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A simple model for nonlinear collective transport in random media with strong disorder is pre-
sented and analyzed. It should apply to systems such as strongly pinned vortex lines in thin
superconducting films or low-density Suid Sow down a randomly rough inclined plane, in which
the randomness is strong enough to break the Sow into channels. The model exhibits a threshold
force above which macroscopic Sow exists. The critical behavior around this threshold is obtained
analytically in mean-field theory, which should be valid in three dimensions and higher, and in
one dimension. Analytical bounds and numerical simulations are used in the two-dimensional case.
Correlation lengths above and below threshold scale differently. Multiple divergent length scales
are seen above threshold. Possible modifications due to thermal Suctuations and other effects, and
apphcations to physical systems, are discussed.

I. INTRODUCTION

Under the infiuence of an external driving force, col-
lective nonlinear transport occurs in a wide variety of
random media: Hux lines in superconductors, ~ 4 inva-
sion of Huids in porous media, s sliding charge-density
wavess t (CDW's) and various types of electric or me-
chanical breakdown in inhomogeneous systems. ~t In all
of these systems, macroscopic transport occurs in the ab-
sence of thermal Huctuations only when the driving force
exceeds a threshold magnitude. In the vicinity of the
threshold force, the behavior is complicated, involving
collective effects over long length and time scales, with
correlation lengths that diverge at threshold. These fea-
tures suggest true critical phenomena near to threshold,
and recently the critical behavior near the transition has
been analyzed for some of these systems. ~

It is useful to distinguish between two qualitatively dif-
ferent limits for driven collective transport in random me-
dia. When the randomness is in some sense weak, the in-
teractions between the transport carriers can produce an
elastic structure that, over a wide range of length scales,
vriO distort without breaking. Examples of this class are
CDW's, ' weakly pinned Abrikosov Bux lattices, sin-
gle vortex lines, 2' &onts of preferentially wetting Buids
invading porous media, ' and doxnain walls in weakly
disordered magnets. When, on the other hand, the ef-
fects of the randomness are strong, the elastic medium
can break up, and the transport becomes much more in-
homogeneous and plastic or Buidlike. This is the case,
for instance, for strongly pinned vortex lines in the mixed
state of superconducting films, and for invasion of non-
wet'ting Buids into porous media. 6'~ While driven elas-
tic media have been quite extensively studied, compar-

atively little is known about the Huid or plastic limit.
As a first attempt to deal with this regime, we consider
a system with no elastic interactions: Buid Bow down
a rough inclined plane and its generalizations to higher
dimensions. We will focus on the critical behavior near
to the threshold force of this system, introducing and
analyzing a simple model. Specifically, we consider a
randomly rough surface onto which Buid is poured, col-
lecting initially into isolated lakes, which we assume do
not percolate. ' The surface is now slowly tilted, and
Huid spills out of lakes that are full, feeding unfilled lakes
further downhill. Above a threshold tilt angle, which is
the equivalent of the depinmng transition, Huid can flow
across an arbitrarily large system &om top to bottom.
When the tilt is less than its threshold value, there are
connected clusters of lakes, as shown in Fig. 1, with all
the lakes in a cluster except the one at the terminus full
up to the brim. Any further increase in the tilt thus
causes Huid to flow from all the lakes in a cluster into
the terminus lake. The characteristic size of the clusters
increases with the tilt, and diverges at threshold. Above
threshold, Buid Bows across the entire system, with the
current carried in a network of rivers. When the external
tilt is much larger than the tlneshold value, fluid flows
over the surface as a sheet, with relatively little spatial
structure. On the other hand, near threshold, the Bow
is extremely inhomogeneous, and is conaned to narrow
well-separated channels. We shall restrict our analysis
in this paper to the behavior near threshold, and shall
see that, on beth sides ef threshold, characteristic length
scales diverge as threshold is approached, and thus the
transition can indeed be treated as a second-order phase
transition. Various features make the analysis of the be-
havior near threshold difBcult. Firstly, there is no simple
configuration that can be taken to be a first approxi-
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FIG. 1. Schematic of the distribution of Quid on a tilted
irregular surface. The direction of the tilt is shown by the
arrow. Fluid is located in lakes that are distributed over the
surface. Some of these lakes are full to capacity (saturated),
and are hatched in this 6gure. An increase in the tilt force
I" causes Quid to Qow out of the saturated lakes along the
gradient of the surface, and eventually feed into unsaturated
lakes. The dashed lines indicate these paths, which have an
overall bias in the direction of I". They connect clusters of
lakes.

mation, starting from which a perturbative solution can
be obtained. Secondly, the transport in this regime is
fully nonlinear. Finally, under the inHuence of gravity,
pressure builds up at the terminus of a cluster, rather
than being uniform everywhere in it. Thus when the
tilt is increased, clusters grow from their terminus sites,
with a higher probability of growing if they are already
large. This means that one cannot determine the path-
ways which will dominate the Bow above threshold by
a local analysis that looks for "weak links;" rather, one
needs to consider the entire system uphill from a point
to determine if current Bows through it.

This simple picture approximates the current carriers
by a continuous Huidlike medium, instead of discrete ob-
jects, and assumes that they are pointlike instead of being
extended objects (unlike, for example, Hux lines in three-
dimensional superconductors). The external force in the
model is produced by the tilt, which results in a linearly
increasing "gravitational" potential across the system, in
contrast, for example, to pressure driven transport. We
also assume that the Quid is deposited on the surface ini-
tially, rather than "raining" steadily all over the surface,
and that the irregularities in. the surface are quenched,
so that erosion is not allowed for. We shall return to the
implications of all these assumptions for the applicability
to physical problems later in this paper.

Various models have been considered earlier that sorne-
what resemble our system either above or below thresh-
oM. Below threshold, our system is somewhat like in-
vasion percolation, where Quid is initially distributed
on some sites of a lattice, from which it invades other
sites by "breaking" bonds connecting them. The exter-
nal tilt of the surface in our system makes the percolation
directed, although the nonlocal nature of the way clus-
ters grow leads to important differences. Above thresh-
old, our system is somewhat similar to various models of

river networks that have been considered recently. How-
ever, there are qualitative differences in the structures of
the river networks. Our model is also the Brst that we
know of to relate the two sides of the threshold, although,
owing to the unusual nature of the transition, the simi-
larities between the two sides are not as extensive as in
conventional phase transitions. Comparison with some
of the earlier work is discussed later.

The remainder of this paper is organized in the follow-
ing manner: in Sec. II we discuss in detail the qualitative
behavior of the model. This is used to motivate the con-
struction of a simple lattice version of the model, which
we use for a quantitative analysis, the results of which are
summarized. The behavior of the system as a function
of its spatial dimension below and above threshold is ob-
tained in Secs. III and IV, respectively. Comparison with
previous work, and modifications due to thermal fluctua-
tions, boundary conditions, and other effects are consid-
ered in Sec. V. Finally, possible applications to various
physical systems are discussed in Sec. VI. A detailed
analysis of the case of one-dimensional systems above
threshold is given in Appendix A, Appendix 8 derives
the analytic behavior of the model below threshold, in
mean-Geld theory and in one dimension, and Appendix C
analyzes a mean-Beld approximation above threshold.

II. QUALITATIVE BEHAVIQR

We first consider the qualitative behavior of the sys-
tem. As mentioned earlier, fluid is initially distributed
randomly over the surface. We take the density of Huid
to be below the percolation threshold, so that the Quid
is distributed in a series of lakes. If the external tilt I' is
slowly increased &om zero, the capacity of all the lakes
will decrease steadily. Eventually, the capacity of some of
the lakes will have decreased sufBciently so as to be just
equal to the amount of fluid present in them; these lakes
will be saturated, but the barriers at their boundaries
prevent the Quid in them from flowing away.

Any further increase in the force I reduces the capac-
ity of the lakes further. This results in the saturated lakes
overflowing by an amount just suKcient to bring them
back to saturation. Fluid spills out from these lakes into
lakes that are further downhill, which in turn approach
saturation. With probability one, there will be a unique
direction which is the lowest outlet barrier for a given
lake to overflow. If the force is increased adiabatically,
the path by which Quid overflows from a saturated lake
will be over this lowest barrier, and is thus unique.

When I" is increased, Quid overQows from each satu-
rated lake, proceeding downhill, until it pours into some
other lake. If this lake is also saturated, it in turn feeds
into a lake further downhill; this process continues unti1
an unsaturated lake is reached, where the How termi-
nates. At any value of I', it is possible to define "con-
nected clusters" of lakes in the system. Each of these
clusters consists of a collection of saturated lakes con-
nected to an unsaturated lake; when I" is increased, Quid
spills over from all the saturated lakes in the cluster and,
either directly or via other members of the cluster, feeds
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into the unsaturated lake, which is the furthest downhill.
As F is increased, more and more Quid Bows into the un-

saturated lake, which eventually itself reaches saturation.
The terminus of the cluster now moves to soxne unsatu-
rated lake further down, thereby increasing the size of
the cluster.

The direction the Quid takes on emerging &om a lake
is determined by the shape of the surface in the vicinity
of the lake. If the irregularities in the surface have only
short range correlations, then the direction in which the
Quid flows out of widely separated lakes is uncorrelated,
except for the overall downhill bias caused by the exter-
nal force. On long length scales, therefore, the outlet
path which goes &om one lake to another lower one, and
successively downhill, can be taken to be approximately a
directed random walk, moving uniformly downhill while
executing a random walk in the transverse directions.

Eventually, as F increases, we expect there to be a
cluster spanning the system from top to bottom. Be-
yond this stage, if F is increased, Quid flows all the way
down the system. If this threshold force FT has a well-
defined limit as the size of the system is taken to infinity,
the transition at Fz- is analogous to a phase transition,
with macroscopic transport occurring above the transi-
tion. We find that such a transition exists in mean-field
theory (and in one dimension), while in two dimensions,
numerical simulations support its existence. We thus as-
sume that a well-defined transition occurs in all dimen-
sions.

Above threshold, the total current in the system must
in the long time limit be determined by the boundary
conditions governing the input of Quid into the system.
However, in the limit of an infinite system, it is possible to
obtain a solution far ft.om the boundary without reference
to the boundary conditions, in terms of only the mean
density of fiuid in the system. (Strictly speaking, this is
a transient solution, which persists in the interior for a
time that diverges with the size of the system. ) Although
most of our analysis will be done using this approach,
it is possible alternatively to treat the system as being
"current driven, " with Quid being steadily input at the
top. We shall discuss this briefly in Sec. V, and also
more general issues concerning the efFects of boundary
conditions.

In order for current to How across the system above
threshold in steady state, there must be rivers carrying
Quid connecting the lakes. The depth of Quid in these
rivers must be nonzero for them to carry any current.
Because of this, there is a finite probability for a river to
split into two. In addition, for current to flow through a
lake, the depth of Quid has to be greater than the lowest
outlet barrier of the lake, so that Quid may be able to
spill out of a lake in more than one direction. Thus un-
like the case below threshold, where the fluid overflows
from saturated lakes along unique paths, the transport
paths branch above threshold. This branching process is
balanced by rivers colliding into each other and joining
as they proceed dow~»ll. Far &om the top of the sys-
tem, an equilibrium density of rivers is established, and
there is a connected network of rivers through which the
steady state flow takes place.

A. Critical behavior

It is possible to define correlation lengths both above
and below threshold as suitable characteristic length
scales associated with the system. The external force F
singles out a particular direction; thus there are di6'erent
correlation lengths, (—:(~~ and (~, parallel and perpen-
dicular to the direction of the tilt. Below threshold, the
correlation lengths can be chosen to be the character-
istic size of the large connected clusters, which diverge
at threshold. Above threshold, the length scales above
which the coarse grained current is approximately ho-
mogeneous yield natural correlation lengths. ~~ Far above
threshold, when the Qow is large, the current is fairly
uniform, while close to threshold there are widely spaced
rivers that drain only a small fraction P of the system, the
rest being in isolated clusters of lakes that are not con-
nected to the river system. Thus the correlation lengths
diverge as threshold is approached Rom above, associ-
ated with the low density of the river network, while be-
low threshold they diverge with the diverging character-
istic cluster size. We thus have behavior similar to that
found in conventional critical phenomena, in particular,
for percolation. ' We conjecture that the correlation
lengthsg, and other quantities scale as powers of the
reduced force,

f = F/FT —1, (2.1)

close to threshold. Thus we conjecture that the mean
current density Bowing through the system just above
threshold has the form

(2.2)

where we have introduced an exponent P analogous to
that for CDW's

It is useful to generalize the river Qow problem &om
two dimensions to d dimensions, with one downhill di-
rection and d —1 transverse directions. When d = 1, the
number of transverse directions is zero, so that it is no
longer meaningful to talk about How patterns across the
system; the entire system has current Bowing through it
above threshold, and P = 1. Nevertheless, distances in
the direction of the applied force are still well defined, so
that ( exists. We shall introduce a lattice model to ana-
lyze the case of d & 1, but since the How pattern in higher
dimensions is locally one dimensional in rivers and near
to the outlets of lakes, it is instructive to consider the
one-dimensional continuum behavior first, as a guideline
towards constructing this lattice model.

Figure 2 illustrates the pattern in which fluid is dis-
tributed in the one-dimensional system, showing lakes of
varying sizes. The details of the behavior are discussed in
Appendix A; here the relevant results are summarized. It
is first shown that there is a well-defined threshold force
FT. Above this force, all the lakes are connected sequen-
tially by a series of rivers. The depth of these rivers tends
to zero as threshold is approached from above. Above
threshold, it is useful to define the concept of "excess
fluid, " which is the amount of Quid per unit length of the
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FIG. 2. Schematic of the one-dimensional system. The ar-
row indicates the direction of the tilt produced by the external
force I'. The lakes are the hatched regions in the 6gure. The
dashed lines denote the capacity of the lakes that are unsat-
urated. They are constructed by proceeding backwards from
the downhill (right) end of the system.

system that it would be necessary to remove in order to
bring the system back to threshold. Because the capac-
ity of the lakes decreases smoothly with F, the excess
Quid scales linearly with f close to threshold. As thresh-
old is approached, more and more of this excess fluid is
present in the lakes, rather than in the rivers. As shown
in Appendix A, this results in the current flowing out of
the lakes near threshold being independent of time, so
that steady state solutions are applicable. The current
flowing through the system is dominated by the behav-
ior near the outlet "lip" of each lake, which is the barrier
over which it overflows. The fluid flow is essentially a
function of the height of Buid above the barrier at this
lip. (This of course does not mean that only the fluid
above the barrier at any site participates in the Bow, but
rather that the flow rate can be expressed simply as a
function of this difference. )

B. Lattice model

We now introduce a simple lattice model for d ) 1.
It has sites distributed on a hypercubic lattice; each site
represents a lake in the original continuum system. The
pathways along which rivers are allowed to Bow are mod-
eled by bonds that connect any site to all its nearest
neighbors. The force F is imposed in the downhill 111.. .
direction of the lattice. There are (d —1) directions trans-
verse to this force. As discussed earlier, in the continuum
system the rivers flow downhill on long length scales. It
therefore suKces in the lattice version for each site i to
have outlets connecting it only to its d nearest neigh-
bors i in the next hyperplane domnA, il/. An illustra-
tion of the model is shown in Fig. 3. Motivated by the
one-dimensional behavior discussed above, we take the
current Bowing in a river to depend only on the depth
above the lip of the lake it emerges from. Accordingly,
a barrier b; is assigned to each outlet o, emerging from
a site i; this barrier controls the current Bowing through
the outlet. These barriers are taken randomly from a

l
~
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FIG. 3. Typical outlet tree in the lattice model in two di-
mensions, formed by considering the path emerging from each
site that has the lowest barrier associated with it. The solid
lines are the clusters, which are subsets of the outlet tree;
all the sites in a cluster except the lowest one are saturated.
The size of the large characteristic clusters grows with I", and
diverges at threshold.

distribution B(b), and are chosen independently, since
correlations in the continuum landscape are assumed to
be short ranged. At each site i of the lattice, there is a
depth of Buid h, . Based on the one-dimensional behavior,
we take the current J, flowing through an outlet a from
a sitei to be

J, =0 ifh, (b, —F

and (2.3)

C. Summary of results

We now briefly summarize some of the main results.
The lattice model defined above can be solved below

The exponent Pp characterizes the flow over the bar-
rier lip, and will acct the macroscopic dynamics in a
similar way to the eÃect of geometrical constrictions on
the conductivity near continuum percolation. For fluid
flow in a smooth potential, Pp can be obtained from the
one-dimensional analysis of Appendix A, and the natural
choice is Pp = 3+ d/2. Because an increase in the driv-

ing force near threshold is equivalent to a proportional
increase in the excess Buid in the system, the dependence
on F in Eq. (2.3) occurs only tlnough the variable b,; F-
Alternatively, an increase in F is equivalent to lowering
all the barriers b; uniformly.

