763 1

0.770 5
0.764 5
0.768 3
0.808 3
0.8147
0.833 2

0.280 2
0.260 5

0.237 7
0.224 6
0.195 3
0.154 8
0.171 7
0.143 1

0.1300

0.006 7
0.0047
0.0044
0.0060
0.004 3
0.008 7
0.005 3
0.002 8
0.003 4

250
120
120
120
140
130
130
130
130

NMCS
(K)"f(T= TU( I) )

200
200
200
290
290
250
250
250
250

0.436 1(34)
0.403 7(37)
0.376 2(43)
0.396 3(24)
0.356 5(48)
0.384 8(36)
0.385 0(31)
0.383 5(31)
0.378 0(38)

8
16
24
32
48
60
72
84
96

NMCS
(K)y /DOFCpYfp ap

1.63 x 10-'
0.77 X 10
4.02x10 '
9.1 x 10
6.6x 10-'
4.6x10-'

40
48
60
72
84
96

0.294 2
0.289 2
0.280 2
0.276 3
0.265 3
0.271 3

0.747 2
0.744 3
0.743 6
0.745 1

0.736 2
0.740 1

0.011 3
0.0104
0.006 7
0.004 8
0.003 4
0.004 1

290
290
250
250
250
250

T=T~KT also agrees with the results obtained studying
the relationship between go( T) and the susceptibility g( T)
as T~T~~T. The results from the present analysis sug-
gest, as expected, that the algebraic form gives a better fit
in the low-temperature phase.

As a further check to this conclusion, to be used in the
FFXYM analysis, we now show that the values of TBKT,
Y, and qo which were determined independently, are
consistent with the universal value for the jump in
Y (T= TaKr}. We calculated the magnitude of the jump
in Y ( T= Ts~r), for sizes L =8, 16, 24, 32, 48, 60, 72, 84,
and 96, and carried out a finite-size analysis. %e used the
TnKr=0. 9035(6} obtained from the high-temperature
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0
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FIG. 4. (a} Finite-size analysis of Y'(T= TsKT)= Yr
BKT

with T&FT obtained from the go(r) analysis, as a function of 1/L
for L =96, 84, 72, 60, 48, and 32. The straight line is a linear St
to the data, with the L = 00 extrapolated value indicated. (b)
The same as in (a}for Y(T= TU[&) )=Yz

U(&)

Y ( TaKT ) =0.5752(4) (26)

go=0. 2402(18), (27)

which indicates that the values of these quantities satisfy,
within the errors, the universality relation for the jump in
Y at T&KT.

0

In conclusion, we have shown in this section that our
strategy yields reasonable quantitative estimates of the
critical temperature, critical exponents and the magni-
tude of the jumP of Yo( TarT) in the XYM. It is reassur-
ing that independent calculations lead to essentially the
same quantitative results. Building from what we have
learned in this section about the XYM, in the next section
we proceed to apply the same logic and analysis to the
study of the phase transition(s) in the FFXYM.

which is about 3% below the value in Eq. (25). Next, we
considered the relationship between the exponent s)o and
the universal prediction for the jump in Y (TaKT), that
is F10=ks Tu~T /[2m Y ( TBKT )]. Before inserting the
numbers it is important to stress the fact that the three
quantities appearing in this equation were obtained from
three difFerent calculations. The critical temperature was
calculated from the coherence length analysis in the
high-temperature phase, Y (TaKT) from a finite-size
analysis at TaxT, and the gc from a finite-size analysis of
the algebraic correlation functions at T&KT. Plugging in
the numbers gives the result

A. Thermodynamic properties

YUi, i
=0.37(1 ) (28)

was estimated by extrapolating the data to an infinite lat-
tice. This result suggests that for the lattice sizes and
statistics of our simulations, the jump in the helicity
modulus for the FFXYM is about 23% below the
XIM result. The estimate Y(T=Tco)=0.34(1) was ob-
tained from MC simulations of the fully frustrated
Coulomb gas on a square lattice' using the formula
Y=Tco/[2ne, Tco] with the values e, '=0.63(3), and
TcG=0. 129(2). Here, e, is the value of the dielectric
constant at TzG. Thus, our extrapolated value for Y,
and the one obtained from the Coulomb gas data difFer by
about 7%, which can be considered in reasonable agree-

