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%e have developed a variational approach to treat the nonadiabaticity, that is, the quantum-lattice
fluctuations, of the electron-phonon interactions in the one-dimensional half-filled spinless Anderson lat-
tice model including Coulomb interaction between both types of electrons. The nonadiabaticity due to
finite phonon frequency is treated through a variational polaronic-type wave function, in which two vari-

ational parameters 5 and 2 are used to take into account the dynamical distortion and the squeezing
effect of phonon modes. %e have found that the quantum-lattice fluctuations gradually smoothes the
valence transitions when the polaronic level cf —v changes. %e have shown that conditions somewhat
different from those of Hewson and Newns should be satisfied for the occurrence of a significant reduc-
tion of the effective hybridization. The effect of the Coulomb repulsion U is to suppress the quantum-

lattice fluctuations, that is, to suppress the reduction of the fluctuating-valence frequency and the relaxa-
tion shift. We have also discussed the valence-density-eave ordering in the symmetric case. Our results

show that the quantum-lattice fluctuations disfavor the ordering and the lattice dimerization parameter
decreases with increasing phonon frequency. %e have pointed out the possibility of an order-disorder
transition in such systems.

I. INTRODUCTION

The theory of fiuctuating-valence (FV) solids has been
a subject of considerable investigation for decades, ' but
several important issues still remain open. An area of
special interest, with some controversies and unanswered
questions, is the full description of the electron-phonon
interaction in FV systems. Usually, the Anderson-
impurity model or the periodic Anderson lattice (PAL)
model is used to investigate the physical properties of FV
systems, in which the f electrons are coupled to the con-
ducting electrons via an on-site hybridization V. As V is
usually assumed to be comparable to the relevant phonon
energy, and because there is a large difference in the ionic
radii associated with the two valence states, strong and
nonadiabatic electron-phonon coupling may arise and
this might considerably reduce the frequency of valence
fiuctuations and thus efFectively increase the lifetime of
the individual configurations. This nonadiabatic
electron-phonon coupling so far mostly been dealt with
within a model of linear on-site coupling of the f-electron
density to the local phonon mode for both the PAL mod-
el ' and the single Anderson-impurity limit. '

There is a controversy about the role played by the
quantum-lattice fluctuations in reducing the frequency of
valence fluctuations and increasing the lifetime of the in-
dividual configurations. Sherrington and von Molnar
concluded that, for low-temperature properties there is a
large polaronic reduction of the effective hybridization:

V—+ V exp( —v /2co )= V',

if the electron-phonon coupling g is su%ciently large that

the polaronic binding energy v=g /co is larger than V
and co. This result is obtained by using perturbation
theory in the hybridization V. Hewson and Newns" pro-
posed a variational ansatz to deal with the Anderson-
impurity model coupled to the local phonon mode and
found more restrictive conditions than Sherrington and
von Molnar for the renormalization of V.

Hanke and Schmeltzer, by using the real-space
renormalization-group method to the one-dimensional
half-filled spinless PAL model coupled to phonons, con-
cluded that when the Coulomb interaction between f and
d electrons goes to zero the long-range quantum fiuctua-
tions of the boson field occur and they suppress the stan-
dard polaronic effects, i.e., the reduction of the FV fre-
quency and the relaxation shift.

The large-degeneracy limit for infinitely large f-f
repulsion of the Anderson-impurity model coupled to the
local phonon mode was studied by several authors be-
cause in this case some exact results can be obtained by
diagonalizing a tridiagonal matrix. By using this method
Schonbammer and Gunnarsson concluded that the large
polaronic reduction of the effective hybridization, V~ V'