In the continuum system we wish to model, the lakes
are neither distributed in a regular array, nor are they
connected only to nearest neighbors. Nevertheless, even
in the continuum system the connections produced by
the rivers are primarily only short ranged; we therefore
expect that the behavior at long distances should be the
same as for the lattice model used here.
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threshold in mean-field theory. The correlation length
expoilent, defiiled through (:—()( )y~

" is found iil
mean-Geld theory to be

and

/ 3
v

4
(2.14)

3
v = —.2' (2.4) r=-,12' (2.i5)

The transverse correlation length, (~, scales as ~( in
all dimensions. The mass s of a cluster, i.e., the total
number of sites in it, scales with the downhill length l of
the cluster as

therefore yielding v g v', a rather surprising result. The
current exponent, P, is found to obey the relation

s t"~, (2.5)
(1+~ ) (2.16)

with the mean-field value of the "&actal dimension" dy
found to be

4
dy = —.3' (2.6)

The fraction of sites which are in clusters of length (
scales as ( ", with

2
K =—

3
(2.7)

in mean-field theory. The polarization density, defined
as the mean distance moved by a drop of fluid &om its
initial position at I' = 0, has a singular part that scales
as

1+ I'

d —1
(2.i7)

which agrees with Eq. (2.13) at the upper critical dimen-
sion, d = 3. An extru relation between the exponents,
that is not valid in mean-Geld theory, is also obtained:

and thus depends on the "microscopic" local exponent
P ~

The upper critical dimension, above which the mean-
Geld solution is valid, is argued &om the properties of
random walks to be three. In less than three dimensions,
the critical exponents are rnodified from their mean-field
values. However, Eqs. (2.9), (2.12), and (2.16), which
express relations between the exponents, are still valid.
Equation (2.13) is modified to

with

(2.s)
d j1

K+dy =
2

(2.iS)

p = v(1 —~). (2.9)

1

2
(2.10)

From Eqs. (2.7) and (2.4), in mean-field theory p is given
by

based on arguments analogous to hyperscaling in con-
ventional phase transitions. (This equation is satisfied
by the mean-field exponents at d = 3.) All the princi-
pal exponents are thus expressed for d ( 3 in terms of ~
and v, with those above threshold depending only on ~.
In two dimensions, through numerical simulations of the
behavior below threshold, we obtain the estimates

a result that can be derived directly.
Above threshold, one can define the parallel correla-

tion length (' as the typical downhill distance over which
the current is correlated; this scales as (' f " The.
fraction of sites that feed fluid into the rivers scales as

K = 0.29 6 0.02,

implying, from Eq. (2.18),

dy ——1.21 6 0.02

(2.i9)

(2.20)

(2.1]) and

By matching the behavior at threshold with the scaling
forms above and below threshold, we obtain

I' = ~v'. (2.12)

1+I'
v

2

Combining Eqs. (2.12) and (2.13) with Eq. (2.7), we ob-
tain

(2.i3)

The exponents I' and v' can also be related by considering
the characteristic downhill interval between two splits of
a river; I' determines the amount of Quid Qowing in the
rivers, which is in turn related to the probability of a river
splitting. In mean-field theory, we derive the relation

v = 1.76 6 0.02. (2.21)

For the special case of d = 1, it is also possible to solve
for the behavior below threshold analytically. Since the
length of a cluster is now equal to the number of sites in
it, dy

——1 trivially. Also, since above threshold there is
a single river flowing kom top to bottom of the system,
and river splits are not possible, I' = 0, and v' is not
defined. The nontrivial exponents are found to be

+=0, v=2, andy=2, (2.22)

satisfying Eq. (2.9). Equation (2.16) is altered, because
of the absence of river splits; in fact, in one dimension,
P= o.
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III. BELOW THRESHOLD

In this section, we analyze the critical behavior below
threshold of the lattice model constructed in the previous
section. By assuming a scaling form for the distribution
of clusters of difFerent sizes, it is possible to relate the
various critical exponents. This scaling conjecture is ver-
ified analytically in mean-field theory and for d = 1, and
is consistent with numerical simulations in two dimen-
sions.

A. Scaling of clusters

dt
p(l, F)dl = l "p(l/()— (3.1)

for large l and (, with ( diverging at FT as ( ~ f ~

(The length l is actually restricted to integer values; the
factor of dl is introduced for convenience in calculating
scaling properties, for which the continuum approxima-
tion is a good one. ) The fraction of the volume filled by
clusters of length of order ( is thus ( "

~ f~"".

B. Polarization

The mean distance that a drop of Quid has moved from
its initial position can be used to define a mean polariza-
tion density II, whose singular part we conjecture behaves
as II,

~ f ~

~+ near threshold. It is possible to extract

Below threshold, there are no steady state currents,
and, after initial transients have decayed away, h; + I" &
min b; for all sites, with the equality being satisfied at
saturated sites. Thus only the lowest barrier associated
with any site is significant. Figure 3 shows a typical real-
ization of the lattice, where for all the sites only the out-
lets with the lowest barriers are shown. Each site has a
unique outlet path leading downhill, which is determined
by following the sequence of lowest barriers going down-
wards &om the site. All the sites are thus connected in a
tree. As F is increased, a saturated lake will spill excess
fluid into the unique lake connected to it on the next row
down in the outlet tree. Subsections of the outlet tree
form connected clusters of saturated lakes, with an un-
saturated lake at the terminus of each. Because the full
outlet path &om any site is determined by independent
events, these paths are random walks in the d —1 trans-
verse directions, so that clusters of length / in the down-
hill direction typically have a width m ~ t /'2 in the trans-
verse directions. By analogy with percolation, ' we

expect the probability of large clusters to fall off exponen-
tially with a characteristic length (—and corresponding
width (~ (i~z—defining the correlation lengths. The
mass 8 of a cluster, which is the number of sites it con-
tains, can be used to define a &actal dimension, through
s l"». Note that we have chosen to scale with downhill
lengths in defining df.

By analogy with percolation, ' we conjecture a scal-
ing form for the probability of a site being in a cluster of
length /:

p from a scaling argument: Consider a cluster of length
If the distance to threshold is decreased from f to

f/2, this is equivalent to adding an amount of fluid f/2
to each site. On any cluster of size (, all the additional
Quid drains immediately to the terminus of the cluster,
thereby moving a typical distance (. Since the fraction
of sites that are in clusters of length ( is ( ", the
amount of Quid that moves down because of the increase
in F is ( "~f~/2 So. me of the clusters will increase in
length due to the reduction in

~ f ~, and fluid from them
will flow out beyond their terminus sites. But since ( will
only increase by a factor of 2, this fluid will typically go
a distance which is not more than a few times (. There
is also an increase in polarization &om smaller clusters
that become connected to the size ( cluster. Again, since
such connections result in an increase in the total size of
the original cluster, by an amount which is typically not
more than some multiple of its original size, this will only
change the polarization estimated from isolated clusters
by a numerical factor. There are also less singular con-
tributions to the polarization from displacement across
smaller clusters, with size (( (. Thus we expect that
it is only the singular part of the polarization density
which is dominated by cluster lengths (; these yield
blI, (i " i~, from which, using the definition of p,
II, ~f~ ~+, we obtain

(3.2)

This is similar to a standard scaling argument in
percolation, which relates the susceptibility to the typi-
cal mass and number of connected clusters, although here
the relevant quantity is the length of a cluster, instead of
its mass.

For the case of p = 1, in the scaling argument we have
constructed, bll, (~~ il~" const. Since bf = f/2, —
the polarizability g, = dII, /df 1/~ f ~, from which II,
1n(1/(f(). However, when p = 0, bII, (f), so that

const rather than having a logarithmic divergence.

C. Mean-Beld theory

As mentioned earlier, it is possible to solve for the be-
havior below threshold in a mean-field limit, verifying the
scaling form conjectured in Eq. (3.1), as well as obtaining
all the critical exponents. The details of the solution are
given in Appendix B; here the main features are outlined.

We define a quantity a, at every site i in the lattice, as
the initia/ value of 6; + I" —min 6;, before the lattice
equilibrates by fluid flowing out of overfull sites. (Below
threshold, the equi)ibrium value of this quantity cannot
be positive for any site i.) The a, s are thus chosen in-

dependently for all the sites, from the same distribution
A(a), which is related simply to B(b). We also define a
quantity 4, , as the value of h, + I —min b; in a site
i after all the sites in the rows above it have been equili-
brated, but before the site i has overflowed down to the
next row (which will happen when 6„.) 0). If ii, . . . , i„
are the "inlets" to the site i, i.e., the sites that are in the
row immediately preceding i and linked to it through the
outlet tree of Fig. 3, any site iI, for which A;, ) 0 spills
an amount 6,, of fluid into the site i. Thus
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b; = a;+ ) max[6„„,0].
k=1

(3 3)

OO T

P s, (bs) = ) c„ f d(b, P ()b, )
7'=0 j=1

xA 6— (3 4)

The inlets to a site i are denoted with roman subscripts,
ig, while the outlets are denoted as i . For finite di-
mensionality d, the number of inlets of two neighboring
sites in the same row are anticorrelated. For instance, for
d = 2, if a site i has two inlets, neither of its adjacent sites
can have more than one inlet. There are two special cases
when this anticorrelation does not exist, and the problem
can be cast in terms of independent probability distribu-
tions P(A) for all the sites in the same row. The first is
for d = 1, when every site has exactly one inlet. The sec-
ond is in a mean-field limit, where the correlations in the
number of inlets and the amount of fiuid input from them
are ignored; this should be valid in the limit of large d.
The mean-Beld limit can also be obtained by considering
long range (transverse to the downhill direction) outlet
connections between sites, which will yield independent
inputs. We now analyze such a mean-Geld limit, where
the 4;„are independent.

If c„ is the probability that a site has r inlets, the
distribution P +i(A) of 6 for sites in the (m+ 1)th row
from the top is given in terms of P (6) by

state is only established because it takes time for Quid to
move downhill.

It is useful to consider the modified probability distri-
butions,

0

P (b, ) =8(b.)P (b.)+b(A) — db, 'P (b, ') (3.5)

for the amount of overflow, i.e., max[6, 0]. Since the
only sites in the mth row that contribute to the (m +
1)th row are those for which 6 & 0, this modification
does not affect the evolution. Since Eq. (3.4) generates
P +1, rather than P +1, in order to obtain the evolution
equation for P, one has to add an extra term to the right-
hand side that shifts all the weight of P ~i(A) at 6 ( 0
to 6 = 0. We thus obtain

0
—p (6) + b'(b, ) dA'y, (b, ') (3.6)

where the integrals of 6z include the b function at
b, z

——0. The function p, (6) is 8( 6)P +i(b, )—, but
in Appendix B we find that it is convenient to treat it
as a function to be determined self-consistently: j, only
has support for 6 ( 0, and must yield a P +1 which
is zero for 6 ( 0. In terms of the Fourier transforms
of the distributions, P (u) = f db, P (6) exp[iud, ]

and likewise for jc(A) and A(A), Eq. (3.6) becomes2s

The initial condition on the top row in Eq. (3.4) is

Po(b, ) = A(A). The probabilities c„satisfy the con-
straints pc„= 1 and Prc„= 1, where the second

equation follows &om the fact that each site has one
outlet. The case of d = 1 can be treated as a special
case of Eq. (3.4), with c = b„i. One might hope that
any set of probabilities which allow multiple inputs, i.e.,
c„g 0 for some r & 1, will behave similarly. Most of
the mean-Beld analysis ia Appendix 8 is restricted to
the case co ——c2 ——4, ci ——2, for which it is possible to
solve Eq. (3.4) explicitly for certain distributions A(a),
but other choices for the c„'s are argued to yield the same
behavior.

Below threshold, one expects to find a fixed point P(A)
to which the solution P (D) of Eq. (3.4) converges for
large m. Threshold occurs at the value of I" for which this
fixed point distribution disappears; for larger I", the typ-
ical amount of fluid present in the lowest row of a lattice
of length I diverges with I. No meaningful information
can be extracted for the behavior above threshold by the
method of row by row equilibration used here; the state
above threshold is a nonequilibrium one, where steady

I

+i((b)) = ) c„A(~) P (~) + y, (u = 0) —p (u)
v'=0

(3.7)

To obtain the distribution of cluster masses, it is nec-
essary to keep track of the number of sites s; that the
output of a site i adds to the cluster to which it might
overflow. This is zero if the site does not overBow, i.e., if
6; ( 0. If 6; & 0, s; is one more (the site i itself) than
the total number of sites connected to i &om above by
overflow. Thus

s;=1+) s;, forA;&0
k

s;=0 for 6;(0 (3.8)

with the sum running over all the inlet sites iI, for the site
i. We now define a joint distribution, at the mth row,
of max[6, 0] and s: P (6; s). This obeys the recursion
relation

OO

P ( ; )s= )sbsc f dsb, ) P (ebs; s) A (bb
—) sb)b , ssc.

v =0 j=1 ez 2

OO 0

( ; )+ bs(a) b)cbf .aa'P, (a';s'),
e=1

(3.9)
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where the function p (4;s) cancels the first term for
4 ( 0 and each s, and the last term replaces this weight
with a b function at 4 = s = 0, corresponding to sites
that do not overfiow T. he function p. (b„s) has support
only for 4 ( 0 and vanishes for s = 0: it is thus the
probability that a site connected to s —1 sites above it
does not overHow and has 6 ( 0. The integral

p (s) = J dAP. [4;8) (3.10)

A(a) = exp[ —a/g]/(1+ g) for a & 0
= exp[a]/(1+ g) for a & 0 (3.ii)

so that A is continuous. Since a; = 6, + F —min 6;
an increase in F really corresponds to shifting the whole
distribution A(a) to the right: A'(0) = A(a —bF). Thus
instead of Eq. (3.11),one should consider the distribution

is thus the probability that a site in the (m —1)th row
down &om the top of the system is the terminus of a
cluster of inass (including the site itself) s, and therefore
yields the distribution of cluster masses.

As shown in Appendix B, for the special case when

A(a) oc exp[a] (or some other simple exponential) for
a & 0, p (b, ; s) is of the form p, (s) exp[6]8(—6). With
the expectation that the critical behavior should be inde-
pendent of the precise form of A(a) [except perhaps when

A(a) has long power-law tails], we analyze the behavior
for this case. In the same spirit, we choose a specific form
for A(a):

2
p, (s) -, , exp —16e s/9 (3.i5)

with e = gT —g =
2

—g small and s large, but any value

of the scaling variable e2s. Since the probability of being
in a cluster of size s scales as sp(s), and s t~~, we thus
obtain

K 1

df 2
(3.16)

and

dyv = 2. (3.i7)

The function p, (y) has to satisfy the normalization con-
dition, dp(y)/dy~„ i ——1, since the probability of a site
being in a cluster of size s is sp(s), so that g sp(s) = 1;
p, (y = 1) is thus the total number density of clusters.

For the simple case when c„=0 for r & 2, Eq. (3.14)
is a quadratic in P(w; y), which can be formally solved
to obtain P in terms of p. (The general case without
this restriction is discussed briefly in Appendix B.) The
condition that P(b, ; s) is a probability distribution with
no support for 6 & 0 is sufficient to determine p(y), as
is done in Appendix B. The only singularity in p(y) is a

branch cut of the form (1—2g)~+(Sg —6g)(1—y)
The branch cut moves into y = 1 at g = gT = 1/2, giving
rise to power-law distributions for p(s). Near the critical
point, g = 1/2 —e, the scaling form of p(s) is obtained
from contour integration around the singularity in p(y)
to be

A(a) = 8(F —a) exp[a —F] (3.i2)

P((u;y) = ) y'P(u); s),
e=0

(3.13)

so that P(u; y = 1) = P(u), and likewise for p. For the
special case with A(a) oc e for ci & 0, Eq. (3.9) then
yields

P(cu;y) = ) c yA((u)[P((u;y)] + p(y = 1)—v(y)

(3.14)

as a function of F. This distribution, although simpler
in form, leads to mean-field equations that cannot be
solved easily, unlike Eq. (3.11), from which various prop-

erties, including scaling functions, are obtained explicitly
in Appendix B. The critical behavior for both distribu-

tions is controlled by the low frequency forms of their

Fourier transforms, which are equivalent. We therefore

work with the distribution in Eq. (3.11). The param-

eter g controls the distance to threshold. Increasing g
increases the weight of A(u) for a & 0, thereby driving

the system towards threshold. By considering the low

frequency forms of A(u) obtained from Eqs. (3.11) and

(3.12), we see that gT —g oc FT —F
Below threshold, far from the top of the system, all the

probability distributions should converge to fixed point
forms independent of m. %e thus define fixed point dis-

tributions and transforms

The scaling of the singular part of the polarization
can be obtained directly &om the asymptotic form of
P(b, ) for large 6. An increase in E results in fiuid being
displaced downhill; far from the top of a system, below
threshold, the amount of Quid that Bows out of any row
into the next is independent of the row considered. In
the limit of infinite system size, when the depletion layer
near the top can be ignored, the polarization density in
the bulk is equal to the mean amount of Quid that pours
out of the lowest row of the lattice, at the bottom of the
system, which is just the first moment of P (6) for the
bottom row. Thus the mean value of 4 for the Gxed point
distribution P(b, ) is equal to the singular part of the po-
larization density. Setting y = 1 in Eq. (3.14), and using
the calculated value for p(y = 1), we solve for P(ur). The
singular part of the polarization is J' dA b,P(h), which
is idP(ur) der [

—0. From—Eq. (B32), this is seen to scale
as IIe 6 ) so that

(3.16)

The correlation length can be found by adding a
small perturbation bP(b, ) to the fixed point distribu-
tion, P(b, ). From the distance downhill it requires for
the effect of the perturbation to decay away, the scaling
of the correlation length can be found. In Appendix 8,
we obtain

(3.19)

which, when combined with Eqs. (3.16) and (3.17), yields
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e = 2/3 and dy = 4/3, as in Eqs. (2.0) and (2.7). As a
consistency check, these exponents can be substituted in
Eq. (3.2), yielding p = 1/2, as in Eq. (3.18).