o4 -L SYMBOL
Q x
16
32

02 —60 O
X

1. U(l) freedoms

We begin by discussing the helicity modulus Y( T).
Previous studies ' of the FFXYM and the fully frustrat-
ed Coulomb gas' have indicated the possibility that the
jump in Y(T) may be difFerent from the universal XYM
result. To further shed light onto this problem we have
studied Y(T) as a function of temperature for different
lattice sizes and carried out a 6nite-size analysis of
YU~»= Y(T=TU~, ~). Figure 5 shows the results in the
temperature range 0.20(T (0.65 obtained from runs for
I.=8, 16, 32 with 250 K MCS and I.=60 with 200 K
MC$. Notice that at low temperatures the finite-size
efFects are almost negligible, however, they become im-
portant in the critical region. The behavior for L =32
and 60 is about the same in the temperature region where
Y was calculated To .investigate the magnitude of the
jump in Y we proceed as in the XYM calculations. We
performed a finite-size analysis of Y at the critical tem-
perature TUi, ~=0.44, found from a high-temperature
analysis of the correlations, to be discussed later. The
simulations were carried out in lattices of size I.=8, 16,
24, 32, 48, 60, 72, 84, and 96 and the results are given in
Table III (bottom). The behavior of YU~, ~

as a function of
1/L is shown in Fig. 4(b) for L =96, 84, 72, 60, and 48.
The value

IV. CRITICAL PROPERTIES
GF THE FULLY FRUSTRATED 2D XY MODEL 0..0 j j ) g t g g )

0.1 0.2 0.3 0.5

Rog

0.6
In this section we present the bulk of our thermo-

dynamic and correlation function results for both the
U(1) and Zz freedoms. We start by discussing the ther-
modynamic properties and then we move on to present
our results for the correlation functions.

FIG. 5. Y as a function of T for different L sizes. Note that
the data for L =32 and 60 almost fall on top of each other, sug-
gesting that the L dependence is almost negligible for L ~ 32.
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ment. Note, however, that one cannot rule out the possi-
bility of a smaller value of YT for larger lattices.

CG

Nonetheless, we do not believe that the trend would
change significantly from the result given here. This re-
sult confirms previous suggestions ' and gives support
to Minnhagen's heuristic conjecture about the
difference between the jump of YT for the frustrated

CG

Coulomb gas in a square lattice as compared to the XHVl
universal jump.

It has also been suggested' that the transition in the
FFXYM could be weakly first order. To check this possi-
bility we looked at the histogram of the energy about

TU[&] and found no evidence for the existence of two
competing states. In previous MC simulations ' ' ' ' '
it was found that the behavior of the maximum of the
specific heat as a function of lattice size was consistent
with a logarithmic divergence, favoring an Ising-like
transition. However, MC simulations in larger lattices
suggest that it is very difficult to distinguish between a
logarithmic or a power-law divergence. We have studied
the specific heat and found no signature for a logarithmic
divergence but we were unable to extract reliable ex-
ponents.

We have also studied the staggered magnetization

M„, [Eq. (5)] due to the supercurrents circulating
around the plaquettes as a function of temperature and
lattice size. Figure 6 shows the behavior of M„,g~

as a
function of T for I.= 16 and 32. It is nonzero at low tem-
peratures and drops sharply at about T=0.42. We note
that finite-size effects are almost negligible for these lat-
tice sizes. The behavior of M„,ss as a function of temper-
ature suggests that it may be considered as an order pa-
rameter for the U(1) phase transition. Note, however,
that the chirality is defined in terms of the direction of
the circulating currents about the plaquettes and thus

M„, z can also be thought of as an order parameter for

chir ality.

2. Zs freedoms

and

g2 (e ) 2r
s Z2

(29)

while for T ~ Tz y, was fitted to
2

g2 ( e ) 2$
S Z2 (30)

We extracted the critical exponents 2P, 2y, and 2y' by a
straight-line fit to 1n(AI, ) versus ln[ez (L)] and ln(g, )

2

versus in[~ez (L)~] for temperatures within 10% from
2

the estimated Tz (L). Here we used the notation
2

ez =(T Tz )/Tz —(L), with Tz (L) the temperature at
2 2 2 2

which At, goes steeply to zero and g, shows a maximum
for a given I.. The exponents obtained for the largest lat-
tice were

and

2P =0.1936(35),

2y' = 1.025(79),
(31)