[Eq. (1)j, does not occur.
Zheng and Nasu proposed a variational approach-

the squeezed polaron state —to study the spinless
Anderson-impurity model coupled to the local phonon
mode. The nonadiabaticity effect due to finite phonon
frequency are treated through a variational wave func-
tion, in which the softening of the phonon frequency as a
result of electron-phonon interaction is taken into con-
sideration by means of the squeezing transformation.
Their results show that a significant reduction of the
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Et includes spinless conduction d electrons with nearest-
neighbor hopping parameter t, localized f electrons
which have an energy level ef (the zero point of energy
scale is fixed at ed=0), and an on-site hybridization V
and an on-site Coulomb repulsion U between d and f
electrons. The total number of spinless electrons is E in
the case of half filling, where X is the total number of
sites. In H, b, (b, ) creates (destroys) the local Einstein
phonon mode of frequency co, which couples linearly to
the occupancy of the local f level. Similar model Hamil-
tonians have been used previously in the discussions of
the effect of quantum-lattice fluctuations in valence-
fluctuating systems.

In the following, two unitary transformations will be
used to introduce variational parameters. The first one is
a "shift" transformation

H, =exp(S, )H exp( —S, ),

S, = vM cu/2+(b; —b,. )[ xo+( —1)'mo], (4)

where M is the mass parameter of the phonon mode. xo
denotes the in-phase (Q=O) displacement but mu the
out-of-phase (Q=a) displacement of the equilibrium po-
sition of oscillators. Here we use a nonzero mo to take
into account the possibility of the staggered ordering of
lattice. The second transformation is a modified Lang-
Firsov transformation which introduces the dynamical
distortion of the phonon modes related to the hopping on
and off of the f electrons:

H2 =exp(S2)Hiexp( —S2),

S2= g (b;t b; )[f;tf, —&K/2uxu]—,
g5

CO

(6)

where u =g /cu and K =Mcu . 5 measures the dynamical
distortion of the phonon modes and will be treated as a
variational parameter. It is essential here to associate the
polaronic distortion to the number fluctuation of f elec-
trons, f, f, —&K/2uxo, but not to ftf; [later we shall
show by variational principle that
&K/2uxo=(1/N)g, (f, f, )]. The average of the num-
ber operator (f; f, )is coupled to t. he average distortion
of the phonon mode, which has been taken into account
by our first transformation.

Now we decouple the electron and the phonon subsys-
tems in the transformed Hamiltonian H2 by averaging it
over the squeezed-phonon state ' instead of the vacuum
state of phonons,

II. THEORY

We start from the following one-dimensional spinless
periodic Anderson model with local d-f Coulomb in-
teraction plus an electron-lattice interaction on a local f
level, mph, s ) =exp( —S3)mph, O),

S3=+a(b;b; b; b; t), —H= —g t(d; d, +i+d, +id,. )+g ef.f,tf. , .

efFective hybridization do not occur even if the condition
of Hewson and Newns for its occurrence are satisfied.

The aim of this work is to present, by means of the
squeezed polaron variational approach, ' a consistent
description of the electron-phonon interaction in one-
dirnensional spinless PAL model for the parameter range
where co, v, and V are comparable, which makes any
rigorous analysis of the problem extremely difficult and
variational results very useful. In Sec. II, two unitary
transformations are used to take into account the static
and dynamical distortion of the lattice, respectively.
Then, a squeezed-phonon state is introduced as the
ground-state wave function of the phonon subsystem,
which favors the quantum lattice fluctuations and im-
proves the energy estimate of the ground state. We
divide our discussion of the ground-state properties into
two parts: the unsymmetric (Sec. III) and symmetric (Sec.
IV} cases. For the unsymmetric case only the uniform
phase will be discussed. Conditions somewhat different
from those of Hewson and Newns for the occurrence of
a significant reduction of the effective hybridization will
be derived from our numerical results.

In this paper, only the spinless electron case will be dis-
cussed and in this case the PAL model is nothing but the
famous Falicov-Kimball (FK) model plus an on-site fd-
hybridization V. For a special choice of parameters (the
symmetric case), that is, ef (the bare f level) = 0 and N,
(total number of spinless electrons} =N (the total number
of cells), it was shown" ' that the exact ground state of
the FK model is structural. [In the two-dimensional case
people call the structure a chessboard ordering phase"'2
but, as we deal with the one-dimensional case, it will be
called a valence-density-wave (VDW) ordering' ' in this
paper. ] The nonzero f-d hybridization V should
suppress the ordering since it induces the finite lifetime of
local f state. Inclusion of the electron-phonon interac-
tion makes the situation more complicated. Adiabatic
electron-phonon coupling favors the VDW ordering, as
was shown by the famous Peierls' theorem. ' However,
the quantum-lattice fluctuations should make the order-
ing state less stable. These will be discussed in Sec. IV.