It is possible to obtain an inequality, e+ df & 2, for
the mean-field exponents, from the requirement that sep-
arate clusters must by definition not collide with each
other. Since each cluster is a subset of the outlet tree of
Fig. 3, the mean member of clusters that exist in a sys-
tem of length f can be found by starting a set of random
walks at the top of the system, and asking how many of
them survive for a distance ( downhill. The number
of random walks that survive for a downhill distance of
l decreases with l because of two reasons. First, some of
the walks terminate "spontaneously" at each row, corre-
sponding to clusters terminating upon reaching an un-
saturated site. Second, when two random walks meet,
they join together, thereby decreasing the total number
of walkers. If the first of these two factors is ignored,
an upper bound is obtained on the number of clusters
that survive for a distance (. In mean field, where each
site is linked in the outlet tree to a random site in the
next row, when only mutual intersections are allowed
to decrease the number of walkers, the density of dis-
tinct random walks n(l) that survive for a length I de-
cays as do'/dl —02. This implies an asymptotic form
0(l) ~ 1/l. Since (~ ~ (i~2, the number of clusters of
length ( in a correlation volume is therefore n(f) & 0
(( ~ /$) in mean field. On the other hand, since the
&action of the volume occupied by these clusters scales
as ( ", by the definition of e,

(3.20)

in any dimension. Comparing these two forms yields e+
df & 2 in mean 6eld. This inequality is in fact saturated
by the mean-field exponents obtained earlier.

ations can be used to estimate the importance of region
to region variations; by de6ning the upper critical dimen-
sion as the value of d below which such variations are
important, we 6nd d = 3, in agreement with our argu-
ments above. If mean-field values are used in Eq. (3.20)
for the exponents, the number of clusters in a correla-
tion volume is n(f) (&~ s&~ . For d ) 3, there are
a large number of intertwined characteristic large clus-
ters (i.e., with length () in a correlation volume. For
d & 3, the mean-field expression must break down. The
variations in the number of clusters from region to re-
gion can no longer be ignored, and the exponents are
changed &om their mean-6eld values. As in conventional
critical phenomena and percolation, scale invariance is
expected below the upper critical dimension (if lengths
are scaled by the correlation lengths), so that for d & 3,
there will be 0(1) characteristic clusters in a correlation
volume. (This expectation will be verified in Sec. IV.)
From Eq. (3.20),

d+1
dy ——

2
—K (3.21)

E. One-dimensional case

for all d ( 3. At the upper critical dimension, d = 3, this
equation is satisfied by the mean-field exponents. (The
exponents for d = 1 also satisfy this equation. ) Equation
(3.21) implies that the region to region variations in the
number of clusters in a correlation volume scales in the
same way as the number of clusters; this is the equiv-
alent of the hyperscaling relation, dv = 2 —a, which
is valid for conventional percolation. ' ' Thus, below
d, = 3, only two independent exponents are expected be-
low threshold. At the critical dimension, d = 3, there are
likely to be logarithmic corrections to some or all of the
exponents.

D. Upper critical dimension

The picture of clusters arising from independent ran-
dora walks can be used to guess the upper critical dimen-
sion, d„above which mean-6eld theory is exact asymp-
totically. The clusters perform random walks in the
(d —1)-dimensional transverse space, with the downhill
direction acting as the time coordinate. For d —1 & 2,
two walks that start out close to each other have a fi-
nite probability of not colliding for an arbitrarily long
time. (There are logarithmic corrections for d —1 = 2.)
On the other hand, for d —1 & 2, the probability of the
two walks never colliding vanishes. The correlations in
the positions of the walks, which arise &om the fact that
they get sparser as one proceeds down the system, thus
become important in determining collision probabilities,
and the simple arguments in the previous paragraph will
no longer apply. On the other hand, the long distance
behavior for all d —1 ) 2 should be essentially similar,
which suggests that d should be 3.

In the absence of a full renormalization group treat-
ment of the problem, it is not possible to obtain the upper
critical dimension rigorously. However, scaling consider-

The one-dimensional case, when c„= b„ i, can be
solved for the special case A(a) oc e for a & 0 by the
methods outlined earlier, but much more easily, since
Eq. (3.14) is then a linear equation in P(ur;y). Using
the form of A(a) in Eq. (3.11), we obtain

1 + g —/4(l —y)g + (1 g)
)

2g

The branch cut moves to y = 1 at g = gz ——1; the
threshold thus occurs when the mean value of a is zero.
For g = 1 —e the scaling form of p(s) is

p(s) e exp —e s/4 /s ~ (3.22b)

which yields v = 0 and v = 2 as in Eq. (2.22). The mean
polarization can be obtained as for the mean-Geld case,
giving p = 2, also in agreement with Eq. (2.22) 'and

Eq. (3.2)]. Thus the only physical dimension for which
we do not have an analytic solution is the case of d = 2,
for which we must resort to numerical studies.
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F. Finite-size scaling and exponent bounds

p (L +) - „p (LI&). (3.23a)

Right at threshold, ( diverges, and there are treelike in-
cipient infinite clusters that span the system, connecting
it from top to bottom. The &action of sites connected to
both top and bottom scales as

It is useful to consider the finite-size scaling of vari-
ous quantities for the analysis of our numerical results
in two dimensions. We assume that, below threshold,
the scaling of appropriate quantities in a finite system of
length L and width oc ~L in the transverse directions
(corresponding to (~ ~() is related to that in infinite
systems, with scaling functions of L/(. For example, the
fraction of sites connected to both the top and the bot-
tom is expected to scale as Eq. (3.1), i.e. ,

the mean height of the barriers scale as L ~"+ ~~, so
that

4v) d+1 (3.25)

d —1

2
(3.26)

Equation (3.25) gives a bound on v. For d = 2, the only
physical dimension for which all the exponents are not
known, we thus have K & 1/2 and v & 4/3.

This inequality is satisfied for d ) 3 by the mean-field
result, and is saturated for d = 1.

For d ( 3, all exponents can be expressed in terms
of the two unknown quantities, K and v. It is possible to
place a bound on K: since the infinite clusters at threshold
have to be at least linear in extent, dy ) 1; Eq. (3.21)
then implies

p, (L, FT ) 1/L" (3.23b) G. Numerical simulations in two dimensions

The average number of incipient infinite or spanning clus-
ters, defined as those clusters connected to both top and
bottom, is

N, (L, 0) L ~ (3.24a)

which is independent of L for d ( 3, if Eq. (3.21) is
assumed. Away &om threshold,

N, (L, F) L ~ " "'N, (L/(). (3.24b)

The probability p, (L, F), that there is at least one con-
nection from top to bottom is also expected to be scale
independent at threshold.

It is not obvious that the exponent in the prefactor of
a finite-size quantity like those in Eqs. (3.24) must be re-
lated to the scaling in inFinite systems. For instance, the
probability of a finite system of length L being connected
&om top to bottom is less than the probability for a re-
gion of the same size in8ide an infinite system. This is
because no fluid enters from outside into a finite system,
unlike for an internal region in an infinite system. Equa-
tions (3.23) and (3.24) make the implicit assumption that
the corrections to finite-size quantities &om such bound-
ary effects are not singular. In Appendix B, we shall
argue that this assumption is valid in mean-field theory.
In two dimensions, it is supported by the results of our
numerical simulations. However, for d = 1, finite-size
quantities scale differently; this is discussed in detail in
Appendix B, where it is argued to be a special case.

The characteristic length of the clusters is expected
to scale in the same way in finite and infinite systems.
The inequality of Chayes et al. for finite-size correla-
tion lengths can then be used to obtain a bound for v in
all dimensions. This inequality is obtained &om the fact
that the sample to sample variations in the threshold field
FT in finite systems must be at least as large as the vari-
ations in the mean height of the random barriers; since
the transverse directions scale as ~L, these variations in

We have performed a numerical finite-size scaling
study of the two-dimensional lattice model. The ex-
ternal driving force F only appears in the combination
6, —min b; +F. As in the mean-field analysis, we start
the system initially with h;+F —min b; = a, , where a,
is chosen independently at each site &om a distribution
A(a). The system is now equilibrated by moving sequen-
tially &om one row to the next downhill; any site for
which 6; (defined earlier in the subsection on mean-field

theory) is greater than zero pours out an amount b„of
fluid over the lowest barrier emerging from it. Since the
transverse correlation length, g~, scales as +f, the width
of a finite size system should scale with its length L as

~L. We have used systems of size L x 8~L for L in
the range 128—4096. The distribution A(a) was taken to
be

A(a) = 8(F —a) exp[a —I"] (3.27)

(l"(L,F)) „) li, (L/() (3.28a)

As a function of F and L, the mean polarization II, the
&action of sites p, connected to the top and bottom of
the system, the average number N, of spanning clusters,
and the first, second, and third moments of the cluster
masses and (downhill) lengths were calculated.

The expected scaling of the kth moment of the cluster
length can be obtained from Eq. (3.1) by multiplying the
right-hand side by I" and integrating over all I. Since

]f( ", (l") should scale as (f(&" "&" when k ) r. ,
which is valid for all integer k ) 0, by Eq. (3.26). (The
zeroth moment is simply the probability for a site to be
in a cluster of length I, summed over all I, and thus has
to be unity. ) The kth moment of the mass of a cluster
(i.e., the number of sites in it) should similarly scale as

~

f]l" "~&l" for k ) 0. For finite systems, these moments
should then have the scaling forms
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(3.28b)

II, (L, F) II, (L/(). (3.29)

As discussed in the previous section, &om Eq. (3.23a)
the fraction of sites connected to the top and the bottom
should exhibit the form

Similar scaling forms should hold for the &action of sites
connected to the top and the bottom of a finite system,
as well as for the average number of spanning clusters,
and the mean polarization. Since the singular part of
the polarization in an infinite system scales as

~ f ~

~, we
have

2
9

I

—8
I

—7

128 X 90
+ 256 X 128
x 512 X 181

1024 X 256
2048 X 362

~ 4096 X 512

—6
In (FT—F)

I

-5
I

—4

and the average number of clusters N, that connect
the top to the bottom should have the scaling form in
Eq. (3.24b).

Figure 4 shows a logarithxnic plot of the first moment
of the cluster lengths. The threshold FT is treated as a
single adjustable parameter to obtain all the numerical
plots. A similar plot for the first moment of the cluster
mass is shown in Fig. 5. For L )) (, these plots should
be linear, with slopes given by v(z —1) and v(e —dt),
respectively, &om Eqs. (3.28). For the largest system
sizes we have used, this is valid over a fairly wide range of
f; the slope of the linear region of the graphs can be used
to obtain v(1 —m) 1.25 and v(dy —z) 1.62. Similar
plots can be generated for the second and third moments
of the cluster lengths and masses, &om which we thereby
obtain v(2 —r) = 2.95, v(3 —z) —4.72, v(2dt —e) —3.75,

FIG. 5. Plot of the 6rst moment of the cluster size distri-
bution, (s), for various system sizes in two dimensions.

and

v = 1.76 6 0.02 (3.3la)

and v(3dt —rc) —5.89. From the scaling of the cluster
lengths, we obtain v = 1.74 + 0.03 and rv 0.49 6 0.03,
while &om the cluster masses we obtain dyv = 2.14+0.01,
and ev —0.52 6 0.01. (The error bars are estimated
&om the scatter in the exponents obtained &om diH'erent
moments of the cluster lengths and masses. ) Combining
these results, we obtain dy + x 1.52 + 0.03, which is in
good agreement with Eq. (3.21). Alternatively, if we use
Eq. (3.21), we are left with two independent exponents
K and v, which we estixnate as

r = 0.29+0.02 (3.31b)

and therefore, &om scaling,

dy
——1.21 6 0.02. (3.32)

b
+

3 —x
0

2
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1024 X 256
2048 X 362
4096 X 512

I

—7 —6
In (F —F)
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—4

FIG. 4. Plot of the first moment of the cluster lengths, (l),
for different system sizes as a function of distance from the
threshold in two dimensions. The threshold was obtained as
a 6tting parameter for the scaling of the number of connec-
tions linking the top to the bottom (shown in Fig. 9), and is
the same in all the scaling plots. Both the regions L » g,
where (l) is independent of I, and L « (, where finite size
corrections are present, are seen in the Sgure. The system
sizes, L x 8L, are listed with the vertical length first.

Scaling plots can be generated &om the data by plot-
ting ln(l~) + (k —1 —r)vln~f~ as a function of ln~f)+
(ln L)/v, and similarly for ln (s")+((k—1)df —e)v ln

~ f ~.
The data for each should all collapse onto a single curve,
independent of L. Figures 6 and 7 show the results for
the first and third moments of the cluster lengths. The
collapse is poorer for the first xnoment, possibly due to
corrections to scaling that have greater efFects on lower
moments. Sixnilar plots can be generated from the data
for the cluster xnasses; the quality of collapse also im-
proves here for higher moments.

Figure 8 shows a scaling plot for the &action of sites
connected to the top and the bottoxn of the systexn, ob-
tained by using Eq. (3.30) with the values for the ex-
ponents found from the scaling of the cluster sizes. A
similar plot for the xnean nuxnber N of clusters connect-
ing the top to the bottom obtained &om Eqs. (3.24b) and
(3.21) is shown in Fig. 9. The probability of the system
being connected, p, (L, F), also fits such a scaling form,
with p, (L, FT ) = 0.32.
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FIG. 6. Scaling plot for the mean cluster length (I) for
various system sizes in two dimensions, obtained by using the
exponents e = 0.29 and v = 1.76. The collapse of the data for
different system sizes onto a single scaling curve is not very
good, presumably due to corrections to scaling that affect low
moments of the cluster distribution.

From Eq. (3.2), the singular part of the polarization
should scale as ~f~

+"" ". With our fitted values of K

and v this is
~ f ~

', i.e. , p = 1.25. The smallness of
the exponent results in the polarization appearing to be-
have as ln

~ f ~

over a fairly large range of
~ f ~, as shown in

Fig. 10. The true scaling form for the polarization would
be obtained only very close to threshold, for which much
larger system sizes are needed to eliminate finite size ef-
fects. Figure 11 shows the same data on a logarithmic
plot, with the predicted asymptotic slope indicated in the
figure. It is not possible to verify whether this slope is
correct, although it is consistent with the data. However,
the polarizability of the system, dII/df, is related to the
first moment of the cluster lengths, which was seen to
scale reasonably well.

We thus see that the numerical results in two dimen-
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FIG. 8. Scaling plot for the fraction of sites p that are
connected to the top and the bottom in finite two-dimensional
systems of difFerent sizes as a function of the distance from
threshold (z = 0.29 and v = 1.76.)
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FIG. 9. Scaling plot of the average number N, (L, F) of

connections from top to bottom of a finite two-dimensional
system of size L x 8L . This should be a function only of
L/f. . Here, the best fit values from the cluster distribution
are used.
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FIG. 7. Scaling plot for the third moment (I ) of the cluster
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fit exponents ~ = 0.29 and v = 1.76, showing a better collapse
onto a single curve than in Fig. 6.
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appears to behave as the logarithm of the distance to thresh-

old.
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two-dimensional systems. The straight line shows the pre-
dicted slope in the critical regime for large systems; the con-
vergence to this slope for the 6nite size systems that we have
examined is not very satisfactory.

sions seem to be reasonably well fit by the simple scaling
laws in terms of two exponents, which satisfy the ex-
pected inequalities, Eqs. (3.25) and (3.26).

Our simulations do not yield the correct behavior
above threshold. Several changes would be required in
order to obtain this correctly. Firstly, it is necessary
either to work with very large systems, so that the tran-
sient response lasts sufBciently long, or to use appropri-
ate boundary conditions at the top and the bottom of
the system. A simpler alternative is to impose periodic
boundary conditions connecting the top and the bottom,
so that there can be a steady state current circulating
through the system. Secondly, one must search for a dy-
namic steady state, in which at every time step Quid is
both input into a site from the row above it and Bows
out into the row below it. The row by row updating pro-
cedure that we have used here is not appropriate above
threshold. Finally, fiuid can fiow out of a site in more
than one direction above threshold. In the simulations
discussed above, fluid is only allowed to fiow out over the
lowest barrier from a site, so that even above threshold
the clusters are treelike.

IV. ABOVE THRESHOLD

P~ f~. (4.1)

Since these clusters fill up a finite fraction of the volume

In this section, we consider the behavior above thresh-
old, where there are Bowing rivers carrying fluid &om
the top to the bottom of the system. The rivers split
and form a network, with a typical downhill separation
between splits that can be used to define a correlation
length, ('. Infinite clusters appear which contain all the
sites that drain into the rivers; these occupy a fraction of
the volume which we conjecture to scale as

on scales ) (', there is an excess of fiuid density in them,
beyond that which can persist without Bowing. The ex-
cess Quid will Bow through a system of length L for a
time at least of O(1,). Although this is only a transient,
for an infinite system it can be treated as a well-defined
steady state (such a state can also be stabilized through
periodic boundary conditions at the top and bottom),
provided that the fluctuations in current caused by the
random initial configuration die out in a finite time (or
at least much faster than the "steady state"), so that
steady state can be reached. We shall return to this is-
sue later. An alternative is to characterize the behavior
above threshold in terms of the mean current Bowing
through the system, which is put in at the top, with
"threshold" occurring trivially at zero current. We shall
discuss this approach later in this section.

The infinite clusters consist of real rivers, which last
for a lifetime that diverges with the system size. These
are fed by finite tributary channels which, unlike the real
rivers, last only for a short time, and merely augment the
amount of fluid in the rivers. One can define the river
sites as being those which are monotonically connected
to both the top and the bottom of the lattice, while the
tributary sites are only monotonically connected to the
bottom: to get to the top, one would have to first go down
and then up. As the rivers progress downhill, they mean-
der randomly in the transverse directions, and therefore
occasionally run into one another, joining to form a single
river. If there were no resistance to the How, once two
rivers joined they would not split apart again, so that
the Qow would occur down a tree with more and more
current Bowing in the "trunk" as the rivers progressed
downhill. However, this cannot be the case. The depth
of the rivers has to increase with the How rate according
to Eq. (2.3). Eventually, when at some site i there is
more than one outlet barrier o, for which h; ) b; —F,
the Quid will spill out through secondary outlets. New
rivers are thus formed, which fork off downwards. These
rivers can then recombine as before, and, far &om the
top of the system, there will be an equilibrium between
rivers splitting and joining.