2y=1.82(13) .
These exponents clearly differ from the corresponding 2D
Ising model exponents 2P= —,', 2y =2y'= —,'. We note that

between positive and negative values, thus it was more
convenient instead to study AI, and its fluctuations y, .
These quantities are plotted as a function of temperature
for L =32 and 60 in Figs. 7(a) and 7(b), respectively. JK,
goes to unity at low temperatures and it decays sharply to
zero close to the critical region. Note that y, displays an
asymmetric behavior close to Tz (=0.42 for L =60),

2

where it has a sharp maximum. This indicates that the
critical exponents for y, above and below Tz should be

2

different. For T & Tz we fitted the MC data to

M -(e )~s Z2

1.50 I I I

]

I I I I

]
I 1 I I

We calculated the staggered chiral magnetization At,
defined in Eq. (7). However, JN, oscillates to, o irregularly
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FIG. 6. Staggered magnetization due to the superconducting

currents defined in Eq. (5) as a function of T for L =32 and 60.
The falloff to zero occurs at about T=0.42.

T

FIG. 7. Staggered chiral magnetization square M, (a) and

susceptibility y, (b) as a function of T for L =32 and 60. The

results for both lattice sizes are essentially on top of each other.
Note that JK, goes to zero at essentially the same T at which y,
has a maximum with Tz =0.42. Observe the asymmetric

2

behavior of g, about critical temperature.
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our chiral order-parameter exponent does agree with the
value 2@=0.20(2) obtained from MC transfer-matrix

studies of the FFXFM. The results for L =16, 32, and
60 are given in Table IV. Notice the consistency in the
behavior of A, , which falls off to zero at about the same
temperature where y, has a maximum, indicating that
the Zz phase transition takes place at Tz =0.42.

2

B. Correlation functions

l. U(l) correlations

TABLE IV. Magnetic critical exponents for the Z2 transition
for I = 16, 32, and 60. See text for definition of the parameters.

M2-( —p )»S Z2

2P

0.1936(35)
0.205 5(27)
0.229 8(41)

2 (6 ) 2y

2r

1.82(13)
2.15(13)
1.69(15)

g2 ( ~ ) 2y
S Z2

2y'

1.025(79)
1.029(63)
0.46(6)

60
32
16

In this subsection we discuss our MC results for the
gauge-invariant phase correlation functions obtained
from simulations in lattices from L =16 up to 240, with
periodic boundary conditions. Some of these results have
already been discussed in Ref. 22 and thus we will make
reference to them here. To reduce finite-size effects the
lattice sizes at each temperature were chosen such that
L/g 5. As we mentioned in Sec. IIIB, this criterion
has proven to work well in the numerical calculations of
correlation functions in the XYM. We showed in Ref. 22
that the zero-momentum phase correlation function

gU~i~(r) has an oscillatory behavior with period —„which
comes from the Aharanov-Bohm phase factors discussed
in Sec. II C. At higher temperatures we found that the
oscillatory behavior disappears, as one would expect. As
the critical temperature is approached from above the os-
cillations increase in amplitude and saturate below TU~i~.
This oscillatory behavior led us to separate the correla-
tion functions into two components; one for the odd and
one for the even lattice sites, with their corresponding
coherence lengths g, and g, . The MC data for the zero-
momentum correlation functions was fitted to the period-
ic version of the ansatz given in Eq. (16) for T) TU«~.
This procedure incorporates the periodic boundary con-
ditions due to the finiteness of the lattice [Eq. (22)]. We
carried out unconstrained nonlinear three-parameter fits
to the data to obtain g( T), g( T), and the coefficient A for
the odd and even correlation functions. We followed our
XYM approach and fitted the MC data to the linear func-
tions

ln[g(r)]=lnA+ln[r ~e ' &+(L r) ~e —' ' &]

(32)

varying g until a minimum for y was reached. In Table
I of Ref. 22 we gave the results for g, and g, as a function
of temperature and lattice size, as well as the statistics of
the runs. As one gets closer to the critical temperature
from above, the coherence length increases exponentially

and

v, =0.3133(57)

v, =0.3005(6),

(33)

which are close to —,'. We then fixed the values

v, =v, =
—,', and carried out a three-parameter fit to the

data for both lattices. The quality of the fits improved
and hence we could surmise that the correct value of this
exponent may indeed be —,'. The first column of Table II
in Ref. 22 listed the results obtained from these fits to-
gether with their corresponding y /DOF. For complete-
ness we also carried out fits assuming v= —,', the standard
BKT value, and although the y function was smaller
than when v= —,', we found the difFerences too small to de-

cide with absolute confidence from our data which ex-
ponent is the correct one. Nonetheless, as it will be seen
below, we have other arguments, for example, the finite-
size scaling analysis of the data, that yields better results
when v= —,', suggesting that this may very well be the
correct value.

