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Calculation of the order parameter of solid hydrogen in the quadrupolar-glass phase
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The calculation of the temperature aud concentration dependence of the quadrupolar-glass (QG)
order parameter of solid hydrogen is presented. Starting from the microscopic Hamiltonian de-
scribing the electric quadrupole-quadrupole interaction, the effective Hamiltonian containing only
commuting operators related to the components of the tensor of molecular quadrupolar momentum
has been obtained. By means of this Hamiltouian the equation for the average QG order parame-
ter has been formulated within the replica theory. The calculated temperature and concentration
dependence of the order parameter is compared with the experimental data obtained by Meyer and
Washburn.

I. INTRODUCTION

In the past 15 years there has been considerable
experimentali i and theoreticalii zz work, includ-
ing Monte Carlo simulations, ' on the orientational
ordering of randomly distributed quadrupole-bearing
molecules of orthohydrogen (o-Hz) in a matrix of spher-
ical parahydrogen species (p-Hz), for concentrations X
of o-H2 molecules smaller than 0.55. The NMR line-
shape measurements, ' ' 'io as well as the damping of
spin echoes and the nuclear spin-lattice relaxationz s s ~

show that, for such concentrations, no long-range order
exists, and it is now believed that solid ortho-para hy-
drogen mixtures for X ( 0.55 form a quadrupolar glass
(QG), in which the local average orientation of the o-
Hz molecules vary randomly &om site to site without
any long-range spatial correlation. The suggestion of the
possibility of the existence of a QG was given by Sulli-
van et al. and was a great stimulus to further investi-
gation, both experimental and theoretical, into the ori-
entational nature of such systems (see, e.g. , the review
by Binder and Regerzs) The qu. alitative description of a
QG is similar to that of the short-ranged spin glass such
as Eu~Sr& ~S. ' In both systems kustrat&on and disor-
der are ingredients leading to formation of a glassy state.
However, the mechanism for formation of a QG is more
subtle and more complex. In spin glasses the &ustration
is a result of competing ferromagnetic and antiferromag-
netic interactions, which are randomly distributed in a
mixed system. In a crystal of solid hydrogen the lustra-
tion exists even in pure orthohydrogen. This is connected
with the topological incompatibility between the con6gu-
ration of lowest energy of an isolated pair of quadrupolar
molecules (a mutually perpendicular arrangement called
a "tee" configuration) and the crystal-lattice structure
(one cannot arrange all molecules with a "tee" config-
uration for nearest neighbors on any three-dimensional
lattice except for the simple cubic one). At a high can-
centration of the o-H2 component, below a certain tem-
perature T the system exists in an orientationally or-
dered phase (the crystal lattice is fcc and space group

Paa) and the interaction energy of the nearest neighbors
is only 0.53 that of the "tee" con6guration. A further
dilution, when o-H~ molecules are replaced by spheri-
cally symmetric p-H2 species leads to a rearrangement
of the enviroments of o-Hz molecules, which below the
critical concentration X, 0.55 becomes so substantial
that long-range order is lost and only the local ordering
characteristic of a glassy state is preserved (see the ex-
cellent discusion by Sullivan et al. is). The structure of
the crystal lattice remains hcp to the lowest tempera-
tures (see, e.g. , Ref. 12). An important feature of solid
hydrogen with a reduced concentration of the o-H~ com-
ponent (X ( 0.55) is the lack of a sharp phase transi-
tion from the orientationally disordered to the QG state
as the temperature is lowered. Numerous experiments
(see, e.g. , Refs. 4, 7, 8, and 10) show that the QG or-
der parameter has a nonzero value at any temperature
and does not exhibit the singularity characteristic of a
phase transition. This indicates a gradual &eezing of the
rotational degree of freedom of o-Hz molecules. The qual-
itative theoretical analysis by Harris and Meyer shows
that in the hydrogen crystal in the QG state, random
local electric-field gradients coupled to the local order
parameter exist, which means that a phase transition is
excluded. A recent renormalization-group (RG) studyzz

leads to a similar conclusion about the absence of a sharp
phase transition. In Ref. 22 the &ee-energy functional in
the Landau-Ginzburg-Wilson form was obtained &om the
microscopic Hamiltonian of the system, and it was shown
that the considered model has no stable 6xed points.
The lack of a stable 6xed point indicates a discontinuous
phase transition in ideal systems, but in random ones it
can lead to a suppression of any sharp phase transition.