Figure 12 shows the Bow pattern in the system above
threshold. There are three types of sites: (a) Isolated.
sites in finite clusters, where small amounts of additional
fluid will just go to the lake at the terminus of the cluster,
but will not cause them to overflow. These sites are ef-
fectively disconnected from the fiow. (b) VHbutary sites,
which drain into the rivers in a finite amount of time, so
that there is no steady state flow through them. After
the initial equilibration time, all the sites in these tribu-
taries are filled to capacity, so that any more Quid poured
in them would flow into the rivers. (c) Flowing river
sites, which have a nonzero steady state current Bowing
through them. These sites are analogous to the back-
bone of the infinite clusters in conventional percolation
above threshold. ' Some of these sites are not present
in the infinite cluster at threshold, but are included in
the flowing rivers because of the splitting of the rivers.
The density of sites of types (b) and (c) together defines

fr, with the tributary sites attached as appendages
to the backbone. The density of flowing river sites, i.e.,
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same amount. All this excess fiuid must be present in the
Hewing river sites, since the tributaries drain into them.
Thus the total excess Quid in the flowing river sites for
small f is Vf +

A. Correlation lengths

FIG. 12. Schematic of the distribution of rivers above
threshold for a two-dimensional system. On the scale of the

figure, the lattice is essentially a continuum. Flowing rivers

are shown with solid lines, tributaries with dashed lines, and

isolated clusters with dotted lines. The number of isolated
clusters will in reality be much more, but has been reduced
in the 6gure for clarity. The characteristic correlation lengths
are indicated in the 6gure. The typical distance between splits
is much less than ('.

(4.2)

From the scaling at threshold, which has to agree with
Eq. (3.23b), we obtain

1 v' =]c. (4.3)

On scales much greater than (' the total volume occupied
by the infinite clusters will be Vf", where V is the vol-
ume of the system. All the tributary sites in the infiaite
clusters are filled to capacity, while the Bowing river sites
have an excess amount of Quid that causes current to
Qow. Since the capacity of any site decreases linearly
with F, an increase in f by bf will reduce the total ca-
pacity of the sites in the infinite clusters by Vf bf,
thereby increasing the excess fluid in the clusters by the

of type (c), defines PR, which by consistency cannot be
greater than P; we shall later verify that it is in fact much
smaller near threshold in all dimensions d & 1.

We expect that above threshold, due to splits in the
rivers, a steady state river distribution will be reached in
a finite downhill distance, and (' and (z will be finite.
Since the splits, which cause the finite correlation length
above threshold, have no analog below threshold, it is
not clear that the correlation lengths on the two sides of
the transition should scale the same way; indeed, we will

find that they do not.
We assume a scaling form for the fraction of sites con-

nected to both the top and the bottom in a finite system
of size L (i.e. , flowing river and tributary sites) similar
to Eq. (3.23a), but with diferent exponents:

(4.4)

The typical downhill distance between forks of rivers is
determined by the probability that b; ) minpg (b,@-
min b; ), i.e., that the depth of fluid exceeds the height
of the second lowest outlet barrier. If the distribution
of barrier heights B(b) is smooth around min b;, then
the probability of this is of the order of b;, so that the
typical downstream distance between forks is lF 1/b. 2s

Naively, one would expect m to be the transverse correla-
tion length g, and l~ to be ('. However, the first is found
to be an appropriate definition only for d & 3, while the
second is appropriate for d ) 3. We Grst analyze the case
ofd(3.

Above threshold in d ( 3, the eKects of splits of the
rivers is somewhat subtle. The typical distance between
these forks is of order lF 1/b as above, but with prob-
ability close to unity, the two branches that emerge &om
a split recombine in a short distaace downstream. It is
simplest to understand this problem by viewing the rivers
as particles performing independent random walks in a
(d —1)-dimensional space, with the downhill direction as
time. The two branches emerging &om a split are equiv-
alent to random walks that start &om the same point.
For d —1 & 2, the probability that these two random
walks do not combine before a "time" l dowastream is

piv ~ ]/I (4.5)

(with a logarithmic decay for d = 3). If, after a river
forks, the two branches recombine rapidly, then under
coarse graining the split will only appear as an increase

We now analyze the statistics of the rivers. We shall
first consider the nature of the pattern of the flowing river
sites, and the appropriate definitions of the correlation
lengths, and try to obtain how they scale. We will also
obtain the scaling of the average current carried across
the system which, unlike the other quantities, depends
on the system-dependent local exponent Po, introduced
in Eq. (2.3), that controls the local flow rate . We define
the depth of a river at site i by 8; = b,;+E—min (b; ), in
terms of the steady state value of h;. The total amount
of fluid that causes the flow is bt t ——P„„„„„„b;.This
should equal the excess Quid from all the river and dry
river sites, which scales as Vfr+i. The typical depth of
a river is thus h = bt~t/(VPR), where P~ is the density
of flowing river sites. If the rivers form a network with a
typical transverse distance m between rivers, then P~
u~ "~ and
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l ~ l ~ ly. (4.6a)

The downhill correlation length f' is the typical distance
between such "true" splits:

in the-effective thickness of the river rather than a true
branching of the river. One thus needs to consider only
those splits after which both branches survive for suK-
ciently long. The consistency condition to be used to
determine this is that the two branches should last long
enough to spawn other branches that also last compara-
bly long. Only these branches will appreciably lower the
mean depth of the rivers, which is the quantity determin-
ing the splitting probability. Using Eq. (4.5), the proba-
bility per unit length of creating a branch of length l is

l(~ s)~2/l~. Since we want the probability of spawning
such a "long" branch from a section of length l to be
O(1), the consistency condition is

librium. A schematic illustration of the river pattern with
its multiple length scales is shown for d = 2 in Fig. 12.

2. d&3

We now turn to the case of d ) 3. The behavior above
threshold can be analyzed straightforwardly. Since in
d & 3 a positive fraction of the rivers that split will not
rejoin, the downstream distance (' between "true" splits,
&om which the branches emerging do not rejoin, scales
in the same way as l~. These river branches will recom-
bine with other rivers, which have density PR. These can
be considered to be approximately randomly distributed,
since the different rivers can intertwine and pass by each
other in high dimensions. The recombination probabil-
ity is thus PR. The condition for the splitting and
recombination processes to balance is now

(' t ~( ) (]/g)2~(" ') (4.6b)
tF 1/p~ (4.10)

(d —1)v' = I'+ 1. (4.7)

which, for d & 3, is much greater than l~, the naive
correlation length.

In order for an equilibrium to be established between
splitting and recombination of such long-lasting rivers,
the branches must combine with other rivers (i.e. , dif-
ferent from the one they branched off from) a signifi-
cant fraction of the time. These recombinations raise
the depth of the rivers, making them more susceptible to
splitting. We define (& as being the typical transverse
distance between recombinations, which is the distance
out to which the current is strongly correlated. For d ( 3,
this is equal to the mean separation between the rivers, m,
since two rivers cannot cross through each other without
"colliding, " and thereby joining together. 2r (For d & 3,
the rivers can intertwine around each other, and move
over distances much larger than m, although this is un-
likely in three dimensions. ) Since the transverse motion
is a random walk, the downhill distance between recom-
binations is ((&)2. This has to be equal to (' in equi-
librium. Replacing (& by ('i~2 in Eq. (4.4), and using
Eq. (4.6b), we obtain

implying that

(4.11)

and the typical distance between rivers is

(4.12)

2v' = 1+ I' for d ) 3. (4.13)

At the upper critical dimension, d = 3, Eqs. (4.7) and
(4.13) are equivalent, and, &om Eq. (4.12), ur

There will, as below threshold, probably be logarithmic
corrections to various quantities in three dimensions.

As mentioned previously, this is not the transverse cor-
relation length. The current is strongly correlated over

transverse distances (& ~(. (This is also the case for
d ( 3, however, (& is much greater than m for d ) 3.)
Combining Eqs. (4.10) and (4.11) with (4.4), we have

This can be combined with Eq. (4.3) to yield I' and v in
terms of the corresponding exponents below threshold: 8. Generel d

v' = 1/(d —1 —~) (4.8a)

and

I' = ~/(d —1 —rc).

Since P~ = m ", and m ('z ((') ~, we have

y(i+r)/2

(4.8b)

(4.9)

Note that all the exponents above threshold depend on
one of the exponents (v) below threshold. The other ex-
ponent, v, does not affect the equilibrium behavior above
threshold, although it should affect the approach to equi-

Before combining the various results to obtain the ex-
ponents above threshold, we consider an alternate argu-
ment which yields the scaling of b in any dimension. This
method does not require an analysis of the correlations
between the positions of the various rivers; however, it
also does not involve the parallel correlation length (',
and therefore does not bring out the difference between
lz and g in low dimensionality. It is useful to work in
the picture in which the downhill direction corresponds
to "time." We 6rst consider a slightly different system,
where the rivers do not split into branches, nor do they
join together when two of them meet. This is equiva-
lent to independent particles performing random walks
which can pass through each other. Figure 13(a) shows
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a typical region of the system. With short range corre-
lations in the initial conditions, sufBciently far downhill,
the positions of the different particles are random and
uncorrelated. In any row of the lattice, the probability
of a specific river intersecting with some other one is then

4R. Now we perform the following transformation: in
any row (each row corresponds to a particular time in
the particle picture) for each of the sites where two par-
ticles are present, we move one to some other randomly
chosen site which has only one particle present. Sub-
sequently, we time-evolve this modified configuration as
before. Since the future course of a particle (for instance,
the duration until its next intersection) depends on the
distances to its neighbors, the subsequent behavior of the
system will be changed by the transformation. However,
for any particle in the original configuration the distribu-
tion of distances to its neighbors (apart from any on the
same site) is independent of the number of other par-
ticles present at its site. Thus in the limit of infinite
system size, the transformation of the configuration of
particles in one row will not affect the future behavior of
the system. Figure 13(b) shows the transformed system;
now when two particles meet at the same site, they join
into a single one, while there are also random bifurca-
tions of particles into two. The number of bifurcations in

any row is exactly equal to the number of combinations.
Prom our original perspective of Bowing rivers, this is just
the system we wish to analyze. Since each intersection
of paths in the version with intersecting random walks
now corresponds to a bifurcation of rivers, equating the
probabilities of the two yields

(4.14)

Using the fact that the excess Quid density in the system,
f"+, has to be equal to QRb, we obtain

f (i+1') /2 (4.15)

(4.16)

This equation is valid in all dimensions, and agrees with
our previous results from Eq. (4.9) for d & 3, and
Eqs. (4.11) and (4.13) for d & 3.

Using the mean-field exponent r = 2/3 from
Eqs. (3.16), (3.17), and (3.19), and substituting in
Eqs. (4.8), we obtain the mean geld -exponents above
threshold

For d & 3, using Eq. (3.26) with Eqs. (4.3) and (4.7)
yields v' & 2/(d —1), from which I' & 1. The consistency
condition, (1+ I')/2 & I', which is required for pR to be
& P, is thus satisfied in all dimensions.

Although the inequalities v' & 2/(d —1) and v
4/(d + 1) from finite size scaling do not rule out the
possibility of the correlation length exponents being the
same, we have seen that they are unequal in mean field,
and there is no reason to expect them to be otherwise in
general dimensionality. In fact, the mean-field exponent
v' is less than 4/(d + 1) for d & 13/3. This is not incon-
sistent because, for F & Fz, the behavior in any region
is affected by other regions that are much further than ('
away; this is unlike the case for F ( FT, where regions
of size ( are essentially isolated from one another, and
thus the finite size scaling and bulk correlation lengths
should be similar.

In two dimensions, our numerical results, Eqs. (3.31),
can be combined with Eqs. (4.8) to give

v' = 1.41 + 0.04 and I' = 0.41 6 0.04. (4.17)

FIG. 13. (s) Typical pattern generated by s set of directed
random walks, that move steadily downward with random
transverse meanderings. The walks are allowed to intersect.

(b) The same pattern, with one of the walks emerging from
each intersection being moved laterally to form a split of an-

other walk. The result is similar to the river patterns that are
generated in our model. For comparison, one of the sections
that is moved laterally is highlighted in both 6gures.

It is now possible to verify the hyperscaling assumption
for d & 3, that led to Eq. (3.21). Using Eqs. (4.7) and

(4.15), we see that the number of rivers in a correlation
volume is independent of f Thus the numb. er of rivers in
a finite size system will only be a function of I/('. This
implies that at threshold, where f' diverges, the number
of rivers in a system of length L and transverse dimen-
sions v I should be independent of I. However, as dis-
cussed in Eq. (4.3), the connections from top to bottom
of a Gnite system at threshold, that are viewed as rivers if
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threshold is approached &om above, can be treated as in-

cipient infinite clusters if one approaches threshold &om
below. From Eq. (3.24a), N, (I,0) is seen to be indepen-
dent of I, only if Ic + dy = (d + 1)/2, i.e., Eq. (3.21). &~/(~+@0)R~ J (4.19)

Eqs. (4.14) and (4.18), we have PR = b, and J (b)
so that

B. Scaling of the current

We now find the mean current transported across the
system. The average current Bowing in the rivers is the
average of b~'. It is possible to see that, in a statis-
tical sense (i.e. , averaging over different realizations of
the randomness) the entire distribution of b s scales uni-
formly with J, so that the average current fiowing in a
river is of the order of 8 . For any specific realization
of randomness, changing J does not result in a uniform
rescaling of all the b's. At any split in a river, the depths
in the two channels that emerge, bi and b2, are related
by bi —b2 ——6;2 —b;i. This is an inhomogeneous relation,
which prevents uniform rescaling of the b's. However, for
small b's, with a smooth distribution of barrier heights, b2

is uniformly distributed over [0, bi], so that (bi) = 2(b2).
Thus homogeneity is recovered statistically. If the be-
havior were to be dominated by anomalously large b's, it
would not be possible to assume that the distribution of
barrier heights is uniform, since b;2 —b;~ could be large.
In such a case, the argument above would not be valid.
Although we cannot disprove this possibility in general,
in Appendix C it is shown that, at least in mean Geld,
this does not happen, and we expect that, in general,
small b's will dominate.

Assuming this domination by small b's, the mean cur-

rent density is J b '(tR. If we define the exponent P
through J f~, using Eq. (4.15) we obtain

(4.18)

This relation is valid both for d ) 3 and d ( 3. (Note
that P can be less than or greater than Po, depending on
the magnitude of Pe and I'.) Equation (4.18) is not valid
for the special case of d = 1. This is because there is a
single river extending over the entire system in d = 1,
without any splits. Thus pR does not scale with f Also, .
the entire system participates in the How, so that I = 0.
Comparing with Eq. (4.4), we have b f, so that P = Pe
in one dimension, as could have been anticipated since
the current over every barrier is the same.

From Eq. (4.6b),

(i /
—2/l(~ —i)(i+0o))

for d ( 3. For d ) 3, where f' 1/b,

1/
Jl/(1+Po)

(4.20a)

(4.20b)

As before, (& ~('. In Appendix C, we construct a
mean-field approximation of the system above threshold,
specified in terms of currents, and analyze it for the spe-
cial case of Pe ——1. We verify Eqs. (4.19) and (4.20b)

in this case, finding PR 1/g' V J. Note that the
current driven formulation is more closely related to fi-

nite temperature behavior, which we consider in the next
section.

D. Convergence to steady stat+

So far we have not demonstrated the uniqueness of the
solution we have obtained. If we specify all the current
inputs at the top of the system, then there must be a
unique solution, provided that the local J(h) in Eq. (2.3)
is monotonic. This follows from a convexity argument:
first note that, because current is conserved locally, the
difference between two different solutions can only be a
set of current loops that are either closed, or are open at
the lower boundary of the system. (See Fig. 14.) In either
case, the topmost site of the loop is located inside the
system. If we consider the loop with current bJ fiowing
in it shown in the Ggure, the difference between the two
solutions a and ti is given by J;i(a) —J;i(b) = bJ, and

J;2(a) —J;2(b) = —bJ. Since the current fiowing through
a link is a inonotonic function of the depth of fiuid in the
site at its upper end, the first of these two implies that

C. Current driven system

As mentioned earlier, it is possible to characterize the
behavior of the system above threshold in terms of the
mean current, J, that Bows through the system, instead
of f This has the .advantage of not being sensitive to
boundary conditions. There is no equivalent of the ex-
ponent I' in this case, since all properties of the Bow can
be expressed in terms of the Howing river sites. Further-
more, since f is no longer a meaningful concept, the ex-
ponent v' no longer exists, but instead (' = g'(J). From

FIG. 14. Schematic of the proof of the uniqueness of the
pattern of currents, given the inputs at the top. The dif-

ference between two putative distributions of currents for a
single system, which both have the same input currents at the
top (and periodic boundary conditions on the sides), is shown.
The solid circles denote the topmost sites for each of the cur-
rent loops, which are shown in the text to have contradictory
conditions imposed on them.
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h;(a) ) Ii; (b), while the second one implies h;(a) ( Ii;(b).
It is thus impossible to assign a depth to the Quid in the
topmost site of a loop that is consistent with the current
fiowing out of it in both directions for both solutions.
Therefore the steady state is unique.