It shou1d be stressed that doing nonlinear fits is a non-
trivial matter since there is no guarantee that the values
of the estimated parameters correspond to the absolute
minimum of the y function. Therefore, one needs to
check the results very carefully and oftentimes resort to
different fitting procedures to cross-check the results.
For instance, a good test to check the stability of the re-
sults is to reduce the dimension of the parameter space by
fixing one of the parameters and carrying out the fitting
procedure for the others. This process should be repeat-
ed for a set of values of the parameter held Sxed
within an interval about the value which is supposed to
yield the minimum to y . In some instances it is
worthwhile to use the value of more than one parameter,
say two, to reduce the problem to a linear fit. For exam-

and one needs longer simulations and larger lattices in or-
der to get statistically reliable data. Furthermore, the
fitting parameter g(T) defined in Eq. (16) increases and
oscillates rapidly, for both the odd and the even lattices
so that an estimate of g(TU~, ~) was not attempted. The
same situation was encountered in the XYM as described
in Sec. III 8. We also found that as the temperature de-
creases, A, decreases while A, increases, both slowly.
Far from the critical region we got reliable results for g,
and g, using lattices of size L (60. However, to obtain
meaningful results as we got closer to the critical region,
L was increased keeping the ratio L/g) 5. For instance,
we had to increase the size up to L =240 for tempera-
tures that were about 3 and 2% away from TU~». In
contrast, in our XYM calculations the approach to T&KT
was only on the order of 10%%uo. In Fig. 2 of Ref. 22 we
showed the results for g, . Similar results are obtained for

g, . We found that for the temperatures considered here
In the determination of the critical exponents

and the critical temperature it is crucial how one fits the
data, as discussed in Ref. 46. We first tried a four-
parameter unconstrained nonlinear fit to the MC data of
BKT type [Eq. (17)] obtaining the results,
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pie, in the calculation of v and TU~ & ~
we carried out linear

fits to

ln( g) = ln( A ) +8 ( T T—
U~, ~

) (34)

with v= —,
' or —,

' while varying TU~, ~
about the value

TU~, ~
=0.446, obtained from the nonlinear fits. We found

that sometimes these fits led to different values of the pa-
rameters A and B and also to different values for the
minimum of the y function. However, the different
values of TU~ & ~

extracted from these fits were not
significantly different. This uncertainty in the analysis
must be due to the complicated topology of the parame-
ter space and, although our calculations are very exten-
sive, the number of points used in the fits with their cor-
responding statistical significance may not be sufficient to
obtain a clear minimum for the y function.

Another possible source of problems relates to the size
of the errors that weight each value of g( T) in the fits. In
our calculations most of the errors were on the order of
10 (see Table I of Ref. 22) and, because of the small
number (12}of available data points we obtained relative-
ly large values for the y function. This, in turn, led to
small Q values (Q being the goodness of fit) In m.ost
cases we found Q ~ 0. 10, suggesting that the data did not
fit the model well. To sort out this problem we followed
standard practice by setting o; =1 and carried out the fits
again. ' We found that by doing this the values of Q be-
came larger than 90% in most cases, and the values of
the fitted parameters remained basically the same but
with slightly smaller errors. The values shown in Table
II of Ref. 22 were, in fact, obtained following this type of
analysis. One will need to have more points to improve
the quality of the fits. To do this one needs to carry out
calculations even closer to the critical point. One of the
major problems in undertaking such a program is the
lack of an eScient algorithm that could reduce effectively
the critical slowing down. For the known algorithms
that reduce the critical slowing down there has been the
need to know in some detail their elementary excitations.
In a sense this is equivalent to having to know the main
features of the solution to the model before an appropri-
ate algorithm can be tailored.

As an additional test of the reliability of the results for
TU~ & ~

and v, we carried out a finite-size scaling analysis of
the data for g, and g, . For a finite system, assuming
periodic boundary conditions, the usual T) TU~, ~

finite-
size scaling ansatz for a BKT transition is

((T,L)-LF&[L 'exp(8&e ")j, (35)

with F& the scaling function, not known a priori, which
must satisfy the conditions

F&(x)=0 as x ~0,
P((x ) ( ao as x ~ ao .

