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Configurational entropy and the non-Newtonian rheology of homogeneous silicate liquids
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Recently, the non-Newtonian viscosity of silicate liquids at high stress levels has attracted a fair
amount of attention. Di8'erent explanations for this interesting phenomenon have been proposed. The
purpose of the present paper is to demonstrate that an extension of the configurational entropy theory
for the occurrence of the glass transition by Adam and Gibbs [J. Chem. Phys. 43, 139 (1965)] suffices to
explain the development of non-Newtonian viscosity in liquids under high stress before rupture occurs.
Attention is drawn to the fact that under steady-state conditions the logarithmic values of reduced
viscosities of silicate liquids under high stress show a linear dependence on the square of the applied
stress. This relationship suggests that the elastic work done by the stress on the liquid is the cause of the
generation of configurational entropy. Adding this contribution to the configurational entropy term in

the Adam-Gibbs equation for the ensemble average of the configurational transition probability is all

that is needed to explain the heretofore mentioned non-Newtonian viscosity in liquid silicates and a
molecular-dynamics Lennard-Jones liquid.

I. INTRODUCTION

It is well known that the viscosity of silicate liquids is
Newtonian. But there have been serious suggestions that
at very small as well as fairly large stresses the propor-
tionality between stress and strain rate is not maintained.
Published evidence supporting the contention that at low
stress levels silicate liquids display a non-Newtonian
viscosity is indirect, see for instance, Refs. 1 and 2. But
experimental work, done to verify this at low or very low
stress, has not, to our knowledge, produced any proof.

On the other hand the evidence for non-Newtonian
rheology of homogeneous silicate liquids at high stress is
without ambiguity. Li and Uhlmann showed that abso-
lute rate theory could not explain the occurrence of this
phenomenon in a homogeneous glass, with a Newtonian
viscosity ranging from 10 to 10 Pas at tempera-
tures between 480' and 555'C. Simmons, Mohr, and
Montrose examined how the rheology of the NBS-710
viscosity standard was affected by high strain rates be-
tween 560'C and 600'C. They recorded strain rate de-
pending decreases of the viscosity of over a factor of 3
relative to the Newtonian viscosity of about 3.10' Pas,
and demonstrated that these observed decreases could
not be due to heating of their sample because of work
done on it. They proposed a semiempirical equation:

r)/r)o= 1 /I 1+(r d e/dt)G „/o i;;,I,
where 7)/r)o is the reduced viscosity, rIo the Newtonian
viscosity at low strain rate, and g the observed non-
Newtonian viscosity; c. is the deformation, ~ the shear re-
laxation time of the Newtonian liquid, and 6 the shear
modulus at infinite frequency. o.&;;, is proposed to be
"the maximum shear stress developed in the system un-
der steady-state conditions as the strain rate goes to
infinity, " it is a temperature- and material-dependent
constant obtained by fitting Eq. (1) to observed values of

the reduced viscosity under steady-state conditions.
Available observations are in good agreement with Eq.
(1). Guillemet and Gy explained Eq. (1) by postulating
that alkali-silicate liquids close to the glass transition
behave like a Maxwell liquid, whose viscosity changes
with temperature according to the Adam-Gibbs' theory
as amended for pressure effects. "' However, the ap-
plied pressure-effect correction has not been derived for
the dynamic conditions under which the experiments on
shear thinning were done and the possibility of a stress
effect was not investigated. Besides, the Maxwell rheolo-

gy model for liquids gives an incomplete description of
silicate liquids. '

In this paper, the decrease of the viscosity in silicate
liquids at high stress is analyzed in terms of the Adam-
Gibbs configurational entropy theory for relaxation in
glass-forming liquids. ' The Adam-Gibbs explanation for
the occurrence of the glass transition has not been an
unqualified success. Since 1965 many other attempts
have been published to explain this transition; a very con-
densed review of these essays can be found in Sethna,
Shore, and Huang. ' The work by Goldstein' illustrates
very well how difBcult it can be to extract. from thermo-
dynamic data a good estimate of the configurational en-
tropy of organic liquids and thus to verify quantitatively
the Adam-Gibbs theory. But Richet, Robie, and Hem-
ingway' succeeded in obtaining from their own
calorimetric measurements a good estimation of the
configurational entropy of vitreous and liquid
CaMgSi206, and similar estimates for NAlSi308 and
CaA12Si208 from already published data. The strong evi-
dence' ' in favor of the validity of the configurational
entropy theory, in particular as applied to silicate
liquids, "' ' ' is not suKciently well known or appre-
ciated.