The current input at each site at the top can be var-
ied independently, and the resulting solution has to be a
function of all of these. As one proceeds down into the
system, the effects of these variations will diffuse away.
For example, if we put current into only a small fraction
of the sites at the top, the channels that emerge from
them will split in a downhill distance less than ('(J),
since the current fiowing in these few channels is much
larger than what one would normally have at a current
density J.Naively, this would seem to imply that in a few
correlation lengths downhill, there will be convergence to
the steady state bulk statistical behavior. However, the
current is conserved locally, and can only move &om one
region to another by "diffusion. " If we coarse grain the
system on scales much larger than the transverse corre-
lation length, the evolution of the current distribution
across the system obeys the approximate equation

B,J(x, z) = V„J(x,z) + V„g(x,z), (4.21)

where z is the downhill coordinate and x is the trans-
verse coordinates. Since we have coarse grained on scales
much larger than (~, J(x, z) can be treated as a contin-
uous variable. The second term in Eq. (4.21) involves
a random q(x, z), that arises froin the local variations
of the barrier heights, and has short range correlations:

(q(q, z)g(q', z')) = (g2)h(q+ q')h(z —z') on Fourier
transforming to q(q, z) and J(q, z). We then have

J(q, z) = exp —
q z 1J(q, p)

z

+ dzzq. q(q, z, )exp q'z, ).
0

(4.22)

The correlations in J(q, z) can be obtained by averaging
over g, yielding

(J(q, z) J(q', z')) = (iv')b'(q+ q') exp —q'~z —z'~

(4.23a)

for large z and z', and hence

(J(x, z) J(x',z')), . (4.24)
exp [ —(x —x') /~z —z'~]

For large z —z', this yields an asymptotic power-law decay
of the form ~z —z'~ ~ in the downhill correlations of
J. Hence the effects of inputs at the top will decay only

(J(q, z) J(q', 0)) = (J(q, 0)J(q', 0)) exp [
—q z].

(4.23b)

Equations (4.23) give the correlations of the current vari-
ations inside the system, as well as the response to per-
turbations in the inputs at the top of the system. Fourier
transforming Eq. (4.23a), we obtain

as a power of the downhill distance.
In the mean-field. analysis in Appendix C, the fact that

current can only diffuse from one region to a neighboring
one is ignored (the concept of neighboring regions itself
being lost). This eliminates the constraint that gives rise
(in any dimension) to power laws in the current correla-
tions, and the effects of variations in the inputs at the top
boundary are instead found to decay away exponentially
in a distance (' into the system.

V. MODIPICATIGNS AND &ELATED MODELS

In this section, we discuss the effects of various mod-
ifications that are natural to consider for the model we
have analyzed so far. We also establish connections with
earlier work on related models.

A. Boundary conditions and equilibration

So far we have largely ignored the question of boundary
conditions on the system. This would seem to be difIi-
cult to justify, since above threshold the current flowing
through the system is determined by the current input at
the top boundary. (Since the current flows downhill on
the average, the boundary conditions chosen in the trans-
verse directions are relatively unimportant, and may be
taken to be periodic for convenience; this is not true at
the top and the bottom. ) Although the solution that
we have obtained can certainly be considered as at least
a transient one whose lifetime diverges with the system
size and is therefore well de6ned, for physical systems
the true steady state solution at infinite time is likely to
be more important. As we have mentioned, it is in fact
often possible to neglect boundary conditions as we have
done and still obtain the long time bulk behavior.

If in any specific system the analogue of the fiuid den-
sity h is Axed externally, independent of the driving force
I", then the choice we have made of constant h is clearly
appropriate. The driving force I' can be created by im-

posing a potential difference V between the top and the
bottom. Typically, some of this potential drop, V„will
occur at the boundaries, in order to drive a current into
(and out of) the system across the boundaries. Thus the
actual potential difference in the interior of the system
between the top and the bottom will be V —V, . For
a 6xed current, J, the boundary voltage V, is indepen-
dent of the length I.of the system, whereas V —V, varies
linearly with I. Therefore, for large systems, one can
neglect V„and obtain J as a function of V without ref-
erence to the exact details of the boundary effects.

In other systems, the force is effectively imposed by re-
quiring a density difference Ah between the top and the
bottom, with a mean density h determined externally.
(For example, in the mixed state of type-II superconduc-
tors, Ah is produced by an electric current, and h is fixed
by an external magnetic field. ) In the absence of random-
ness, the difference in the density between the top and
the bottom will result in a linear change in h across the
system. If Ah &( h, we may approximate the system as
having a uniform density throughout, with the gradient



49 NONLINEAR FLUID FLOW IN RANDOM MEDIA: CRITICAL. . . 9487

B. Thermal fluctuations

The xnost important efFect that will xnodify the behav-
ior discussed so far is that of thermal Buctuations. Our
analysis has ixnplicitly been at zero temperature, in the
sense that when the depth of Quid in a site is less than
the height of one of its outlet barriers, no current Bows
through that outlet. By contrast, at any finite tempera-
ture, there will be thermally activated movexnent of fluid
over the barriers. Such processes will result in transport
currents at any nonzero F. A natural form to take for
small thermal creep current over a barrier is

(5.1a)

with

4 (x) - x~ for x && 1

exp[x] for —x » 1 (5.1b)

produced by Ah being roughly equivalent to a uniform
force across the system. This profile will, of course, be
modi6ed by randomness, which will produce variations
in the force &om point to point; we have modeled these
by the local slope of our irregular surface. Unfortunately,
in this case, which is lixnited to the regime Eh « h, it
is not possible to take the thermodynamic limit. This
is, however, the actual situation in the mixed state of
type-II superconductors.

In the case of a real fluid Bowing on an inclined surface,
it is perhaps more natural above threshold to work with
6xed total current as discussed in the previous section,
treating J as being externally determined, and expressing
other physical quantities as functions of J. The xnean
depth of Quid h automatically adjusts itself to produce
this current; in particular, by 6xing J = 0+, h adjusts
itself so that F = FT (h), and the system is at a "self-
organized" critical point. ss [Note that F~(h) from this
procedure will not be the same as if an initial h is given
and allowed to equilibrate in an infinite system, as, in
the current driven case, there are no finite clusters. ]

Both below and above threshold, there are time scales
that diverge at threshold, and can appear to round out
the transition. (These are in addition to finite size ef-
fects, that occur when ( becomes coxnparable with the
length of the system. ) As threshold is approached from
below, any increase in the force F results in larger and
larger amounts of Huid being displaced before the system
returns to equilibrium. With any finite rate of increase of
F, this eventually leads to some sites temporarily having
a large amount of Quid in them, so that Quid flows out
from them in more than one direction, thereby destroy-
ing the tree structure even before threshold is reached.
Above threshold, there is an initial equilibration time
during which the excess Quid in the tributaries drains
into the rivers; this time diverges at threshold along with
the length of the typical tributary. For any finite system,
sufficiently close to threshold, the "steady state" solution
that we have analyzed, which is actually a transient with
a lifetime diverging with the system size, will never be
achieved.

corresponding to nonactivated Bow in the first limit and
activated How in the second. The prefactor in Eq. (5.1a)
is chosen to make the effect of thermal fluctuations equiv-
alent to raising the depth of the fluid occasionally to be
above the barrier. (Depending on the nature of the ther-
mal Buctuations, the exponent of this prefactor could be
different, in which case the specifics of the subsequent
results would be changed. )

There are several different regimes, in which the ef-
fect of thermal Buctuations are rather different. At zero
temperature, it is possible to treat each barrier as permit-
ting How in one direction (downhill) only. This is because
the tilt disfavors uphill Qow, so that on long length scales
Quid only moves downwards. At finite temperature, how-
ever, when the tilt F is much less than the tempera-
ture T, it is clear that both forward and backward Bow
are almost equally important. The total current Bowing
across a barrier is then linear in F, with no threshold. In
the first regime, when F « T, but T is still very small,
the system is equivalent to a network of linear resistors
with a wide distribution of resistances, whose behavior is
known. s4 (At high temperatures, the transport becomes
uniform in space and trivial. )

In the second regime, T « F, but the system is still
below threshold. When T « F, the transport over a bar-
rier is still effectively unidirectional, as in our model. If
F is much less than the zero-temperature threshold field,
there is a nonzero "thermal creep" current. Associated
with this, there will be a thermal correlation length that
diverges as T ~ 0. The behavior is, however, rather com-
plicated. Since small thermally activated currents will
Qow over all the barriers, the fluid depth in any site in the
system will eventually reach a steady state value which
depends on the thermal currents entering the site; these
are in turn determined by the thermal currents Bowing
much further uphill. Thus to 6nd the equilibrium levels
is already nontrivial. Once these levels have been estab-
lished, the lowest-outlet-barrier tree can be analyzed in
a manner similar to that done at zero temperature, and
Bow will be primarily down this tree, with the thermal
current draining out of the tree small unless two outlet
barriers at a site are within T of each other, in which case
the current will split as in the zero-temperature case just
above threshold. At low temperatures, this will only hap-
pen rarely, giving rise to a network of rivers which carry
most of the current, with characteristic scales (~~(T) and
(~(T) which diverge at low temperatures and low cur-
rent density. We will not analyze the behavior in detail
here, but only note that at low T, there will be extremely
slow transients as almost isolated lakes 611 up by small
thermal currents gradually lowering the Quid level in the
rest of the system.

Another interesting regime is that near the zero-
temperature threshold. One might expect that, at low
temperatures, the only eKect of thermal Buctuations in
this regime would be to round out the transition at FT,
which is sharp for T = 0. However, just as in the previous
regixne, this is not the case: the entire spatial distribu-
tion of Quid is altered &oxn its zero-temperature form. At
T = 0, in the critical regime, most of the system does not
participate in the Quid Bow. Fluid stays trapped in iso-
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lated regions; as F is increased, these isolated regions suc-
cessively link up to the rivers, producing additional sin-
gularities and the nontrivial exponent I'. At any nonzero
temperature, however, fluid leaks out of (and into) these
previously isolated regions, linking them to the rivers and
lowering the level in the rivers as discussed above. This
means that the threshold F&+—:Fz (0+) in the limit of
T ~ 0, which is sharp, is strictly greater than the thresh-
old at zero temperature. In addition, the dependence on
F of the mean level in the rivers that dominate the flow
for F&F& will be different kom the dependence at zero
temperature due to the rise in level in the rest of the
system; this will modify the critical exponents that can
in principle be observed near F& in the limit of low T.
As discussed above, continuity with T = 0 is maintained
through the time scale it takes for the steady state so-
lution to be established: for small T, the system will
behave like the zero-temperature solution for a very long
time.

In addition to the qualitative changes discussed above,
thermal Buctuations also produce a more conventional
rounding out of the transition (at F&+). Close to the
transition, a substantial &action of the current is ther-
mally activated; although an individual thermally acti-
vated channel carries very little current, this is balanced
by the small density of the rivers, P~. The density of
activated current is proportional to the rate at which it
is returned to the Bowing rivers, which must in equilib-
rium be equal to the mean thermally activated current
emerging &om the Bowing rivers. If bb; is the difference
in height between the second lowest and lowest barriers
at a Bowing river site i, the activated current emerging
from the site is T~' exp —(hb, —b, )/T from Eq. (5.1).
For small T, this is dominated by small bb, and thus the
distribution of bb; can be taken to be uniform. Integrat-
ing over bb, , we obtain that the mean activated current
emerging &om a Bowing river site is T +~0. When
this is of the order of J, the transition will be rounded;
however the result is sensitive to the form of the creep
assumed in Eq. (5.1). We leave more detailed analysis of
thermal Buctuation effects for future investigation.

C. Continuum systems

The model that we have considered so far has been a
lattice model, whereas real systems for which it might

be directly applicable are mostly continuum systems. In
continuum systems, there is a variable width m~ asso-

ciated with each river connecting two lakes, in contrast
to the lattice model where the link between two lattice
sites does not have a variable width. The first effect of
this is to produce an extra factor of mR in the current
Bowing in a channel. When the river is confined close to
a local minimum of the (smooth) random potential pro-
duced by the irregularities of the surface, the variation
of the potential around the minimum will be generically
quadratic. This is shown in Appendix A to lead to an in-
crease in Po f'rom its one-dimensional value by an amount

(d —1)/2. The second result of continuum effects is to
modify the branching and recombination rates of rivers:

it is possible for two halves of a river of finite width to
fall into different local minima of the potential, and di-
verge in different directions, while the probability of two
rivers joining also depends on their widths. In a consis-
tent treatment of the continuum nature of the system, it
would be necessary to include the effects of correlations
in the surface potential, which is smooth on sufBciently
short scales. It is not clear at this point what the overall
effect of these modifications would be.

As shown in Appendix A, for fluid flow the appropriate
value of Po in one dimension is 3 z (which we have argued
above is generalized to 3 + d/2 in d dimensions). This is
because the viscous force depends on velocity gmdient8
in the direction perpendicular to the surface. On the
other hand, in many systems the drag force is merely
proportional to the velocity, especially in cases (as in
flux lattices) where there is no equivalent of the direction
perpendicular to the surface. This could change Po to
1+ d/2, or some other value. The exponents involving
the current will depend on some of the local details, as is
the case for conventional continuum percolation.

D. Relationship to other work

Several models that bear some qualitative resemblance
to the one we have considered here have been studied
previously. Below threshold, our model is in a gen-
eral class of directed percolation models. In standard
percolation, i4 one considers a lattice in which each site
may be connected to its nearest neighbors through bonds.
The probability for the existence of a bond linking two
sites is independent of the probability for any other pair
of sites. In directed percolation, i the bonds are direc-
tional and the bonds kom a site can only go to a re-
stricted set of its nearest neighbors, that are biased in
a particular direction. For instance, with a hypercubic
lattice, the allowed bonds can be restricted to the Grst 2"-
ant, which is the same as in our model. (This restriction
selects the 111.. . direction. ) If the probability of any
bond being occupied is p, for small p there are isolated
clusters of connected sites, while above a threshold prob-
ability, p„ there is an infinite directed cluster spanning
the entire system.

A variant of conventional directed percolation is di-
rected invasion percolation, ' where one has a lattice
in which all directed pairs of nearest neighbors are con-
nected by bonds of varying preassigned strengths. Fluid
is initially deposited at some site in the lattice, or along
the top row. At every (discrete) time step, the occupied
cluster grows by breaking the weakest (directed) bond
on its surface, resulting in a new connection. In the
large cluster limit, the occupied cluster has statistical
properties which are essentially the same as the incipient
spanning cluster that connects one end of the system to
another at p in simple directed percolation.

For p+p, one can define characteristic cluster lengths
and masses, and obtain their scaling forms. The number
of clusters of mass s (per unit volume) scales with the
form
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(5.2)

comparing with our definitions, Eqs. (3.6) and (2.5), we

see that

(5.3)

and

1

dip
(5.4)

where we have taken p, —p to be analogous to Fz —F.
The mean-field values we obtain for these exponents,
8 = 5/2 and 0' = 1/2, turn out to be the same as obtained
in mean-field theory for both isotropici4 is and directed
percolation. ~ The correlation length exponent and frac-
tal dimension of our system are, however, digemnt Rom
the corresponding exponents in directed percolation.

In addition, in contrast to conventional percolation,
some of the exponents of our system are difFerent on the
two sides of the transition. This arises from the fact that
the shape of the river network and correlation lengths
above threshold are generated by river splits, which have
no analogue below threshold. However, the exponent
identities that we have obtained below threshold, which
arise from simple scaling arguments, are similar to those
for directed percolation. (Since the definition that we

have for the polarizability is different from a conventional
susceptibility, the relation between p and the other ex-
ponents is different in our case. ) The hyperscaling like
relation, dt + m = (d + 1)/2, which is valid at and be

lour the upper critical dimension, is also the same as in
directed percolation, expressing the fact that the num-
ber of clusters of length ( in a correlation volume is
O(1), independent of the distance to the threshold.

The primary difference between our results below
threshold and standard directed percolation in mean-field
theory is the difference in the way in which the clusters
grow, which afFects v, the correlation length exponent,
as well as the shapes of the clusters, parametrized by dy.
The qualitative picture that we have is of clusters grow-
ing in a kind of "runaway" process, with d(/dF for the
same (large) f being greater than for standard percola-
tion. This would suggest that our value for v should be
greater than in standard percolation (although the dif-
ference could have been irrelevant, leaving v unchanged).
In normal directed percolation, v = 1 and v~ = 1/2 in
mean-field theory, in contrast to our values of v = 3/2
and v~ ——3/4. The larger correlation length exponents in
our case result in a much lower upper critical dimension
in our model; in standard directed percolation, d = 5,
while d = 3 in our system. Above the upper critical
dimension, dy = 2 and K = 3 —dy ——1 for directed
percolation, in contrast to our results dt = 4/3 and
r = 2 —dy = 2/3. Thus our clusters are longer and
"stringier. " Below the upper critical dimensions, it is
not very useful to compare the exact values of our ex-
ponents with the results for directed percolation, beyond
the scaling laws relating various exponents noted above.

A variation of directed invasion percolation, which

is perhaps slightly closer to our model below thresh-
old, has recently been considered by de Arcangelis and
Herrmann. They consider invasion percolation on a
two-dimensional lattice, with the strength of the bonds
between the sites growing weaker (with a power-law
falloff) as one proceeds further from the initial cluster in
which Buid is present. This makes already large clusters
more likely to grow further, as in our system. The initial
cluster is in the middle of the system, and the invasion
process is stopped when the cluster reaches the boundary
of the system. Because it is necessary to stop the growth
after a finite time, the shape of the cluster that they ob-
tain is a nonequilibrium property. This is in contrast to
our system, where there is a controllable external force,
as a function of which we study the equilibrium shape of
the clusters. Even with the nonequilibrium approach of
de Arcangelis and Herrmann, however, the distribution
of sites in the invaded cluster is found to be consistent
with a simple scaling form, with a fractal dimension of
1.29 + 0.03. This fractal dimension appears to be inde-
pendent of the exponent in the power-law falloff of the
bond strengths, and is fairly close to the value of dy we
have obtained in two dimensions. 3 Whether this simi-
larity is more than a coincidence, we leave as an open
question.