Some concluding remarks will be given in Sec. V. In
this work only the one-dimensional case will be discussed
because the quantum-lattice fluctuation plays the most
important role in one dimension. Besides, we put %=1
within this paper.

+g V(f; d;+d; f, )+ g Ud, td, f,"f, . . .

+gg(b; +b;)f; f;++co(b~b, + —,') . (2)

where mph, s) is the squeezed-phonon state and mph, 0)
the vacuum state of phonons. Here u will also be treated
as a variational parameter. After the separation of the
electron and the phonon subsystems, we get an effective
Hamiltonian for electrons:
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a,~= (ph, s ia, mph, s &

=—xo~(1 5—) N+ —moN+ (—2+v )N g—t(d, d(+, +d;+,d;)+g eff; f;
I I

&2—vEmo(l —5) g( —1)'ftf;+ g Vp(f; d;+d; f;)+g Ud; d; f; f;, (8)

where

ef =ef —U+U(1 —fi) [I &2E—/vxo], (9)

Up=exp — 5 2, r=exp( —2a) .
2N

(10)

We make Hartree-Fock approximation to the interaction term:

d,td; ftf, =nd; f;tf; +nf;d;td; nd; nf;
—d; f; (—f;td; ) ftd; (—d; f; ) + ( d; f; ) (ftd; ),

where nd;
= ( d; d; ), nf; = (f; f; ) . Then the effective Hamiltonian is approximated as

H, rr= —xo(1 —5) N+ —moN+ (r +—r )N QUnd;nf—;+U4 N gt—(d; d, +, +d, +,d, }
l

+g Unf;dtd, + g ( Vp —U4)(ftd;+d; f; )+ g (ef + Und; )ftf; —&2vE mo(1 —5) g (
—1)'f;f;, (12)

where we have assumed that

4=(d,'f, ) =(f,'d, & (13)

is a uniform quantity even in the structural phase. By us-
ing the variational principle to the parameter xo, one can
show that

&E/2vxo= —g (f,~f;) .1

I

(14)

mo =0 nf =nf old =lsd = 1 nf ~

Thus, the ground-state energy of coupling system is

(15)

In the following we shall discuss the solutions of this
Hamiltonian in the case of efAU (unsymmetric case) and
that of ef =U (symmetric case) separately.

III. UNSYMMETRIC CASE

In unsymmetric case efAv, we assume that the system
is uniform and there is no structural phase,

The model system (2), as far as the ground-state proper-
ties are concerned, are defined by five input parameters
which we can take to be the phonon frequency co, the po-
laron binding energy v, the bare f level ef, the hybridiza-
tion V, and the Coulomb repulsion U. The parameter t,
the hopping integral of electrons, can be set equal to 1 by
redefining the overall energy scale. In the numerical cal-
culations we should, first of all, for every input set of pa-
rameters adjust 5 and r to let Es/N reach at a stable
minimum. (We shall denote the optimum values of 5 and
~ as 5 and ~, respectively. } Then other physical quan-
tities can be determined. In the following we give out
some numerical results for the unsymmetric case.