The idea is to find the set of parameters B, v, and TU~, ~

for which the data for difFerent temperatures and lattice
sizes fall onto one curve. Fixing v= —,', we varied the

values of B and TU~&~ about their values obtained in the
previous fits. We found that as we moved away from

and (36)

TU(ii 0 440 TU(ii =0 442

These numbers are in rather good agreement with the
values found in the previous fits. In the inset of Fig. 2 of
Ref. 22 we showed the results of such analyses for the
odd lattice. Similar results are obtained from the analysis
of even lattices. We see that close to the critical region
the points corresponding to lattices L, ~60 are far from
the universal curve. The equivalent finite-size scaling
analysis fixing v= —,

' always led to a rapidly increasing
curve suggesting that closer to the critical point it would
diverge. This analysis provides further support in favor
of v= —'.3'

As in the XYM analysis, we also tested a power-law fit
to the g( T) data, and the results are given in the third
column of Table II of Ref. 22. We find that the BKT and
power-law fits are of comparable quality, as in the XYM
case. Hence, one cannot be absolutely sure from this
analysis alone which one of the two fits is the correct one.
In trying to resolve this ambiguity we also calculated
gU~i~(r} below TU~i~, mostly for L =60. In fitting the cor-
responding data to an algebraic form we followed a pro-
cedure that parallels the one discussed in Sec. III B. The
results of the analyses are presented in Table V (top) and
(second section). In Fig. 8, we show the exponents g, (T)
(CI) and rl, (T) (0) obtained from the algebraic fits to
gU~, ~(r). A careful look at the numbers indicates that the
trend in rl(T) for both lattices is qualitatively similar to
the one found in the XYM, but they are quantitatively
difFerent. The exponential fits to gU~, ~(r) appear to yield
better results with a~10, and larger values for q(T)
than the ones obtained with an algebraic fit, see the re-
sults in Table VI (top) and (second section). Nonetheless,
the values of a decreased as the lattice sizes increased,
suggesting that at the asymptotic limit the leading contri-
bution will mostly come from the algebraic part of the
correlations. We also calculated q, and g, at the average
critical temperature T„~,~

=——,'(TU~, ~+TU~, ~) obtained
from the high-temperature analyses for lattices with
L =32, 40, 48, 60, 72, 84, and 96. The results from the
finite-size analysis of the algebraic fits are summarized in
Table V (third section) and (bottom), whereas we list the
corresponding results for the exponential fits in Table VI
(third section) and (bottom). The resulting values for q,
and g, as a function of I are shown in the inset of Fig. 8.
For comparison we also show go. Observe that g, is sys-
tematically above q, and that the behavior of these ex-
ponents as a function of L is qualitatively similar to those
found in the XYM, e.g., the g's increased monotonically
with L without appearing to saturate for the values con-
sidered. However, the g's do seem to reach a more
asymptotic value for the FFXYM than for the XYM.

those values in the increasing or decreasing directions,
the data became more scattered. However, very close to
the values found from the previous fits the data fell very
close to a unique curve. The values for which the data
collapsed approximately onto the universal curve were

B,= 1.045, B,=0.999
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From the above analysis we extracted the results

g ( Tv() ) )=0 1955(3)

and

q, ( Tv() ) ) =0.1875(3) .

On the other hand, we get

0.25

0.25
0.20

0.20
+C

0 15 0.15

0.10

0.10

I

I
~ ~ I

J I
I

~ ~ ~ I
I

I I I I

I
~ I ~ I

I
I

X

X

. . I. ~ . . I ~. . . I . . I

40 60 80 100
L I

I
I

I ~ I I

TABLE V. Results from algebraic fits to gU(&)(r), (top) odd
and (second section) even lattices for T & TU(&) with L =60. Re-
sults of a finite-size analysis of the algebraic fits to gU(1~(r) for
the odd (third section) and even (bottom) lattices at T= TU(&).