Above threshold, if we use the current driven version
of our model, it is qualitatively related to various river
network models that have been considered by previous
authors. Kramer and Marder have analyzed a model
for Bowing rivers that allows for erosion of the landscape.
This alters the shape of the river network qualitatively,
dynamically eliminating the river splits in the long time
limit by deepening the channels. While erosion is un-
doubtedly crucial in understanding real river systems in
nature, our model, which can be viewed as Buid Bowing
over a "rocky" surface, is more appropriate to problems
involving materials with quenched disorder.

Takayasu and Huber have considered models with
quenched randomness, in which the rivers are not allowed
to split. Thus, unlike in our model, the channels get fuller
as one progresses downhill, with a steady "rain" of fluid
preventing them from becoming sparse. Although there
is no thermodynamic limit in the strict sense, a scale in-
variant probability distribution for the channel currents
is found, which scales as P(J) J . The exponent 7

is 4/3 in 1+1 dimensions, and 3/2 in mean field. (The
first moment of the distribution diverges because of the
steady rain. ) It is not clear if one can make meaning-
ful comparisons with our model, where scale invariance
exists only at the critical point and the extra physics of
river splits is essential.

VI. APPLICATIONS AND CONCLUSIONS

The model that we have presented here is potentially
applicable either directly or at least qualitatively to a va-

riety of physical systems. The most direct application is
to the problem we have modeled: Buid on a tilted two-
dimensional irregular or chemically dirty surface. Our
results, up to the caveats in the previous section, should
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be directly applicable. A related three-dimensional prob-
lem is gravity driven invasion of a nonwetting Quid into
a porous material. If Quid is not present in the system
initially, but only enters through the top boundary, there
will be no isolated clusters below threshold; however, the
scaling properties of clusters connected to the top bound-
ary can be studied as a function of the driving force
(perhaps overall tilt in an anisotropic medium). There
would seem to be two rather different regimes. If the fluid
remains collected in small droplets within the medium,
which break and spill into lower regions when they get
too large or when the force on them exceeds a critical
value, then, qualitatively, the present model should ap-
ply with the "lakes" representing the droplets. The main
complication below threshold is the possible "overshoot-
ing" when a saturated droplet breaks, since this will leave
it unsaturated. Above threshold, the system can be cur-
rent driven, and the ratios of exponents, e.g. , P/v, mea-
sured. The effects of capillarity, the discrete breaking
of droplets, and viscous pressure gradients must be an-
alyzed to make concrete predictions. In particular, it is
not clear whether there will be a well-defined analog of
the microscopic exponent Po.

A very different regime will exist if the invading fluid
remains connected rather than breaking into droplets. In
this case the pressure at the bottom of a cluster will be
proportional to its vertical length in static equilibrium,
and therefore well away &om the top will exceed any cap-
illary forces that stop the cluster &om growing. In this
case, the growth will be very different —probably domi-
nated by rare regions —and the model will not be appli-
cable. This is because of the failure of one of the essential
features of our model is the uniform external driving field
in the direction of the transport. Thus it will also not
be applicable to the case of pressure driven Quid invasion
into a porous medium. In this case, when the fluid can
be approximated as being in static equilibrium, there is
constant pressure throughout a cluster, and all weak bar-
riers at the boundary of the cluster are equally likely to
rupture, irrespective of their location, corresponding to
standard (isotropic) invasion percolation. s ~ At finite ve-

locities, there is a drop in the pressure at sites distant
from the driving source owing to viscous losses. How-

ever, this disfavors the cluster from extending at its far-
thest extremity, in contrast to our model.

Another system for which our model might be qualita-
tively applicable is a two-dimensional type-II supercon-
ducting film, with vortices produced by an external mag-
netic field perpendicular to the film. (Since the transport
carriers in our model are assumed to be pointlike, it will
not be applicable to the case of Qux lines in three dimen-
sions. ) In the absence of impurities, the vortices will be
arranged in an Abrikosov lattice. If an electric current
is passed through the sample in one of the directions in
the plane, there is a gradient in the density of Qux lines
set up in the transverse direction, which causes a force
on the Qux lines along this gradient. The entire lattice
moves collectively, and the transport that of an elastic
medium, related elastic systems have recently been an-
alyzed extensively. 2 If there is strong impurity-induced
disorder in the sample, the lattice structure is destroyed,

and at very low temperatures where thermal fluctuations
are small, the system will be in a "vortex glass" phase.
The external current will then no longer produce a uni-
form force, but rather a spatially varying one which is
determined by the impurity and vortex locations. This
is more similar to the random surface that we have looked
at here, where there is an overall downward slope due to
the external tilt, which is then modified by local vari-
ations in the surface height. However, as we shall see,
there are various complications.

Flux flow can be measured in superconductors from the
I-V characteristics in the vicinity of the critical current.
Spatial inhomogeneities in the transport could perhaps
be measured using SQUIDS with small pickup coils. Be-
low threshold, ac response measurements could be used
to find the polarizability.

A similar system to the flux lattice is an array of
magnetic bubbles; these occur in certain two-dimensional
films magnetized perpendicular to the film, where small
domains of opposite magnetization are created. These
bubbles can be pinned by impurities, like the vortices in a
superconductor, and driven by a magnetic field graident
or other means. For magnetic bubble systems, measure-
ments can be made directly by imaging the bubbles.

As mentioned in the discussion on boundary conditions
in Sec. V, the method of generating the external force by
gradients in the density prevents one &om going to the
large system limit in both of these cases; the range of size
(if any) for which the picture discussed in this paper is
applicable will depend on the parameters of the system.
The discrete nature of the vortices (and bubbles), as op-
posed to the continuum fluid that we have been consider-
ing here, causes additional complications, possibly more
severe than the effects of breaking droplets mentioned
above. When the vortex creep is very small, individual
vortices hop forward one by one, rather than in a smooth
stream. The form of the local current can thus not be rep-
resented by a continuum approximation. More seriously,
the vortex distribution in the sample will now no longer
be constant in time, but have temporal fluctuations. It
may thus be more appropriate in this regime to treat
the system as a directed quenched "sandpile, "33 with the
discreteness playing an important role. There is, how-
ever, a limit where our model may be applicable: if the
length scales of the variations of the film composition (or
thickness) are large compared to the vortex spacings, and
the temperature is high enough that thermal fluctuations
cause the current leaving each "lake" to be stochastically
independent of other lake outlets, but low enough that
the typical outlet barriers in unsaturated lakes are much
larger than kI3T, then the continuum Quid model should
be appropriate. The discreteness of the vortices would
then be like the discreteness of water molecules in the
fluid Qow problem. This regime may well be obtainable in
superconducting films, that are strongly inhomogeneous
on mesoscopic scales.

There are also other systems that are qualitatively sim-
ilar to the model presented here, although the connec-
tions will be much harder to establish. One of these
is charge-density waves (CDW's) in an insulators in
the presence of strong disorder, although it is not clear
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whether such strong disorder is compatible with a clas-
sical description of the dynamics. In addition, there is
no conservation of CDW charge, since CDW current can
be transformed into normal current. Although this ef-
fect might be small for poor conductors, it will prob-
ably destroy the sharpness of the threshold. The long
range Coulomb interactions are an additional complica-
tion. Another system that one might study is dielectric
breakdown in an insulator, but again the long range
Coulomb force between the charges will change the be-
havior dramatically, unless it is well screened, in which
case models like the one we have considered here may be
applicable.

VII. SUMMARY

In this paper, we have considered a novel class of collec-
tive transport phenomena involving driven Huid or plas-
tic flow in disordered media. A key feature of the model
and the potential applications discussed in this section
is the nonlocal nature of the transport: the clusters be-
low threshold and the current paths above threshold are
determined by far away parts of the system, in a much
stronger way than for conventional percolation. We have
found various unusual features within a simple model,
including different scaling laws above and below thresh-
old. Many features of the model need to be analyzed in
greater detail; for instance, the effects of thermal noise,
finite size effects, transients, the modi6cations produced
in continuum systems instead of lattice models and, per-
haps most crucially, the effects of discrete carriers. The
model that we have constructed and the analysis we have
carried out are really a starting point; much more work is
clearly required to make concrete connections with most
of the broad variety of systems to which similar models
might be applicable.
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APPENDIX A: ONE DIMENSION AND LOCAL
CURRENT LAWS

In this appendix, we analyze the one-dimensional con-
tinuum system in some detail. In addition to understand-
ing the behavior for d = 1, this is useful to motivate the
lattice model we construct in the main text, in particu-
lar, the local current law Eq. (2.3) which is discussed at
the end of this appendix.

Figure 2 shows the distribution of fluid for a typical
realization of the randomness in one dimension. For any
value of the tilt F, by proceeding up from the downhill
end of the system it is possible to obtain the capacity of
the different lakes in the system. The total capacity of

If the underlying physical forces governing the system are
not like Buid viscosity, in general this relation might be
modi6ed to something of the form

J(x) h" (x) F(x)—dh(x)
dx

(A2)

We shall use the general forxn of Eq. (A2) here.
For a one-dimensional system the continuity equation

is trivial, and in steady state it is necessary that J(x)

all the lakes together represents the maximum amount
of Quid that can be poured in at that value of F before
current Hows across the system. If h(x) is the depth of
the Quid layer as a function of the position, x, this can
be used to define an hz (F) for large systems, which is
the mean density of Buid the system contains at thresh-
old; hT (F) is a smooth function of F, and can thus be
assumed to be linear over any small range of F. The
function hT (F) can be inverted, to obtain the threshold
force FT (h), as a function of a prescribed mean density

of Quid, h.
If we start with some random distribution of h in the

system and start to increase the tilt F, the initial distri-
bution will not be the same as that which would lead to
all the lakes being filled to capacity at F = FT (h) . Some
regions will be disproportionately depleted, while others
will have too much fluid in them. However, for a suffi-
ciently large system, the threshold will still be at FT (h).
This is because if the system is tilted beyond FT, Quid
will pour into any region &om all the regions further up-
hill. For large systems, this will overwhelm the effect of
any initial Huctuations in the distribution of Huid (apart
&om in a region close to the top). Conversely, below
FT, Quid &om any region that initially has an excess can
be absorbed into the whole downhill part of the system.
This averages out the initial fluctuations, except close to
the bottom. In Appendix B, where we consider lattice
models below threshold with a particular choice for the
distribution of the irregularities of the surface, the value
of the threshold 6eld that we obtain in one dimension is
found to agree with this argument, i.e., it is the field at
which all the Quid is just enough to saturate all the lakes.

We 6rst examine the behavior above Fz and obtain a
local equation for the current J(x) for a Huid governed by
Newtonian viscosity. Let x and y be the horizontal and
vertical coordinates, and h(x) be the height of fluid above
the surface. For small h, with dh/dx « 1, the velocity
gradients that are largest are the vertical gradients of
the horizontal velocities, O„v~. We shall neglect all other
velocity gradients. We also assume that fluid velocities
are small, so that the dominant contribution to pressure
gradients comes from variations in h(x). The bound-
ary conditions on the horizontal velocity are v (0) = 0
and Bv /By~„ i, ~ l

= 0, which yields an approximately
parabolic velocity pro6le along y. From this, it is possible
to obtain the approximate current equation (suppressing
constants like the coefficient of viscosity and density of
the fluid),

s(*) dh(x)
J(x) = u(y)dy h (x) F(x) — . (Al)

0 dx .
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h", (z)F(x) = J inAandG,

—hi(x) = J inB, C, andE,
dh, (x)

Qx

and

dhi(x)
dx

(A3)

[Strictly speaking, Eq. (A2) is not valid in region D,

should be independent of x. Below threshold, J = 0.
Equation (A2) then implies that at any point either
F(x) —dh(z)/dx = 0 or h(x) = 0. The first of these pos-
sibilities corresponds to the lakes, and the second to the
interspersed dry regions. For small J, we seek a steady
state solution with shallow rivers connecting the lakes.

Even if such a steady state solution exists, it is not
clear a priori that it will be appropriate for the system.
In reality, when F is increased beyond FT, Buid Bows out
of each lake, reducing the level of the lake until it returns
to saturation. For any lake, if this occurs before it is
replenished by fiuid from the lake above, the fiow will stop
temporarily in that region. If these breaks in the Bow
were &equent, the current Bowing out &om the system
would be intermittent, and the steady state solution we

seek here would not be relevant. However, we shall see
that the probability of such events approaches zero as
F + FT.

Equation (A2) is a first-order differential equation; at
any value of J and F, there is a one-parameter family
of solutions h(x). However, for large systems, it is still
possible to obtain a meaningful 6, which is the average of
h(x) over x, as a function of J and F alone. To see this,
consider two solutions hi(x) and h2(z) that satisfy the
property hi(zo) & h2(zo) for some xo. From Eq. (A2),
it is then clear that the two solutions diverge &om each
other when integrated downhill. As long as h(x) & 0 ev-

erywhere, as is necessary for J to be greater than zero,
the di8erence between the two solutions will keep grow-
ing as we integrate downhill. Conversely, all solutions
with a finite h(zo) will converge towards each other as
we integrate them uphill, and so as I ~ oo, as long as
we choose a finite h(1), the solution is uniquely deter-
mined (beyond a boundary region for x = I). This also
means that for a long river connecting two lakes, h(z) at
the upper end can be obtained as a function of J (and
vice versa), while h(x) at the lower end is not fixed by J.

Equation (A2) must now be solved to obtain h(z) as a
function of J. At any fixed value of F, we can obtain h
as a function of J. Since h2 (F) is linear in F for small
changes in F, this yields the dependence of F —F2 (h)
on J for fixed h. Figure 15 shows the manner in which
the system in the vicinity of a lake is divided into various
regions. If ho(z) is the depth of fiuid as a function of
x at threshold, we define hi(x) = h(z) —ho(z).
approximate F(z) —dh/dx by F(z) —dho/dz—:F(z) in
regions A and G, and by —dhi/dz in B,C, D, and E. We
also approxiinate h" (x) by ho (z) in region D, and hi (x)
in regions A, B,C, E, and G. (The first approximation is
exact in regions |,D, and E, and the second in regions
A, B, and G.) We thus obtain from Eq. (A2)

x=o

FIG. 15. Division of a section of a one-dimensional system
above threshold into di8'erent regions. The dashed line is the
capacity of the lake, while the hatched region is the actual
distribution of the Quid. The widths of the regions B, C,
and E shrink to zero as threshold is approached. The excess
depth hi(x) is almost constant in region D, decreasing only
very slowly with increasing x.

where h(z) is large. However, the only property of
Eq. (A3) for this region that we shall need is that it yields
an approximately constant hi(z), which is correct. ]

After linearizing F(x) around the lip of the lake, which
is the boundary between regions B and C, Eq. (A3) can
be solved by matching solutions in the difFerent regions;
the boundaries between regions are found by the require-
ment that h(z) and dh(z)/dz should be continuous. We
find that as J ~ 0, the width of the regions B and C
vanishes, so that the linearization of F(z) around the lip
of the lake is justified.

We also find that hi(z) = 0(Jii'") in the rivers, while

hi(x) = O(Jz~l2"+il) in the lakes, with a crossover be-
tween the two in regions like B,C, E, and G. Since the
lakes occupy a finite fraction of the system, to leading
order in J we obtain

K I*) = 0(v'~t*"+'~) (A4a)

which can be inverted to give

J - hi (z)"+~ - (F —Fz )"+& . (A4b)

Thus in Eq. (2.3), used to define the flow over barriers
in the lattice model, the exponent Po in one dixnension
is Po ——n+ 2. One can also verify that the steady state
solution is appropriate for the system: as J ~ 0, the
&action of the excess Buid present in the rivers becomes
infinitesimal, so that the probability of the Bow ceasing
temporarily tends to zero.

By the nature of the approximations made in
Eqs. (A3), the hi(z) that we have obtained is greater
than the solution to the exact equation. Since F(z) &

dh(x)/dx in A and—G and ( dh(x)/dx in B—, while

ki ) ho ln C and E and ( ho in D, if we replace J
with J/2 for A, B, G and with J/2" for C, D, and E
in Eqs. (A3), we would obtain a solution hi(x) that is
everywhere less than the exact solution. This modified
version of Eqs. (A3) can be solved as before, and leaves
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the scaling of Eq. (A.4a) unaltered, leading to the same
value of Po as above.

1. Polarisability

The behavior of the polarizability and polarization
below threshold can also be ascertained for the one-
dimensional systexn. In the continuum system, unlike
in its lattice version, it is possible to de6ne separate for-
ward and backward polarizabilities; these are given by
the change in the polarization upon a slight increase or
decrease of the force F, respectively. The forward po-
larizability is defined even in the lattice model, and is
obtained in Appendix B for d = 1. Here we evaluate the
backward polarizability. Figure 16 shows the effect of re-
ducing the force &om F to F —dF. As can be seen, in
most of the lakes this simply results in the Huid moving
backwards slightly. The new surface of the lake is deter-
mined by the conditions that the amount of fluid in the
lake does not change due to this reduction in the force,
and that the slope of the surface is only a function of the
external force. From Fig. 16, one can see that the to-
tal backward displacement of Buid in the typical lakes is
O(dF). The calculations are slightly diferent in "anoma-
lous" lakes where the Huid spills out backwards from the
lake and moves a finite distance. But since the fraction
of such lakes is O(dF), the total displacement of Huid

from these lakes is also only O(dF). This means that
the backward polarizability mmains finite upto FT, and
its absence in the lattice version is not of consequence.
The forward polarizability is, however, singular, and is
calculated within the lattice model in Appendix B.

space is determined by the condition that the random po-
tential should have a local minimum in the transverse di-
rections. For small h(z), with a generic quadratic saddle
point for the random potential, this produces an extra

factor of h x in Eq. A2 . This condition is

not valid far into the lakes, where h(x) is large; however,
the scaling of the current is not controlled by the behav-
ior in this region. ] Thus the exponent n in Eq. (A2) is
replaced by n+ (d —1)/2, which modifies Eq. (A4), yield-
ing Po(d) = n+ d/2. For the simple generalization of the
viscous flow Eq. (Al), we have Po ——3+ d/2.