In Fig. 1 we plot nf versus polaronic level ef —v rela-
tions in the case of V=0.2t, U=4t, u=t, and co=0,
0 02t, 0. lt., 0.2t, respectively. Here the input values of U
and v are relatively large. When co~0, i.e., in the adia-
batic limit, the valence transition from ef —v &0 to

I I ~ I ~ I
1

I I I I i
I I I I1- =--

+ U4 — g "(/(Ed+ok Ef ) +4V'—
k

where Ed = Unf, Ef = Und,

(16)

E /N=v(1 5}n +—(r +r )+———U(1 n)n-f f

0.5—

I

I

Ql

(17)

(18)

ek = —2t cosk, V'= Vp —Uh . (19}

—1~ V'

k Q(E, +e —E )'+4V' '

1 1 Ed +ek —Ef
nf =—+

k Q(E„+e E) +4V'—

I I ~ I I ~ ~ I ~ I I ~0
—0.5 0

(~,-v)/t
0.5 1

FIG. 1. n& vs ef —v relation in the case of V=0.2t, U=4t,
v = t, and co=0 (solid line), 0.02t (short-dashed line), 0.1t (dash-
dotted line), and 0.2t (long-dashed line).
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ef —v )0 is discontinuous. Note that with approxima-
tion (11) for the U term the valence transition is always
continuous when v=0. ' ' The same result is also ob-
tained with an alloy analog approximation. ' For U =0
discontinuous transitions are possible for v ) v, either in
the impurity or the lattice case. ' We can see that a
finite phonon frequency can smear out this discontinuity.
When ei is small (co=0.02t in this figure) nf has some
sharp transition at

~ ef —u
~

& 0 (
~ ef —v

~

-0.1 t in this
figure). Further increase of the phonon frequency
(co=0. 1t and 0.2t in this figure) makes the transition
smoother and smoother.

Figure 2 shows the optimum values of the variational
parameters 5, r, and the corresponding reduction fac-
tor p as functions of ef —v in the case of V=0.21, U =4t,
v=t, and co=0. 1t. These curves are symmetric about

ef —u=0. Around ~ef
—v~-O, 5 arrives at its max-

imum and r at its minimum; this indicates that around

~ef
—u

~

-0 both the dynamical distortion and the squeez-

ing of the phonon mode are the strongest. We note that
the minimum value of the squeezing parameter in this
figure is r =0.356, which corresponds to
a = —

—,'lnd =0.258 and indicates a strong squeezing
effect. '

p also has a minimum around ~e&
—u~-O,

where p=0. 561. This value is much larger than what the
reduction factor in Eq. (1) would give:

V'/V=exp( —v /2ai) =0.0067, (20)

u & V, v &co& ref —vi, co& V', (21)

are all satisfied in the case of Fig. 2 when ~ef
—u

~

-0.
In Fig. 3, we plot nf versus ef —v relation in the case

of V=O. Zt, U=0. 3t, v =0.6t, and co=0, 0. 1t, respective-
ly. Here the input value of U is small. When ~=0, i.e.,
in the adiabatic limit, the valence transition from

ef —v(0 to ef —v&0 is already continuous. A finite

although the similar conditions as those of Hewson and
Newns for a significant reduction factor (20) of the
effective hybridization in the Anderson-impurity model is
to be observed, that is,

I I I I
i

I I I I
i

I ~ ~ I
i

I I I I

0.5

I « I I I I I I I I0
-0.5 0 0.5

(e!—v)/t

FIG. 3. nf vs ef —u relation in the case of V=0.2t, U=0.3t,
v =0.6t, and co=0 (solid line), 0. 1t (dashed line).

phonon frequency (co=0.1t in this figure) smooths it fur-

ther.
Figure 4 shows the optimum values of the variational

parameters 5, r, and the corresponding reduction fac-

tor p as functions of ef —v in the case of V=0.2t,
U=0. 3t, v=0. 6t, and co=0.1t. These curves are also

symmetric about ef —v =0 and are very smooth. The
dynamical distortion 5, related to the relaxation shift, is

large (-0.97) and the squeezing effect is small. A
significant reduction of the effective hybridization ap-

pears for all values of ef —u (p-0.07 in this figure). We

note that the reduction factor of Eq. (1) in this case is

exp( —u /2') =0.0498 .