0.05

0..00 I ~ I I ~ I I I I I I I I I I I ~ I

0.1 0.2 0.3 0.4 0.5

0.440 6
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225
0.200

0.440 6
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225
0.200

32
40
48
60
72
84
96

32
40
48
60
72
84
96

90

0.166 6
0.135 5
0.121 5
0.109 5

0.091 8

0.077 0
0.063 6
0.0674
0.055 7
0.048 9
0.039 1

0.153 5
0.129 8

0.1186
0.1079
0.088 7
0.073 4
0.061 6
0.065 9
0.053 8
0.047 0
0.038 1

90

0.159
0.169
0.1599
0.166 6
0.180 8
0.172 1

0.195 5

Q.138
0.152 6
0.143 1

0.153 5
0.1708
0.164 3
0.187 5

C,

0.478
0.504 1

0.543 3
0.568 8
0.579 9
0.589 6
0.5964
0.6119
0.6247
0.633 5

0.638 6

0.652 1

0.701 1

0.761 7
0.800 5
0.813 2
0.826 1

0.838 4
0.872 1

0.874 8
0.891 5

0.900 3

C,

0.479
0.486
0.475
0.478
0.489
0.4790
0.495 0

C,

0.645 0
0.666 1

Q.642 8
0.652 1

0.672 3
0.659 9
0.683 0

y /DOF

2.08X10 '
2.10X10-'
1.13X 10-'
0.94X 10-'
1.55 X 10-'
1.41 X 10
2.22X10 '
0.96X 10-'
1.78 X 10-'
1.27 X 10
2.31 X 10

y /DOF

1.55 X 10-'
1.19X 10-'
0.68 X 10-'
0.59X 10-'
1.37X 10-'
1.28 X 10-'
1.37 X 10
1.00X 10
1.99X 10-'
1.24 X 10
1.62X 10-'

y /DOF

0.515X 10-'
0.651X10-'
160X10 2

2.08X10 '
1.80 X 10
3.12X 10-'
1.77 X 10-'

y /DOF

0.43 X 10-'
0.52 X 10
1.16X10-'
1.55 X 10
1.35 X 10
2.19X 10
1.33 X 10

NMCS
(K)

250
70
70
70
90

100
100
100
100
100
100

NMCS
(K)

250
70
70
70
90

100
100
100
100
100
100

NMCS
(K)

290
290
290
250
250
250
250

NMCS
(K)

290
290
290
250
250
250
250

FIG 8 Results for g (T) (CI) and g (T) (o) obtained from
algebraic fits to gU&&)(r) for L =60. The inset shows the results
for the finite-size analysis for the critical exponents go (0), q
(0), and q' (X), at criticality.

and

g, ( Tv() ) ) =0.2521(3)

sic ( Tv( ) ) ) =0.2480( 3 )

(38)

assuming the exponential fits to the correlations. We
note that in the algebraic fits the values of g, and g, are
smaller than in the exponential case, as in the XYM
analysis, and clearly siArio.

Again as in Sec. IIC, we carried out a check of the
universal jurnp relationship as applied to the average
values of the even and odd lattice results. We found that
the universal jump is indeed satisfied for our FFXYM re-
sults with the jump at TU~&~ of

Y(Tv())) 0 37(1) (39)

clearly difFerent than the XYM universal jump. Apart
from giving a strong consistency check of the set of re-
sults obtained by independent calculations this is a
surprising finding, for there is no a priori reason why the
universality results should be valid in the FFXNVI, in
particular, in light of the non-Ising and XY results from
our study. In the XYM the universality of the jump in Y
is a consequence of an underlying universal RG re-
sult. 3 We can then just surmise that there may be an
underlying RG argument that will lead to an understand-
ing of the physical properties of the FFXYM.

2. Zt correlation functions

Let us now turn to the discussion of the correlation
functions for the chiral degrees of freedom. Our study
here will be less detailed than in the U(1) case, mainly
concentrating on the temperature region above Tz, al-2'

though a few results for T ~ Tz will also be discussed.
2

Prior information about the chiral critical exponents is
available so that we can compare our results to them.
The calculation of the zero-momentum chiral correlation
functions de6ned in Eq. (15) is less demanding than in the
U(1) case since one expects that g~ diverges algebraical-
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ly. The analysis of gr(r) followed a similar logic to that
of the U(l) study. The Fig. 9 inset shows gr(r) versus r
above and below Tz . The results for the coherence

2

length gr(T) for difFerent lattice sizes are given in Table
VII. Figure 2 of Ref. 22 showed the results of a power-
law fit of the data to

20

15 I—

io~

1 0
I

)