APPENDIX B: MEAN-FIELD O'HEORY BELOW
THRESHOLD

a, = h, +F —minb; (B1)

In this appendix, we analyze the behavior of our lattice
model below threshold in mean-field theory and also in
one dimension.

The mean-6eld model introduced in Sec. III is speci6ed
as follows: each site at the mth level from the top has
one lowest outlet through which it can overflow to some
particular site in the (m + 1)th level, and some number
r of inlets from the (m —1)th level with r varying ran-
domly &om site to site with probability c„satisfying the
condition that the mean number of inlets P„rc„=1,
which is the number of outlets &om each site. Initially,
a random depth of Buid h,. is put at each site, resulting
in a depth above the lowest-outlet-barrier min b; of

2. Higher dimensions

In Sec. V, we have seen that, in higher dimensions, the
local current How Eq. (A2) is modified by factors of the
width of the river, which depends on the depth of Buid in
it. As a river proceeds downhill, its location in transverse 6;=h;+F —minb, . (B2)

with distribution A(a). The system is then equilibrated
as follows: the excess fluid on the sites (i.e., a; if a; ) 0)
in the top (zeroth) level is allowed to overflow over the
lowest outlet to the first level, resulting in a new (h;) in
the first level sites, and height relative to the barrier

This process is continued downwards, with a site i at the
mth level overflowing to the (m + 1)th level if 6;, after
it has received all the overflows &om the uphill sites, is
positive. The value of b„ is thus given by Eq. (3.3),

b„=a; + ) max[6. ;„,0]
k=z

(B3)

FIG. 16. Change in the polarization on reducing the force
&om I" to I' —dI' in a one-dimensional system. The hatched
regions show the lakes at, I', the dashed lines show the way
their levels try to adjust to the reduction of the force. The
lake on the left has a reduction in polarization of O(dF). The
lake on the right is "anomalous, " in that some Suid pours out
backwards &om it when the force is reduced; the fraction of
such lakes is O(dF)

with the sum running over the r inlets iq, . . . ,i„ to the
site i from the previous level.

If a site overBows, it connects itself and the cluster of
sites which have overBowed into it onto a cluster which
includes its outlet site at the next level down. We define
s; as the mass that the overHow of the ith site adds to
the cluster. For sites that do not overBow, and thus are
at the terminus of clusters, s; = 0. The cluster mass s;
thus satisfies the recursion relation given by Eq. (3.8),
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s, =]+) s;, ford„. )0
and

s, =0 forA;(0. (84)

The crucial simplification in the mean-field limit with

random outlet connections from each level to the next is
that we expect 6,. and s; for all the sites in a given row
to be independent in the limit of an infinite system. The
convenient quantity to analyze is the joint distribution
P (b, ; s)db, of max[3, 0t and s, so that P has a b func-
tion at 6 = 0 and s = 0 corresponding to the sites that
do not overQow. The recursion relation for I' +1 is then
given by Eq. (3.9),

OO

P s(s6; )s=) e fd6s) P (ds:, ss) A
~=0 j=1 Sj

6 —) A~ 8 i+g, ,
2

oo o

jj(6; s)—+ , d, ed(6) ) f dds'(s (ds'; s'),
OO

(85)

where the function p (b„' s) which vanishes both for 6 )
0 and for s = 0 cancels the part of the first term in
the equation with 6 ( 0, and the third term replaces
this by a b function at 6 = s = 0, corresponding to
the unsaturated (nonoverflowing) sites. In terms of the
Fourier transform,

A(ur) = 1 g 1

g+ 1 1 —igu 1+ iu (89)

of later calculations, we choose A(a) to be exponentially
decaying for a ) 0 as well, and continuous across a = 0,
as given in Eq. (3.11), which has the Fourier transform

P (ts;s) = f ddsP (ds;s)exp(esse), (86) As discussed in Sec. III, threshold is reached by increasing
g, and close to threshold

and similarly for p, the evolution of P is then given by ~ = gT —g ~IT —F. (810)

P ls(i;s)s=
I) e ) P (ts; ss)

&=o j=l

We discuss other forms of A(u) later in this appendix.
For the distribution in Eq. (89), P, (u;s) must have

the form

xA(ts)b see . ) ((u;s) = ~-(s)
1+ b(d

(811)

—jc (~s) + ho ) Sc (~ = Os'). (87)

As discussed in Sec. III,

Below threshold, for large m the distribution functions
should be independent of m. Thus we look for a fixed
point to the recursion relation Eq. (85). In terms of the
generating functions

(s) = f ddsd (d'; s) P(ur; y) = ) y'P(u); s)
8=0

(812)

is the density of clusters of mass s that terminate at the
mth rom from the top of the system.

For a general A(a), it is not at all clear how to solve
Eq. (87). One could try to guess a form for p, (4; s),
and verify that it yields a P (4; s) that is zero for E & 0.
This requires guessing a whole function, which involves
an infinite number of parameters. However, if we consider
the special class of functions A(a) which decay exponen-
tially for a & 0, the first term of Eq. (3.9) must generate
functions that also decay exponentially for 4 ( 0. This is
because every P (b,~; sz) in Eq. (3.9) shifts the distribu-
tion A(a) towards larger values of a, which preserves its
exponential form for a ( 0. This implies that the correc-
tion terms p, (b, ; s) in Eq. (3.9) are also exponential in 4
for each s, decaying at the same rate as A(a) for a & 0.
Thus only the strengths of the exponentials for each s
need to be determined self-consistently. For simplicity

and

p(y) = ) y p(s)
8=1

(813)

we obtain the fixed point equation, Eq. (3.14),

P(ur;y) = ) c„yA(u) [P(u;y)j + p(y = 1)—
~=o

(814)

The threshold I"T is found by increasing g in Eq. (89)
until there is no physical solution P((d;y) to this fixed
point equation.

We must still chose the probabilities c„of the num-
ber of inputs. In the hope that difFerent choices for the
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c() ——g, ci ——(1 —2)7), and c2 ——(7 (B15)

with 0 ( g & 2. This satis6es the constraints mentioned
earlier, P c„=1 and P rc„= 1, for all values of rI. The
special case of )7 = 0, where c„= b„ i, corresponds to
each site being linked to exactly one site in the next row,
and therefore represents a one-dimensional system. More
general choices for the c„'s will be discussed later. For
the choice of c„'s in Eq. (B15), Eq. (B14) is a quadratic
in P((d; y), and can be solved. For the case of d = 1, it
reduces to a linear equation.

1. One-dimensional case

We flrst solve Eq. (B14) for the simple one-dimensional
case. It is useful to first consider Eq. (B14) for y = 1;
we denote p, (y = 1) by p. This corresponds to ignoring
the dependence of the distributions on s. Equation (B14)
then reduces to

P(w)—:P(w;y = 1) = A(w)P(w) + yll—
1

1+in
(B16)

with A(ur) given by Eq. (B9). The solution to this is

p(1 —i ger)

1 —g —xghp
(B17)

The norinalization condition, P(u = 0) = 1, yields

@=1—g. (B18)

This corresponds to the distribution

constants c„ in Eq. (B14) will not affect the mean-field
nature of the solution, so long as we allow inputs to a
site from more than one site (i.e., not all c, 's with r ) 1
are equal to zero) we choose

From Eq. (B20), we have II, 1/e, from which

7=2. (B22)

P(ur; s) can be found from P(u;y) by integrating over
the unit circle ~y~

= 1:

P(ur; s) = . P((u; y).
1 CLQ

2+x y'+ (B24)

One can deform the contour so that only the singularities
of P((d; y) contribute.

Equation (B23) has the solution

(1+ i~)p, (y = 1) —p, (y)
1+iu —y/(1 —ig(d)

(B25)

As we have seen already, p, (y = 1) = 1 —g. The denom-
inator of Eq. (B25) has a zero with Im(ur) ) 0. This
has to be cancelled by a zero in the numerator, otherwise
transforming back to 6 would yield P(E) with support
for b, ( 0. This condition gives us an equation for p(y),

p(y) = (1-g) 1 + g —V'4(1 —y)g + (1 —g)'
2g

(B26)

This satisfies the conditions p(y = 1) = 1 —g, and
dp(y)/dy~„— i ——1, required by the normalization con-
dition g sp(s) = 1.

As mentioned earlier, the function p(s) is simply the
probability that a cluster of length s terminates at some
site, so that it gives the distribution of cluster sizes. For
g(l, p(y) has a square root branch cut at y = 1+e2/4.
Inverting Eq. (B26), as in Eq. (B24), the scaling form of
p, (s) is controlled by the origin of the branch cut in p(y),
and for small e is of the form

We now consider Eq. (B14) for P(u; y) for general y in
one dimension. From Eq. (B14), we have

P(ur;y) = yA((d)P(~;y) + p(y = 1) — . (B23)p(y)

P(6) = (1 —g)h(b, ) + (1 —g) exp —(1 —g)A/g .

(B19)

Threshold is reached at g = 1; for g ) 1, the solution
Eq. (B19) diverges at large b and is unphysical. This is
a special case of the more general argument presented in
Appendix A, that threshold for one-dimensional systems
occurs when the amount of Huid in the system is equal
to its "capacity" which is equivalent for the lattice model
to the condition that the first moment of A(a) should
vanish. This indeed occurs at g = 1. For g(1, Eq. (B19)
becomes

y,(s), exp —e's/4, (B27)

v=2. (B28)

From the scaling of sp(s)ds, we obtain for the exponent
of the fraction of sites in clusters of size (,

(B29)

valid for small e and large s, for any value of the scaling
variable e2s. The characteristic length of a cluster is thus

1/e, which implies

P(D) = e{b(A) + exp[—cb,]), (B20)
as expected, since in one dimension all the sites are con-
nected above threshold. Comparing with Eq. (B22), we
see that the scaling law p = v(1 —)(;) is satisfied.

where e = 1 —g. As discussed in Sec. III, the singular
part of the polarization density is given by 2. Mean-Seld limit

II. = db.P(b, )A.
0

(B21) We now solve Eq. (B14) for the mean-field limit, with

g g 0 in Eq. (B15). The specific case of rI =
4 is alge-
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braically the simplest, and we specialize to this. Again,
as in the previous subsection, we Brst consider the case
of y = 1, i.e. , ignoring cluster masses. From Eq. (814),
with p = p, (y = 1), we have P(S) -1/6'~'. (834)

g = 2, the branch cut in P(u) is of the form ursi'2, from
which

1 -2 1
P((u) = —A((u) 1+P(ur) + )M 1 — . (830)

4 1+in

This is quadratic in P(u), and can be solved, yielding

P(w ) = —1 + 2 (1—igw) ( 1+iw

+11(1+iw)~ —(1+iw+igw)/(1 —igw)). (821)

The consistency condition to be used to determine p, is
more subtle than for d = 1. The discriminant in Eq. (831)
always vanishes at u = 0, so that P(u) generically has a
square-root branch cut at u = 0, which we can choose to
lie along the negative imaginary axis. Such a branch cut
would lead to a P(b.) decaying as a power law,
for large A. However, the fixed point solution Eq. (831)
to Eq. (830) has been obtained without reference to the
initial condition that P (6) starts out at m = 0 with-
out any such power-law tail. Below threshold, where the
clusters are 6nite, we do not expect a long tail to build
up in the distribution as we increase m. Thus to obtain
the physically appropriate solution, p has to be adjusted
so as to create a double root in the discriminant at u = 0
in Eq. (831), and thereby eliminate the branch cut. The
desired value of p is the same as Eq. (818). Substituting
this in Eq. (831), we obtain

P(w) = —1+ 2(1 —igw)(1+ iw

—iw 11'(1 —2g —igw) /(1 —igw) ) . (832)

The sign of the square root has been chosen to give

P(u) = 1 for g = 0, when the entire distribution A(a)
is located to the left of the origin. One can carry out
the analysis for a general choice of rt in Eq. (815), and
the behavior is qualitatively similar. If we vary g continu-
ously from 4 to zero, the solution analogous to Eq. (832)
transforms into the one-dimensional solution, Eq. (817).

The fixed point function P(u) has a branch cut at
—i(1—2g)/g, which lies on the negative imaginary axis for
small g. This produces an exponentially decaying func-
tion P(b ), with a power-law prefactor. As g is increased,
this branch cut moves in, until at g = gT ——2, we again
have a branch cut starting at cu = 0, which yields dis-
tributions with power-law tails. For g = 2(1 —s), the
scaling form of P(A) can be found from Eq. (832) to be

This scales in the same way as Eq. (833). As for
d = 1, one can obtain p by calculating the polariza-
tion, J'dE b,P(6) . The singular part of this close to
threshold arises from the asymptotic form of P(b, ). From

Eq. (833), II, = 1 —O(e2), so that

p = 1/2. (835)

One can also obtain the distribution of cluster sizes
as in one dimension, by considering the general form of
Eq. (814) for arbitrary y. With the choice of )7 = 1/4 in
Eq. (815), we have

P(u);y) = —yA((u) P(~;y)+1 + p(y = 1)—

(836)

This is quadratic in P, and can be solved. The singular-
ities in P((d; y) are in the discriminant of this solution,
which is

D = (1+ ia)) (1 —igur) —y (2 —g)(1+ i~) —p(y),
(837)

where we have used the earlier result p, (y = 1) = 1 —g.
The discriminant D is cubic in ~. For y = 1, this

is the same as our result in Eq. (831). [We have in-

cluded a factor of 1 —igu inside the discriminant in

Eq. (837).] The discriminant then has a double root
at ~ = 0. If we change y smoothly &om 1, the double
root will generically split into two roots which move away
continuously &om u = 0. Since the roots of the discrim-
inant control the exponential damping of P(b, ;s), this
would lead to P(A; s) decaying much more slowly than
P(6) = g, P(A; s), which is unphysical. We therefore
have to adjust p(y) so that the discriminant has a double
root for all y. This yields a condition that is quadratic
in p, (y). The function p, (y) is generally smooth for y near
one, but has singularities which come kom the discrimi-
nant of the quadratic equation which yielded p(y):

D = 16y (1 —2g) + (3g —6g) (y —1) (838)

p, (s) ( exp I
—16e s/9]2 (839)

This has a branch cut that moves into y = 1 as g ~ 1/2.
For g = 1/2 —E, the scaling form for p, (s) that tins yields
1S

P(E) (4eA + 3) exp[—2EA]/A2 (833)

for small e, large 4, and arbitrary cA. Although the
general form for P(A) for small b, is complicated, it is
easy to see that P(b, ) ) 0 for all A. The strength of
the branch cut is positive along its entire length, as is
the weighting factor of exp[ —iub, ]/(22r) used to evaluate

P(A), so the resulting P(A) is positive. At threshold,

valid for small e, large s and any c2s. The probability
of being in a cluster of size s scales as sp(s)ds. Prom
Eq. (3.1), with s I"&, we thus have

(840)
2

Also, from the decay of the exponential in Eq. (839),
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since e ~f~, we have

which, when combined with Eq. (840), gives

KV= 1.

(841)

(842)

= i, z(id) is of O(1+ iid), which is small, and so
clearly lies inside the unit circle. In addition, there is
a contribution &om the pole at z = 0 &om the dz/z in
Eq. (847). However, bp(z) will be analytic inside the
unit circle. Adding the contributions from the two poles
and simplifying, we obtain

(1 + i~d) bPp (~d)
bp zid

'ltd Z
(848)

3. Correlation length

Unlike the case in d = 1, in higher dimensions the
length l and the mass 8 of a cluster are different. If one
tries to obtain a distribution function P(id; I) analogous
to P(td; s), the evolution equation cannot be expressed
simply in terms of generating functionals. This is because
when two sites i q and i2 feed into a site i at the next
row, we have l; = 1+max(l;, , l;, ) instead of the simple
addition law for cluster masses. We have not been able
to solve the resulting equations directly. We therefore
obtain the correlation length indirectly.

If we add a small extra amount of Quid to the sites
in a particular level, the typical distance that this extra
fiuid flows down will be the characteristic cluster length.
This is equivalent to perturbing P(id) around its fixed
point form, and examining the approach back to the fixed
point. A small perturbation hP(id) evolves as

bP ~i(id) = —A(id) 1+P(id) bP (id)
1

(843)

with the perturbation bPp(id) specifying an initial condi-
tion for Eq. (843). Here hp is related to the change in
the number of clusters that terminate at the mth row.
Transforming to

bP(u);z) = ) z bP (~),
m=o

(844)

and bp(z) = P pz hp, we have

bP(d; z) = bPp(id) + —ZA(id) 1 + P(id) bP(id; z)
1

yzhp(z) (1— (845)

This can be solved to give

bP (d;z
hPp(id)(1+ iid) + i(dzbp(z) 846

1+iid —zz 1+P(id) /(1 —ig(u)

Since

hPp(id) = . hP(td;z),
dz

21ri z (847)

Eq. (846) can be used to obtain bp(z) in terms of bPp.
As a function of z, the denominator in Eq. (846) has a
zero at z = z(id), obtainable from a knowledge of the
fixed point P(id), Eq. (832). In the neighborhood of

z(id) = (1+iid)/ 1+ iid

—i~/(1 —2g —igid)/(1 —igur) . (849)

We choose the branch cut in the denominator to extend
along the negative imaginary axis, to satisfy the analyt-
icity requirements. From Eq. (849), z(u) = 1 at id = 0,
and at the origin of the branch cut id = —i(1 —2g)/g.
These two points approach each other as g ~ gT
For g gz, moving along the negative imaginary axis in
id, z(id) is real and has a maximum between these two
points, at &u, = —O(e)i. At this point, z(id, ) = z, =
1+ O(es~2). This is a simple quadratic maximum, so
that in its neighborhood, id(z) has a square-root branch
cut:

K(z) = id~ + zCe ~ Qz~ —z. (850)

(The strength of the branch cut has been fixed by the
requirement that at z = 1, id = 0.)