Another quantity of interest is the fluctuation of the
oscillator coordinates q; =(b; +b; )/&2M aiThe part of
the lattice deformation, the dynamical distortion which
follows the electronic motion, is proportional to the f
electron density, thus fluctuates as the electrons move.
The anomalous fluctuations can be much larger than the
ordinary zero-point fluctuations if g ) 1. The fluctuation
in every phonon mode q; can be expressed as

(22)
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—0.5 0 0.5

(e,—v&/t
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FIG. 2. 5 (dotted line), I (dashed line), and p (solid line) as
functions of ef —u in the case of V=0.2t, U=4t, u = t, and
a) =0.1t.

FIG. 4. 5 (dotted line), 2 (dashed line), and p (solid line) as

functions of ef —u in the case of V=0.2t, U =0.3t, u =0.6t, and
co=0. 1t.
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where ( ) represents an average over the ground
state of the total system. After the two unitary transfor-
mations [Eqs. (3) and (5)) and making an average over the
squeezed-phonon state ~ph, s ) we have 0.5—

2

(hq, )= r +4 5 nf(1 —nf) (23)

The ordinary zero-point fluctuation of a harmonic oscil-
lator is

2M
1

We define the dimensionless anomalous fluctuation as

Q
~ ~

0
1

0.5—

I I I I

Q.5
I I I ~ ~ I i I I ~

1 1.5
~ I I

~ ~ I I I ~ ~ I ~

~ ~ ~~%e% \%% % Q%%%%%%%%\%%%%%%&RHAHQ AH ~

(24)

0
~W

C$
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0
C$

~aa ~
5

-0.5
I s I a

0
(s, «)/t—0.5

FIG. 5. Anomalous fluctuation f as a function of ef —u in
the case of V=0.2t, U=4t, u=t, co=0.1t {solid line), and
V=0.2t, U =0.3t, v =0.6t, and co=0.1t (dashed line).

Here the first term ~ —1 reflects the squeezing effect,
and the second term, proportional to both f- and d-
electron density nf and nd =1—nf, reflects the anoma-
lous fluctuations due to the electron motion. The solid
line in Fig. 5 shows f as a function of ef —v in the same
case as that of Fig. 2, in which the Coulomb repulsion U
is relatively large. One can see that the anomalous fluc-
tuation is the strongest around ~ef

—v
~

-0. The dashed
line in Fig. 5 shows f as a function of ef —u in the same
case as that of Fig. 4, in which the Coulomb repulsion U
is small. In this case the anomalous fluctuation is large
for all values of ef —v.

Also interesting is to see the effect of correlation term
U on the quantum-lattice fluctuations. Figures 6(a) and
6(b) show the optimum values of the variational parame-
ters 5 and r, respectively, as functions of U in the case
of V=0.2t, ~ef

—v~=0.05t, and four different sets of
values of v and co. One can see that the dynamical distor-
tion of phonon modes, proportional to 5, decreases with
increasing U. This means that the on-site correlation be-
tween d and f electron suppresses the dynamical distor-
tion, which is related directly to the relaxation shift.