According to Adam and Gibbs the viscosity of a glass-
forming liquid can be expressed as
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Ing = A, +B,/( TS, „t), (2)

where A, and B, are material-dependent adjustable pa-
rameters obtained by fitting (2) to measured viscosities.
A, and B, are considered to be constant when compared
with the temperature dependence of the product TS, „&.
Actually, Eq. (2) reproduces better the temperature
dependence of viscosities ranging from 0.1 to 10' Pa s of
silicate liquids than any other, theoretically derived or
empirically inspired, expression containing only two ad-
justable constants. But unfortunately, the determination
of calorimetry of the configurational entropy (S„„t)is
neither simple nor precise, consequently few high-quality
measurements are available at this moment. This ques-
tion has been discussed by Neuville and Richet.

In contrast with most other data published on non-
Newtonian viscosity of silicate liquids, the numerous ob-
servations of %ebb and Dingwell at temperatures close
to the glass transition are well described and tabulated.
These authors measured the steady-state elongation rate
of highly viscous liquid fibers of NazSi409 at constant
stresses between 10 and 10 Pa. These data have been
used here to verify the usefulness of the configurational
entropy theory and to show that the observed decrease of
the viscosity of highly stressed liquids close to the glass
transition can be explained adequately within the frame-
work of this theory. Application of the proposed model
to other data and geological processes are the subjects of
another publication.

II. THE MODEL

Adam and Gibbs' showed that the ensemble average
of the configurational transition probability for a liquid
system is given by the expression

( W(T)) = A exp{ —C/(TS„„t)}, (3)

where 3 and C are material-dependent parameters whose
temperature dependence can be neglected in comparison
with that of the denominator TS„„&. This transition
probability is proportional to the reciprocal value of the
relaxation time for structural rearrangements, the latter
being proportional to the viscosity. Equation (2) is the
straightforward consequence of this reasoning. The tem-
perature dependence of the configurational entropy can
be evaluated by means of

„S„ t{)T=S„„ Tt{)+f (AC /T)dT,

where it is supposed that S„„t(T ) is known at the glass
transition temperature T . AC indicates the difference
between the heat capacities of the liquid and vitreous
phases, it approximates the configurational heat capacity
at constant pressure. ' The heat capacities of silicate
liquids at constant pressure vary linearly with tempera-
ture or are constant, while those of silicate glasses at tem-
peratures close to T are constant.

In order to apply Eq. (2) to explain the observations of
viscous thinning, the configurational entropy should be

evaluated for a fiber liquid Na2Si409 which is deformed at
a steady rate at constant temperature by applying stress.
To analyze this steady-state deformation process, it will
be broken down schematically into recurring time steps
At during which three consecutive processes take place:
(1) under influence of a constant force F, a viscous liquid
fiber is elastically elongated by an amount dL, (2) the
elastic work done by F on the fiber causes the generation
of internal energy (dU) and concomitantly of
configurational entropy; and (3) subsequently, the elastic
strain accumulating since the beginning of the time step
At relaxes viscously, while the deformation remains con-
stant. During a time step entropy is produced and con-
sumed; the rate of entropy production is equal to

TdS/dt =dU/dt FdL/—dt . (5)

The internal energy change in the stretched fiber in-
tegrated over the time interval ht should be zero, because
of the steady-state character of the deformation process.
Hence

hU= I (dU/dt)dt =0 .

Therefore integration of Eq. (5) over the time interval b, t
gives

Tb S ( T, a ) = Fb L = cr—V /( 2E),

where the elastic modulus is indicated by E, the applied
stress by o and the molar volume of liquid Na2Si409 by
V . Because the applied stress is relatively small
(o &10 ' Pa) and no changes of temperature of the
stretched fiber have been observed, ' ' ' it is supposed
that a possible change in the vibrational entropy will be
very small compared to the configurational entropy
change. Thus as a first approximation, the config-
urational entropy produced by stretching of the fiber at
constant temperature and under steady-state conditions is
given by

b,S„„t(T,o )=o. V /(2ET) .

The elastic work done by the stress on the fiber is sup-
posed to be a source of configurational entropy, which in
turn is consumed by viscous deformation of the fiber. Us-
ing Eqs. (2) and (4) one obtains for the reduced viscosity
ni'no

In(rt/rto)=B, (1/{T[S„„t(T)+ES„„„(T,o)]}.
—1/[TS, „f(T)]) .

in(g/go) = —B,b,S„„/(TtS„„t)

= —B,V o. /{2E(TS„„t)} .