The initial perturbation bPp(id) can be chosen to be
well behaved around u = u„so that the branch cut
in Eq. (850) will carry over into the contour integration
needed to find h p from Eq. (848). The apparent pole at
id = 0 in Eq. (848) is cancelled by the numerator: since
P is a normalized probability distribution, bPp(id = 0) is
zero, and if we restrict ourselves to perturbations bPp(h)
for which the first moment exists, the pole is cancelled.
Other singularities in bPp(id) will occur further out in z
as compared to the branch cut of Eq. (850), provided
we only consider perturbations that do not decay more
slowly at large 4 than P(A). In particular, one can verify
these properties for the simple case, bPp(id) iidP(~),
which corresponds to adding Quid randomly to a small
&action of the sites. From Eq. (850), the asymptotic
form of bp for large m is then

1/4
bp -

( exp —4(2e/3) ~ m .
m

(851)

The decay length for bp is thus e / . We expect
that bp will decay over a length of the order of the

giving an explicit expression by inverting z(id) to get
id(z). Since the generating functional P(td) and bPp(id)
should be well behaved for small z and in the neighbor-
hood of id = i (since P(td = i) = f db, P(b, ) exp[ —bjj,
we obtain the solution bp(z) by analytic continuation of
Eq. (848); in particular, we use the analytic continuation
of the function id(z) &om id(z = 0) = i. It is then possible
to obtain hp, &om Eq. (848) by contour integration.

From Eqs. (832) and (846), z(id) is given by
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characteristic cluster size (i.e., the correlation length), so
that Eq. (851) implies ( e j 2, i.e.,

3
V =

2
(852)

Together with Eq. (841), this gives us

dt = 4/3. (853)

From Eqs. (842) and (849), we have for the fraction of
sites in large clusters, the exponent

r. = 2/3. (854)

At threshold, the branch cut in z occurs at z = 1.Nearby,
z((kj) = 1 + O([iu] ~ ), so that (tj = iO([z —1]2~s), and
hence

1
~Pm (855)

Note that this scales in the same way as Eq. (851).
Physically, 8p is the probability of a small amount
of extra Buid added to some random site in the lat-
tice flowing downhill for m rows before it reaches the
end of a cluster. This scales like the probability of be-
ing in a cluster of length m, so that from Eq. (3.1),
by m ~ +"lCk(m/(). The conjectured scaling form
is thus in agreement with Eqs. (851), (854), and (855).
In principle, one could calculate the full scaling function,
although we have not done this.

which is 1/~L.
The source of this difference in scaling can be under-

stood easily. For finite size systems, the sites in the top
layer do not receive any Huid &om above. The distribu-
tion of fiuid in these sites, Po((d), is not the fixed point
P(w), but A(u). The perturbation in the distribution
of fiuid in these sites, bPo(u), should be taken to be
iurA(w) rather than the iwP(u) that we have used to
derive Eq. (856). This removes a factor of 1/e which,
since v = 2, yields an extra factor of 1/y L in the finite
size scaling. In mean-field theory, where the quadratic
nature of the equation for P restricts us to small pertur-
bations b'P, it is not possible to replace the distribution
of fiuid at the top of the lattice by A(~) (as we have done
here for d = 1) and still obtain an exact solution. How-
ever, we can approximately estimate finite size effects by
replacing P(ur) at the top by P(w) + A A((hj) —P(ur),
which corresponds to randomly cutting off the inputs
to a fraction A of the sites in the top row, and ex-
amining the behavior as a function of A for small A.

Adding fIuid to all the sites at the top is equivalent to

bie(wj = iw(P(wj + k A(wj —P(wj ). Unlike the case

for d = 1, dP(~)/dw~ o is not singular near the critical
point, so that the A-dependent part scales in the same
way as Eq. (851). Thus the scaling of finite size quan-
tities is not anomalous in mean-field theory. We expect
this to also be the case for all dimensions d greater than
1, since except in one dimension there are many sites in
the top row.

4. Breakdown of finite size scaling for d = 1 5. Generalizations

A similar calculation of the effects of a perturbation
can be performed much more easily for d = 1. The dif-
ference is that dP(ur)/du( o is O(1/e), —so that there is
an additional factor of 1/e in b'p, apart from the singu-
larity from the branch cut. We obtain

1 2bp, exp —e m. (856)

This yields v = 2, in agreement with Eq. (828). From
the requirement that b'(u should scale as m ~i+"~, we

find r = 0, in agreement with Eq. (829).
As mentioned after Eq. (3.24), the finite size scaling

is anomalous for d = 1. On substituting d = dy ——1
and r = 0 into the conjectured scaling law Eq. (3.24b),
we obtain the result that the mean number of clusters
connecting the top to the bottom of a region of length L
that is part of an infinite system is independent of L at
the critical point. However the probability p, of a finite
system of length L being connected &om top to bottom
scales difFerently in one dimension: p, (L, E = E&) is the
probability that P,. o a; is greater than zero for all 0 &
m & L, since this is required for Quid to pour out of the
mth row to the (m+ 1)th for all m. At threshold, the
first moment of A(a) is zero, so that the a s represent
the steps of an unbiased random walker. The probability
p (L, ET) is then the probability that a random walker
does not return to its starting point before L time steps,

There are two major simplifications we have made in
deriving the solutions in the previous subsections: (i) the
special form of the distribution A(a) we have chosen, and
(ii) the restriction to no more than two inputs per site for
the mean-field solution (c„=0 for r ) 2). It is important
to ask if the form of the singularities we have obtained
will be modified, if either of these two is changed.

We first consider whether other choices for A(a), also
with exponential tails for a ( 0, but with different forms
for a ) 0, would yield the same exponents. While for
the particular choice of A(a) that we made it was possi-
ble to obtain all the singularities in the complex ru plane,
since the equations we had to solve were all effectively
quadratic, this is not the case for a more general distri-
bution. For instance, for the distribution of Eq. (3.12),
corresponding to A(u) = exp[iEu]/(1 + iur), where the
tuning parameter E shifts the entire distribution A(a)
to the right (a more accurate representation of the effect
of increasing the tilt), Eq. (831) gives a transcendental
expression for P(ur). However, it is only the behavior in
the region around the origin, ~ = 0, which is the same
for all these distributions, that determines the critical be-
havior. The only way in which other singularities could
be important is if, for some particular form of A(u), the
singularity at u = 0 that we have considered were to be
"preempted" by one at (d g 0 that approaches the real
axis earlier. [Singularities with a more negative value for
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Im(u) give rise to corrections that decay rapidly at large
b, and do not change the critical behavior. ] However, if
a singularity at ur g 0 were to dominate, it would lead
to oscillations in P(b, ) at large b, . This is not possible
for a physical probability distribution P(E) which must
satisfy the condition P(E) ) 0. Reasonable distributions
A(a), by other singularities in p(y), single point where all
quantities distributions will be the same. For a nonex-
ponential choice of A(a), we have not been able to solve
Eq. (B7). However, we believe that, so long as we restrict
consideration to distributions which decay away rapidly
for large positive a, the universal results will not change,
though power-law tails in A(a) could certainly lead to
modified critical behavior.

If we allow multiple inputs to a site, Eq. (B14) is no
longer quadratic in P(ur) and, in general, we cannot ob-
tain a closed form expression for the solution. However,
we can still obtain information perturbatively. Expand-
ing around ur = 0 and P = A = 1, with P(~) = 1+p(~),
Eq. (B14) becomes

W

1+p = A((u) ) c„+ ) rcp
1 2 XP(d+— ) r(r —1)c„p + + . . (B57)2. 1+ iu

Any choice of c„'s has to satisfy the constraints g c„=1,
and pre„= 1. To lowest order, Eq. (B57) is

0 = — ) r(r —1)c„p + A'(ur = 0) + ip (u (B58)

with A'(u) = dA(u)/d&u. Thus as before, p has a branch
cut at u = 0, unless y, is adjusted to be equal to iA'(0)
(or c„=h„q, i.e. , the one-dimensional case). With this
choice of p, the lowest-order terms in Eq. (B57) are

0 = — ) r(r —l)c„p + A'(0)(up

the c„'s. We thus expect that the mean-field results are
universal for well-behaved distributions A(a) and c„.

APPENDIX C: MEAN-FIELD THEORY ABOVE
THRESHOLD

In this appendix, we analyze a mean-field version of our
lattice model above threshold, expressed in terms of the
currents rather than the driving force F. This approach
was discussed briefly in Sec. IV.

As in Appendix 8, in mean-field theory each site in
a given level is equally likely to be connected to any of
the sites in the next level down, so that the concept of
transverse distance is irrelevant, and again we expect in-
dependence &om site to site within one level in the large
system limit.

In steady state, the sum of all the currents feeding
into any site has to be equal to the sum of all the output
currents. Close to threshold, most sites will have current
flowing out &om them only over the lowest emerging bar-
rier, so that there is a single outgoing current, J;(& 0),
associated with each site. But, there will be corrections
to this due to the infrequent splits in the rivers. It is con-
venient to consider the process of moving from one level
to the next one downhill in two stages: in the first stage,
rivers are only allowed to join with each other, while in
the next stage, the appropriate rivers are allowed to split.

At the first stage, where there are no river splits, each
site has only one outlet &om it. As in Appendix B, we

simplify the problem by the restriction that each site re-
ceives inputs &om zero, one, or two sites in the previous
row, with probabilities 1/4, 1/2, and 1/4, respectively.
Since the current emerging &om a site, J, , has to be
the sum of the incoming currents, in the absence of splits
the probability distribution of currents P(J) evolves from
one row to the next one down as

+ iA'(0) + A" (0) ur'. (B59)
1 1 1P'(J) = —b(J) + P(J) + — —dJgP(Jg)P(J —Jg)
4 2 4

Thus p = O(u). There are O(us) corrections to the
right-hand side of Eq. (859). As long as the quadratic
part of this equation is of the form (p —Aqu)(p —A2u),
the change in p that is needed to cancel these correc-
tions is O(u )/(Aq —A2). For some value of A'(0) and
A" (0), which depends on the value of the c„'s, Eq. (B59)
will have a double root for p, and then takes the form

(p —A~) = 0. The O(us) corrections to Eq. (859) then
imply that p = Au + O(~s~2), so that we again have a
singularity at u = 0, of the same ~ ~ form as Eq. (B32)
at g = gz, and hence a similar resulting power-law distri-
bution for P(b, ). A complete analysis would require us
to obtain the cluster distribution functions. For a gen-
eral choice of c 's, we have not been able to obtain aa
expression for these. In fact, it is not even clear how to
choose between the two roots for bP within the pertur-
bative approach we are considering here. However, with
the same assumption that we made for general forms for
A(a), about there being a single point where all quan-
tities diverge, the scaling and other universal properties
are likewise expected to be independent of the choice of

(Cl)

(where we have dropped the level indices of Appendix B).
By Laplace transforming Eq. (Cl), it is easy to see that
the steady state distribution P(J) in the absence of splits
is P(J) = h(J), (with an infinitesimal weight out at infi-
nite J to satisfy current conservation), which is what is
expected, because of the tree structure in the absence of
splits.

Equation (Cl) now has to be modified by the effect of
splits. At a site where the flow splits, current is output to
boo sites in the next row instead of one. Close to thresh-
old, the rivers are very sparse, and we can ass»me that
the secondary site that is fed into would have otherwise
had zero current Bowing through it. Thus the efFect of a
river split is to eliminate two sites in the next row, with
outgoing currents J = 0 and J = J;, and replace them
with two sites with currents J; and J~. The equations
that determine J; and J; are

(C2a)
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from current conservation, and

bb = (J )
' ~' —(J )

' ~' (C2b)

where bb; is the difference in the heights of the lowest
and the next lowest barriers out of the site i, and Pp is
the exponent in the local constitutive equation, defined
in Eq. (2.3).

For arbitrary Pp, we are limited to the scaling argu-
ments discussed in Sec. IV; with a probability distribu-
tion for bb that is uniform at small bb (or varies as some

J, = 2J; —bb; = 2J; +bb;. (C3)

With Q(bb) the distribution of bb, Eq (C. l) is modified
to

power of bb), both Eqs. (C2) are homogeneous in the J's,
and so one can rescale currents in an ensemble of systems
with different barrier heights.

For the case of Pp
——1, however, one can readily solve

the resulting equations. Equations (C2) are equivalent
to

P'( J) = —b(0) + P(J—) + — dJ1P(J1)P(J— i)
1 1 1

0
OO J

+ 2 dbb bb P 2J+ b + 2 dbb bb P 2J — b
0 0J OO J

P(J) — dbb(J(bb) —6(J) dJP(J) ddbb)(db) j,
0 0 0

(C4)

where the terms in the brackets arise from the elimination
of two sites with J = 0 and J = J; in favor of J,. and J;
whenever bb; & J;.

It is straightforward to verify that both Eqs. (Cl) and
(C4) satisfy the conservation laws, f dJP'(J) = 1 if
jdJP(J) = 1, and JdJ JP'(J) = f dJ JP(J). In the
critical regime, we guess a form for P(J), which is close
to that in the absence of splits

1 J
bP'( J) = bP (J) + —— dJi b P(Ji )P(J —Ji)

2 2 0

2 dJgbP Jz —JbP J 0.
J

(C9)

and first moments of bP Line.arizing around Eq. (C4),
we obtain (after substituting Q = Qp)

1
P(J) = (1 —c)b(J) + —exp[—J/ ]. (C5)

We can rescale all currents to set a in Eq. (C5) to 1, which
corresponds to Qp ——1/4. Equation (C9) then reduces to

PR = c, (C6)

while the mean current carried is the first moment of
P(J), which is

For small c, this has most of its weight at J = 0, and has
negligible strength for J & O(c). Since we are interested
in the limit, c ~ 0, we only need the form of Q(bb) for
small bb, where we may treat it as a uniform distribution,
Q(bb) = Qp. Substituting this and Eq. (C5) in Eq. (C4),
we indeed find a fixed point distribution P(J) of the form
Eq. (C5) with a = 1/4Qp. The mean density of rivers

PR is given by the weight of P(J) away from J = 0, so
that

6P'(J) = (6 ——)6P(J)
J

+— bP(Ji) exp (Ji —J)/c dJi
2 0

1 1
dJibP(Ji) — JbP(J). —

2 J 4
(C10)

c 1 1 dbP(u)
2 —2A —c+ ——bP(u) +- =0,

1+CQ 6 2 IQ

We look for an eigenvalue solution: bPJ(J) = AbP(J)
Upon Laplace transforming this equation, bP(u)

dJbP( J) exp[ —u J], we have

J OC C (C7)
(c11)

Thus we have pR V J, which agrees with the conjecture
Eq. (4.19) for the case Pp ——1. The probability of river
splits, which is the inverse of the correlation length f',
can be seen from Eqs. (C4) and (C5) to be O(c). Hence

——1/2I

We now consider the stability of this distribution to per-
turbations. Since the first moment of the distribution is
conserved under Eq. (C4) we consider a change bP( J) to
the fixed point distribution P(J), with vanishing zeroth

/g 2

bP(u) =
(1+cu)2

exp [ —2(2 —2A —c)uj (C12)

(with dbP(u)/du]„—p = 0, as required by current con-
servation). If 2 —2A —c were less than zero, transform-
ing back to bP(J) would produce a nonzero weight for
J ( 0, which would be unphysical. Therefore the eigen-
value spectrum of perturbations to the fixed point distri-
bution is bounded above by 1 —c/2. This implies that

where we have used the fact that the zeroth moment of
bP, bP(u = 0), is zero. This can be integrated to give
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the effect of perturbations to the distribution decay over
a length 1jc, implying that

) —1/2

)
(C13)

consistent with the results for J and the distance between
splits as well as the conjectured form Eq. (4.20b). Strictly
speaking, the analysis of perturbations should be carried
out by a fuller analysis of the non-self-adjoint linear op-
erator in Eq. (C4) as was done in Appendix B below
threshold. However, if in that case we had done a simple
search for eigenvalues as done here, the correct scaling
of the correlation length would have been obtained. We
thus trust that a fuller analysis here would again yield
the same scaling law Eq. (C13).

In order to characterize the behavior above threshold
more fully, obtaining the distribution of the fluid as well
as the current distribution, it would be necessary to study
the time evolution of the system instead of just consid-
ering the steady state. With the same distribution of

currents, there are many different steady state solutions
that are possible, since pouring extra Quid into unsatu-
rated sites does not destroy the steady state. The steady
state solution that the system actually reaches is deter-
mined by the initial condition: that we start with Quid

randomly distributed in the sites of the lattice, and then
tilt the system. Unfortunately, with time-dependent dis-
tributions, P(h, J, t), we have not been able to obtain a
mean-field equation for the evolution of the system in
terms of the distribution P. This is because, at any time
t, more Quid moves out to neighboring sites &om sites
which themselves have a large amount of Quid in them.
This diffusion" of the fluid results in nontrivial correla-
tions between 8 (and therefore J) for the different sites;
thus even if we 8tart with the fluid distribution in the
different sites being uncorrelated, this is no longer true
after the system evolves. Note however that this does
not create any difficulties for a numerical simulation of
the lattice (with periodic boundary conditions connect-
ing the top to the bottom). We leave this and further
analytical work for future study.
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