Figure 6(c) shows the reduction factor p versus U rela-

0
0

2

~ ~ ~ I ~ s ~ a I ~ I ~ ~ I ~

0.5 1 1.5
I I I I

I
~ I ~ I

I
I I ~ I l ~

~~~y~ua~sa M~++
~ «~gg~~y0

0.5—

0 I a

0 0.5
I I I I ~ I I I I

2

U/t
1.5

FIG. 6. (a) 5 vs U relations in the case of V=0.2t,

~ef u~=0 05t, a. ud—u=0.2t, to=0. 1t (dotted line); u=0 2t, .
re=0. 2t {dashed line); u=0. 6t, co=0.1t {solid line); u=0. 6t,
F0=0.2t (dash-dotted line). (b) v vs U relations in the same

case as that of (a). (c) p vs U relations in the same case as that of
(a).

tions in the same case. Here one can see that a significant
reduction of the effective hybridization appears for
v=0. 6t, ~=0.1t and U(v. We note that this is the
same case as that in Fig. 4. Combining the results shown
in Figs. 4 and 6(c) we believe that in the spinless PAL
model a significant reduction of the effective hybridiza-
tion appears when

v & V, v & co, co & V', and U (v . (25)

These conditions are somewhat different from those [Eq.
(21)] of Hewson and Newns for the occurrence of a
significant reduction factor of the effective hybridization
in the Anderson-impurity model.

Figure 7 shows the anomalous fluctuation f as a func-
tion of U in the same case as that of Fig. 6. The anoma-
lous fluctuation decreases with increasing U, which
means that the on-site Coulomb repulsion suppresses the
quantum-lattice fluctuations. The physical picture of this
suppression is that the on-site repulsion favors the single
occupation of every site (N, =N in our calculation),
which, in turn, obstructs the hopping of electrons on and
ofl' the localized f level and the related dynamical distor-
tion of the phonon mode. %'e note that the anomalous
fluctuation shown in this figure is the strongest when con-
ditions in Eq. g5) are satisfled.

The correlation term U suppresses the quantum-lattice
fluctuations, which is the same as what Hanke and
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FIG. 7. Anomalous fluctuation f vs U relations in the same
case as that af Fig. 6(a).

distortion 5 are both the strongest when U —+0 and

~ef u—
~

-0. We believe that the diff'erence between our
results and those of Hanke and Schmeltzer comes from
that they fix the bare f level by Ef =Ed (ef =0 in our no-
tation). So in their calculations the polaronic level

ef —
U
= —u. When U is not small the efFective f-level oc-

cupancy nf should be near 1 and this could suppress the
reduction of the FV frequency and the relaxation shift.
We note that the quantum-lattice fluctuations are the
cause of the reduction of the FV frequency and the relax-
ation shift in one-dimensional half-filled PAL model cou-
pled to phonons because when m =0 there is no
quantum-lattice fluctuations, the lattice oscillations can-
not folio~ the hopping of electrons on and off the local-
ized f level and thus no reduction of the effective hybridi-
zation and no relaxation shift.

IV. SYMMETRIC CASK

Schmeltzer pointed out. However, from their real-space
renormalization-group calculation they concluded that
when the correlation term U goes to zero, the long-range
electronic correlations and the related phonon quantum
fluctuations suppress the standard polaronic effects and
no reduction of the FV frequency with accompanying
lifetime enhancement and no relaxation shift occur. This
is different from our results. As one can see from our nu-
merical results that the reduction of the FV frequency
and the relaxation shift connected with the dynamical

I

(27)

Now the ground-state energy is

When ef = U it is easy to prove that xo =&u /2E and
thus ef =0 in H,z. We assume that in this case the sys-
tern can go into a structural phase (the so-called VDW
phase} (Refs. 11—14}and define the f and d electron stag-
gered ordering parameters mf and md as follows:

(f; f; ) =
—,'+( —1)'mf, (26)

(dtd; ) =
—,'+( —1)'

E fN= —(1—5) +—m +—(2+~ )+——Um m +Uk,v 2 E 2 co 2 U 2

4 0 4 4 d f

where

jek+ U mf +(X Umd ) +2—V' +2+(X—Umd ) ek+ [(X—Umd )Umf + V' ] ]
'

Ic)0
(28)

1 (X—Umd )el, + [(X—Umd }Um f + V ]Um f
mf =—g ~ (X—Umd )+

Nk 0 Q(X—Umd } e'i + [(X—Umd ) Umf + V' ]

X Irk+ U mf+(X Umd) +2V—' +2+(X—
Umd ) ek+[(X—Umd)Umf+ V' ] J (29)

(X—Umd )[(X—Um d ) Umf + V' ]