Because ib,S„„t(T,o )i « iS„„t(T)i, the logarithm of
the reduced viscosity should be proportional to the
square of the applied stress
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log, o(A/7)o) =a +b cr (10)

to the data and the values obtained for a and b of Eq. (10)
are given in Table II. According to Eq. (9), a in Eq. (10)
should be equal to zero; this is the case, see Figs.

To derive Eq. (8) it was assumed that 8, is not affected by
the applied stress; the hypothesis will be discussed in Sec.
III.

The experiments on Na2Si409 showed non-Newtonian
viscosity at stresses of more than 6.3 X 10 Pa. These ob-
servations at 747, 752, 755, 766, 777, and 779 K have
been used in Figs. 1(a)—1(f) to demonstrate the linear
dependence of the logarithmic reduced viscosity on 0. .
The needed input data are given in Table I. The quality
of the fits of the expression

Temp (K)

747.15
752.15
755.15
766.15
777.15
779.15

log&o[9o(pa s) ]'

12.19
11.70
11.61
11.20
10.88
10.75

S, „(J/K mol)

48.60
49.07
49.34
50.35
51.34
51.52

'Adopted go values are in agreement with measured Newtonian
viscosities and their error limits (Refs. 7 and 24).
Values calculated from data in Refs. 11 and 21.

TABLE I. Thermodynamic and rheological input data for
liquid Na2Si409. B,= 1.1782X 10 J/mol (Ref. 11),
V =1.288X10 m'/mol; estimated Cp g] 345 65 J/(K mol)
at T 753 K (Ref 2 1) and Cp &'q 'd 426 0 J/(K mol) at T =753
K (Ref. 21).
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FIG. 1. (a)—(f) Plots of the observed reduced viscosities (Ref. 7) for liquid Na2Si409 as a function of applied stress (Pa) at different
temperatures.
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TABLE II. Quality of fit of Eq. (10) to data (Ref. 7) and cal-
culated values for E.

0.0

Temp (K)

747.15
752.15
755.15
766.15
777.15
779.15

+0.007
—0.010
—0.006
—0.013
—0.000
+0.002

b(10 ' Pa )

—0.0934
—0.0799
—0.1415
—0.0910
—0.0804
—0.1178

R'

0.971
0.945
0.946
0.954
0.986
0.949

F (GPa)

2.78
2.66
1.53
2.24
2.59
1.70

u -0. 1

(D

0"

C7l
C) Q

CI

Q $» r ~ I s i t & 1

0 5 10

(Stress) (Pa)
15xl0

1(a)—1(f), when one takes into consideration the precision
of the experiments. FIG. 2. Logarithmic values of the reduced viscosity of a rhy-

olitic melt as a function of the applied stress, based on the
viscosity measurements of Webb and Dingwell (Ref. 8).

III. DISCUSSION AND CONCLUSIONS

The proposed model requires the transformation of an
elastic deformation into a viscous one. It has been point-
ed out' that such a conversion can be observed when an
elastically deformed liquid is allowed to relax its internal
structure, while the deformation is kept constant. The
time constant for this process can be obtained by means
of Eq. (3).

The obtained results listed in Table II show that Eq.
(10) reproduces quite well the measured values. An
anonymous referee suggested the possibility that the
stress squared relationship is only apparent because of
the rather small stress interva1s over which the experi-
ments could be performed. To check this suggestion the
data were also fitted to equations analogous to (10) except
that the stress dependence was linear or cubic. In all
cases the fit was significantly less good, at T =747 K
[Fig. 1(a}] the squared correlation coefficient decreased
from 0.97 (see Table II} to 0.77 for the linear case, while
for the cubic one the constant term a became too large.
More direct evidence in favor of the proposed propor-
tionality between the logarithmic values of reduced
viscosities and the squared value of the applied stress is
shown in Fig. 2 for a rhyolitic melt close to its glass tran-
sition range. Webb and Dingwell reported reduced
viscosity observations for this substance over a stress
range of 370 MPa. Equation (8}can be expressed easily in
the form of Eq. (1},which is valid for all the recent obser-
vations of the non-Newtonian rheology of silicate liquids
under high stress or experiencing large strain rates.