I I I I

0.4406
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225
0.200

90

0.262 3
0.188 6
0.155 2
0.134 5
0.1189
0,105 2
0.092 9
0.0809
0.0744
0.069 5
0.0540

a,
0.007 9
0.002 3
0.00246
0.002 37
0.00204
0.001 20
0.000 64
0.000 87
O.OO1 12S
0.001 06
O.OO049

0.542 4
0.547 7
0.569 6
0.586 7
0.560 10
0.661 35
0.623 1

0.629 2
0.638 1

0.644 6
0.6500

y /DOF

2.27 x10-'
2.2x10-'
4.4x 10-'
4.2 x 10
1.2x 10-'
0.81 X 10
8.3x 10-'
5.8x 10-'
0.91 X 10
0.91x10-'
0.76x 10-'

NMCS
(K)

250
70
70
70
90

100
100
100
100
100
100

0.440 6
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225
0.200

0.257 7
0.187 67
0.157 1

0.13646
0.11980
0.107 9
0.095 69
0.0824
0.075 21
0.065 06
0.054 33

ae

0.007 7
0.002 3
0.0026 2
0.002 53
0.002 11
0.001 41
0.000 85
0.000 98
0.001 30
0.001 09
0.000 52

0.759 9
0.7724
0.807 3
0.8320
0.851 0
0.871 2
0.8849
0.891 9
0.903 5
0.912 3
0.9198

7 /DOF

4.18x 10-'
3.94x 10-'
5.43 x 10-'
4.69x 10-'
1.31 x 10
8.69 x 10-'
8.83 X 10
6.42x 10-'
0.68 x 10
0.61 x 10-'
1.13x 10-'

NMCS
(K)

250
70
70
70
90

100
100
100
100
100
100

TABLE VI. Results from exponential fits to gU(&)(r) for the
odd (top) and even (second section) lattices for T & TU(&) with
I.=60. Results from a finite-size analysis of exponential fits to
gU, &i(r) for the odd (third section) and even (bottom) lattices at

(1).

5 p

0.45 0.5 0.55 0.6 0.65
T

FIG. 9. Data for the chiral coherence length gz( T) (X) calcu-
lated from g~(r). The solid line is the fit to the form given in
Eq. (20). The inset shows g~(r) as a function of r for tempera-
tures above and below Tz .

2

(40)

ln(gr)=ln( Ar) —v l r(nT Tz ) . — (4 I)

Using a least-squares fit and varying the Tz values about
2

0.42 we found

We also found that inclusion of the errors of gz(r) in the
fits yielded results with rather low confidence levels
(Q (0.10), as in the analysis of gU~, )(r). Again we fol-
lowed standard procedure by assigning the same weight
to each data point, with the resulting Q values in most
cases above 0.90, while the fitted parameters remained
essentially the same. In the gr case the errors in the
fitting parameters became smaller after normalization of
the errors in the gz(r) data points. It is difficult, howev-
er, to be absolutely sure that the values of the parameters
found correspond to the absolute minimum of the y
function, as happened in the U(l) case. Therefore, in ad-
dition to the nonlinear three-parameter fits, we also fitted
the data to the linear function

32
40
48
60
72
84
96

0.290 8
0.279 2
0.280 3
0.262 3
0.255 2
0.243 4
0.252 1

a,
O.01S1
0.0117
0.0112
0.007 9
0.005 7
0.00473
0.003 66

0.5520
0.549 5
0.551 1

0.5424
0.539 4
0.531 1

0.537 9

y /DOF

2.31x10-'
1.72 x 10-'
0.19X10 '
2.27 x 10-'
4.19x10-'
0.29x10-'
0.14X 10

NMCS
(K)

290
290
290
250
250
250
250

Jr=0.33(2) and v&=0. 80(1) for Tz =0.430, (42)

with y =3.99X10 . We also performed least-squares
fits of the data to the straight line

T L
NMCS

(K) L
NMCS

(K)

TABLE VII. Results for g~(T) obtained from g~(r) at
diferent temperatures and lattice sizes.

32
40
48
60
72
84
96

0.2944
0.291 5
0.2744
0.257 7
0.2506
0.237 5
0.2480

ae

0.015 7
0.012 8
0.0109
0.007 7
0.005 5
0.00448
0.003 51

0.781 2
0.789 8
0.771 0
0.759 9
0.755 5

0.741 8
0.753 9

y /DOF

4.9x10-'
2.82 X 10
0.32x 10-'
4.18X 10
6.23 x 10-'

25.0X 10
20.0X 10

NMCS
(K)

290
290
290
250
250
250
250

0.600
0.575
0.550
0.525
0.500
0.475
0.460
0.450
0.440
0.440

32 1.55 2(53)
32 1.757 9(62)
32 2.127 8(26)
32 2.732 4(12)
32 5.984( 14)
60 4.15(16)
60 5.625( 19)
60 8.168(37)
60 24.51(1.69)
96 13.405{47)