md= ——g Umf++ k & o Q(X—Umd ) ek + [(X—Umd ) Umf + V' ]

X {ek+U mf+(X —Umd) +2V' +2+(X—
Umd ) ek+[(X—Umd)Umf+ V' ] ] (30)

Vr [(X—Umd)Umf+ V' ]
~ 1++ k&o Q(X—Umd) E +[k(X—Umd)Umf+ V' ]

X [ek+U mf+(X Umd)~+2V' +2+—(X Umd) e„+[(X—U—md)UmF+V' ] ]

X=+2' (1—5)me =2U( 1 —5 ) mf .

(31)

(32)

Here mo&0 is treated as a variational parameter and the optimum value of it is proportional to mf, as is shown in Eq.
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(32}. The physical phonon-staggered ordering parameter m~, which can be measured in experiments, is defined as

(33)

After the two unitary transformations [Eqs. (3) and (5)] and making an average over the squeezed-phonon state ~ph, s )
we have

m =m v+&2 u/K5mf =&2v/Kmf, (34)

where we have used Eq. (32). Obviously m mu, that is, it is included in m the contribution of the dynamical distor-
tion of phonon modes associated with the f-electron motion apart from the static staggered ordering parameter ms

First of all, let us see the case where ef = v =0, that is, no electron-phonon coupling. By choosing these special input
parameters our model system (1) is the spinless PAL model in symmetric case,

U~ ~ + Ug2 y I
~2 + U2 2+ U2~2+2Vt2+2g U2 2~2 + [ U2 + Vi2]2] 1/2U 1

k&O
(35}

—Umdek+[ —U mdmf+ V' ]Umf
mf =—g —Umd+

N k&p QU2in2&2+[ U2vi vi +V~2]2

X {&2+.U2vi 2+ U2m 2+2V'2+2+ U2in 2&2 +[ U2rii vi + V'2]2] —i/2 (36)

—Umz[ —U mdmf+V' ]
md= ——g Umf+

k&0 /U'm'E'+[ —U m in +V']'

XI@ +Um +Um +2V'+2+Urn e +[—Um m +V'] ] (37)

VI [—U mdmf+ V' ]1+
+U2~ 2~2 + [ U2~ + V 2]2

X [e2k+U2rpif~+ U~ind2+2V'~+2/U vi p y[ —U @igni + V' ] j (38)

with V'= V—Uh. The solutions of these equations can
be summarized by the solid line in the V- U phase dia-
gram of Fig. 8. When V=0 our model is the spinless
Falicov-Kimball model and a VDW phase exists in the
ground state of the symmetric case for all values of U) 0,
as was shown by some previous authors. " ' However,
when V) 0 is a finite quantity, a disordered {uniform}
phase appears for smaller U. We can see from the phase
diagram (Fig. 8) that when V) V, =0.256t the VDW
phase disappears for any values of U.

The effect of the electron-phonon interaction on the
VDW ordering phase is twofold. First, one can infer
from the famous Peierls' theorem' that the adiabatic
electron-phonon coupling favors the VDW ordering. We
show this in Fig. 8 by the short-dashed (v =0.04t}, dash-
dotted (v=0. 12t), and long-dashed {v=0.2r) line with
nonzero coupling u) 0 but vanished phonon frequency
~=0. Obviously, the size, of the VDW ordering region
increases with increasing coupling u. We note that in the
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0.1 SE

0
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FIG. 8. Phase boundary in the symmetric case. co=0, v =0
(solid line), 0.04t (short-dashed line), 0.12t (dash-dotted line),
0.2t (long-dashed line). The phase transition is second order
across the lines. The region under the lines is structural, but
that above corresponds to uniform phase.
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FIG. 9. Phase boundary in the symmetric case. v=0. 2t,
co=0 (short-dashed line), 0.1t (solid line), 0.2t (dotted line), 0.3t
(dash-dotted line). The long-dashed line corresponds to the case
v=O, which is included here for reference. Note that when
U/t ((1 a small isolated disordering region exists between
V=O and V-co for co=0. 1t and 0.2t in this figure.

adiabatic case (co=0), as long as v & 0, an ordering state
exists for small but finite hybridization V&0 even if the
correlation U=O. This is different from the v=0 case
where the ordering state cannot exist for U=0.

Second, the nonadiabaticity of the electron-phonon in-
teraction should lead to instability of the VDW ordering
state. We show the V- U phase diagram for different

0 values in Fig. 9. One can see that with increasing
co, the VDW ordering region shrinks but the disordering
(uniform phase) region expands. We note that when
Ult (&1 a small isolated disordering region develops be-
tween V=O and V-co for 0 & co v. For m & v, no order-
ing state can exist for U=O and the phase boundary be-
comes similar to the case v =0.

Figure 10 shows the dimerization parameter m as a