The values obtained for b, Eq. (10), can be used to cal-
culate the elastic modulus for NazSi4O9 at temperatures
of about 760 K, see Table II. These listed values of E do
not evidence a temperature dependence. This is not
surprising in view of the noise in the input data and the
smallness of the temperature interval. The calculated
average value of the elastic modulus cannot be verified
because no experimental measurements of this modulus
at temperatures close to the glass transition and for
stresses up to 300 MPa seem to have been published for
liquid Na2Si409.

The calculated value of E depends on b [Eq. (10}],and
on the variables occurring in Eq. (9), B„V,and S,„„t,

which are fairly well known. Possibly B, is stress depen-
dent; this case was not considered by Adam and Gibbs, '

but if true this dependence should be taken into account,
thus

1n(r}/rIo) =B, I ( —AS„„r/S„„r)+(6B,/B, ) }/( TS„„r)

with

b,B,=B,(cr ) B,(cr =—0) .

As before ~b,S„„t~&&S„„r~, but also ~b,B, I &&~B,
~

and
according to Adam and Gibbs

B,=bpo,*,„r/ks (12)

where Ap is the potential energy hindering the coopera-
tive rearrangement per Bow unit in the liquid, o.„„„is the
configurational entropy of a minimal volume of liquid
permitting a structural rearrangement, and k~ is
Boltzmann's constant. Because B,(o)&B,(cr=0), the
relaxed value of E calculated with Eq. (11) should be
larger than calculated with Eq. (8), where the possible
stress dependence of B, has been ignored. It is likely that
hB, is also proportional to cr and thus the fit of Eq. (10)
to the experimental data will not be affected.

Heyes et al. have published a molecular-dynamics
(MD) simulation of a 108 Lennard-Jones (LJ) particles
system at constant temperature and volume under
different values of applied shear stress. Results were
given for the system being in a noncompressed state and
when it is 10, 20, and 50% compressed. The four obser-
vations for the noncompressed system evidence a linear
dependence of the logarithmic reduced viscosity on the
squared value of the nondimensiona1 applied stress once
the steady state is reached. Figure 3(a) is a plot using
these results and offers evidence that the proposed exten-
sion of the Adam-Gibbs model can be applied to LJ
liquids. The relative variation of the applied stress
amounted to a factor of 10, like the relative stress varia-
tions in the experiments of %'ebb and Dingwell. The
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MD results for compressed systems were too noisy to be
useful for the preset purpose and it seemed doubtful
whether or not a steady state was reached.

To derive Eq. (7), it was assumed that all the elastic
work done on the isothermal system by the applied stress
was transformed into configurational entropy, when the

FIG. 3. (a) Logarithmic values of the reduced viscosity
versus dimensionless stress (Ref. 23) for MD-LJ liquids. (b)
Variation of the dimensionless configurational energy with ap-
plied dimensionless stress for a Lennard-Jones liquid at constant
temperature, based on the MD results published by Heyes et al.
(Ref. 23).

deforming fiber was in a stationary state. The MD re-

sults, for the noncompressed system, are in agreement
with this hypothesis. This is shown by Fig. 3(b), which is

a plot of the calculated increase, relative to the non-
stressed system, of the dimensionless configurational en-

tropy given by Heyes et al. versus the square of the ap-
plied dimensionless stress at constant temperature and
volume. The observed linear relationship between the
squared stress on the system and the variation of the
configurationa1 energy, and thus of the configurational
entropy, of the system are most readily accounted for if
the herefore mentioned hypothesis is correct.

At the onset of non-Newtonian viscous Aow in a soda-
lime-silica liquid, Simmons and co-workers ' and Guil-
lemet and Gy observed the occurrence of stress oscilla-
tion s during constant deformation rate experiments.
Similar oscillations were displayed during MD simula-
tions of a Lennard-Jones liquid. This phenomenon
could be the result of the interplay between the rate pro-
cesses involved in the structural relaxation after the oc-
currence of instantaneous elastic deformation, and anoth-
er rate process associated with the slower occurring de-
formation due to delayed elasticity.

The remarkable fit for Eq. (10) to the observational
data as well as to the MD calculations suggests strongly
that the Adam and Gibbs configurational entropy theory
describes correctly the stress dependence of the viscosity
of silicate liquids, even if the rheology is non-Newtonian.
The rheological behavior of the system is Newtonian as
long as the increase is configurational entropy, as given

by Eq. (7), is small relative to the configurational entropy
of the nonstressed liquid. But when AS„„&becomes non-
negligible with respect to S„„f,the viscosity of the liquid
becomes stress dependent and smaller than that of the
nonstressed system at the same pressure and temperature.
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