160
160
160
160
160
140
150
150
150
220

1.392( 18 )

1.835(27)
1.809 2( 30)
2.229( 15 )

2.891 3(70)

72 5.332(20)
72 8.547(30)
72 13.693(62)

140
140
140
140
140

150
150
240
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~=- Ar T+br, (43) V. CONCLUSIONS AND OUTLOOK

with g =9.7X10 . Note that the results in Eq. (44) are
close to those in Eq. (42}, with essentially the same Tz .
In Table VIII we give the values of the parameters ex-

tracted from the nonlinear fit. Our result for v& agrees
quite well with recent finite-size scaling analysis that
gave vr =0.85(3), as well as with the MC transfer-matrix
calculations. The advantage of the finite-size scaling
analysis is that v& was obtained from a one-parameter fit

without needing a precise value for Tz, as in our2'

analysis. Therefore, it appears that the vr and Tz values
2

obtained here from the nonlinear fits may in fact be very
close to the correct ones. It is important to emphasize
that the Tz found here is consistent with the tempera-

2

ture at which A, fell to zero, and y, displayed a sharp
maximum.

In summary, our numerical analysis of the chiral de-
grees of freedom led to the critical exponents

and

2P= 0.1936(35),

2y' =1.025(79},
2y = 1.82( 13), (45)

vr=0. 875(35) .

These results strongly indicate that the Z2 phase transi-
tion is not an Ising-like transition as had been suspected
from previous thermodynamics studies of this model.
The results for P and v agree with previous calculations.
If one believes that thermodynamic scaling relations
should be valid then one should get a different value for y
and y =y'. There is a possibility that since we have been
forced to calculate y rather than y the results listed here
are correct for y but not for y itself. Note that in our
calculations the difference between Tz and TU~&i is about

2

7%, which may not be considered as different within the
size of our estimated errors. Equivalently, one cannot
rule out the possibility that in improved numerical simu-
lations and closer to the critical point this difference may
disappear.

TABLE VIII. Exponent v~ and critical temperature Tz ob-
2

tained from nonlinear fits to a power-law divergence.

V

0,= ~,&z

Aq =0.292
Tz =0 427

2

v =0.875
y~/DOF =0.0974

—1/v
for fixed values of v& with 3

&
= A

&
~ and

—1/v
b~ = A ~ ~Tz . Remarkably, the results obtained were

2

Ar =0.36(3) and Tz =0.432(9} for vx=0. 760, (44)

In this paper we have presented results from extensive
MC calculations of the FFXYM. We have explicitly ana-
lyzed the separate contributions from the U(1) and Zz
freedoms. We have extracted the U(1}and Z2 critical ex-
ponents from direct calculations of their corresponding
correlation functions and selected thermodynamic prop-
erties. We found compelling quantitative evidence that
the U(1) and Zz critical exponents are clearly dim'erent

from those of the usual 2D XY and Ising models. We
have tested our results using several consistency checks.
Our result for the Zz correlation length exponent vz is
essentially the same as the one obtained from other in-
dependent numerical calculations. ' There are no pre-
vious calculations of thy U(1) exponents to with which to
compare our results. However, a reanalysis of the experi-
mental data leads to an g exponent that is clearly
different from the XYM result and that agrees reasonably
well with the one found in our calculations.

Our result strongly suggest nontrivial critical behavior
in the FFXYM, in which the U(1) and Zz freedoms are
coupled in a way so as to yield critical exponents. We
leave for the future the question of producing the physi-
cal understanding of the results presented in this
paper, in particular the apparent relation between
the U(1) results, go '(f =0)=4, vo '(f =0)=2, and
our values g '(f =

—,')=go '(f =0)+1 and

v '(f =
—,')=vo '(f =0)+1, together with the validity of

a universal jump for the f= ,' helicity mo—dulus.

In spite of the extensive calculations and detailed anal-
yses carried out in this paper, improved MC simulations
of this system need to be done. More data at tempera-
tures closer to the critical point are required to be able to
obtain more accurate estimates of the critical exponents
and critical temperatures. As noted above, among the
major limitation in this program is the lack of a MC algo-
rithm that could effectively minimize the critical slowing
down. Another important limitation is that calculations
of correlation functions near criticality require ever
larger lattices which sharply increases the computer
power requirements.
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