function of U in the case of V=0.2t, v =0.2t, and co=0,
0. 1t, 0.2t, 0.3t, respectively. Increasing co significantly
reduces the ordering (order parameter m ), particularly
for small U, eventually leading to its complete destruc-
tion. An order-disorder transition appears with increas-
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FIG. 10. The dimerization parameter m~ vs U relations in
the case of V=0.2t, v=0. 2t, and co=0 (dotted line), 0. 1t
(dashed line), 0.2t (dash-dotted line), and 0.3t (solid line).

FIG. 11. Anomalous fluctuation f as functions of U in the
case of V=0.2t, v =0.2t, and co=0. 1 (dashed line), 0.2t (dash-
dotted line), and 0.3t (solid line).

2

=(r~ —1)+4 5 ( —,
' —m~) .

CO

(39)

We show in Fig. 11 the anomalous fluctuation f as a
function of U in the case of V=0.2t, v=0. 2t, and
co=0. 1t, 0.2t, 0.3t, respectively. Here one can see that
the anomalous fluctuation is larger for smaller U. Be-
sides, the value of the anomalous fluctuation is small for
the VDW ordering state. This means that the ordering
suppresses the quantum-lattice fluctuations.

V. CONCLUSION

In this paper we have developed a variational approach
to treat the nonadiabaticity, that is, the quantum-lattice
fluctuations, of the electron-phonon interaction in the
one-dimensional half-filled spinless PAL model. The
nonadiabaticity due to finite phonon frequency is treated
through a variational polaronic-type wave function, in
which two variational parameters 5 and v are used to
take into account the dynamical distortion and the
squeezing effect of phonon modes. In this way we have
found that the quantum-lattice fluctuation gradually
smooths the valence transitions when the polaronic level

e&
—v changes. We have shown that conditions some-

what different from those of Hewson and Newns should
be satisfied for the occurrence of a significant reduction
of the effective hybridization in the one-dimensional spin-
less PAL model. The effect of the Coulomb repulsion U
is to suppress the quantum-lattice fluctuations, that is, to
suppress the reduction of the FV frequency and the relax-
ation shift. This conclusion is different from that of
Hanke and Schmeltzer.

Our conclusion about the effect of U is obtained after
the Hartree-Fock approximation, Eq. (11), is used, but
that of Hanke and Schmeltzer is based on the
renormalization-group method. However, we believe

ing U. For co =0.3t, this takes place around U =0.235t.
In symmetric case the dimensionless anomalous fluc-

tuation of phonon modes associated with the motion of f
electrons is

f=((&q ) —(&q )o)l(&q )o
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that our results re6ect the effect of U correctly even if U
is not small. This can be shown more clearly by the fol-
lowing qualitative argument. The reduction of the FV
frequency and the finite relaxation shift result from the
dynamical distortion of phonon modes (the quantum-
lattice fiuctuations). But a finite U favors the single occu-
pation of each site (N, =N in our treatment), which in
turn obstructs the hopping of electrons on and off the lo-
calized f level and suppress the related dynamical distor-
tion of the phonon mode. Thus, the reduction of the FV
frequency and the relaxation shift decreases with increas-
ing U, as was shown by our numerical results. As our
opinion, the difference between our results and those of
Hanke and Schmeltzer comes from that they fix the bare
f level by ef =0 and thus a nonzero polaronic level —v,

when v is not small, may suppress the reduction of the
FV frequency and the relaxation shift.

We have also discussed the symmetric case where a

structural phase, the so-called VDW ordering, can occur.
Our results show that the quantum-lattice fluctuations
disfavor the VDW ordering and the lattice dimerization
parameter mz decreases with increasing co. We have

pointed out the possibility of an order-disorder transition
in such systems. Besides, we show that VDW ordering
makes the anomalous fluctuation of the phonon mode
small.

This work can be extended easily to the two- and
three-dimensional and to the spin- —,

' cases.
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