The present paper contains calculation of the tem-
perature and concentration dependence of the QG or-
der parameter, starting with the microscopic electric
quadrupole-quadrupole (EQQ) interaction between o-Hz
molecules in the crystal. A treatment with the full EQQ
Hamiltonian containing 6ve noncommuting operators re-
lated to the components of the quadrupolar momentum
tensor of each o-H2 molecule is a complex task and leads
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to a tremendous numerical problem. Therefore we will
replace the exact EQQ Hamiltonian by an effective one
which only enters the commuting operators. The contri-
bution due to the discarded part of the full EQQ Hamil-
tonian can be taken into account to some extent by an
appropriate renormalization of the coupling constants in
the effective Hamiltonian.

The paper is organized as follows. In Sec. II the eKec-
tive Hamiltonian is derived, starting with the full EQQ
Hamiltonian. In Sec. III the equation for the QG order
parameter is obtained within replica theory. It is shown
there that the assumption about a Gaussian distribution
of the EQQ couplings is admissible. This permits one
to perform the averaging over disorder in a much simpler
manner than with the assumption about isotropically dis-
tributed average local orientations of o-H2 molecules. An
analysis of the low-temperature asymptotic behavior of
the QG order parameter is performed in Sec. IV. Finally,
in Sec. V the temperature and concentration dependence
of the QG order parameter is presented and the agree-
ment of our results with the data obtained from NMR
experiments is discussed.

25
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and the operators J,-, J,". , and J, denote the components
in the local coordinate system of the angular momentum
operator J; related to the molecule located at the ith
site. The couplings pP" which enter Eq. (2) have the
form 2 (cf. also Ref. 28)

II. EFFECTIVE HAMILTONIAN
(Sc)

As Nakamura has shown many years ago, 2v the EQQ
interactions are the most important orientational inter-
actions between molecules in solid hydrogen. In the solid
state, only the rotational states with the lowest J are
populated, and one considers the spherical symmetric p-
H2 species with J = 0 and quadrupolar o-Hs molecules
with J = 1. Therefore, the components of the molecular
quadrupolar momentum tensor can be replaced by their
operator equivalents in the manifold J = 1.2s It is con-
venient to specify the orientations of the o-H2 molecule
at a given site to the local coordinate system chosen so
as to coincide with the principal axes of the molecular
quadrupolar momentum tensor. ' ' Thus, the Hamilto-
nian of our system can be written in the form (see, Ref.
22),

where x; = 0 and 1 for p-H2 and o-H2, respectively, and
the summation in Eq. (1) runs over sites of the hcp
lattice,

C(224~MN) denotes a Clebsh-Gordan coeK-
cient, Y4M+~ is a spherical harmonic, A;z ——(0;~, &p;~)

specify the orientation of the intermolecular separation
vector R;~, DM2„ is a rotation matrix, and y; denotes
the triad of Euler angles o.;,P;, p, describing the orienta-
tion of the local coordinate system of the ith molecule to
the coordinate system fixed in the crystal. In Eq. (4)

6e2Q2r=
25R5

is the EQQ coupling constant for a rigid lattice, where eQ
is the molecular quadrupolar momentum and R denotes
the intermolecular separation between nearest neighbors.

However, in the calculation of I' the dielectric screening
and static and dynamic renormalization due to phonon
interactions should be taken into account. '3 Therefore,
we will assume F = 0.82 K.s ' It is convenient to in-
troduce instead of the operators 8," (3) the operators SP
de6ned as

(7a)

2

a,, = ) ~,",."o,". v,", (2) 5+I (~+I ~ g —
2) (7b)

with

= 3(J') —2,

g+1 J+Jz + JzJ+

(3a)

(3b)

S,- =D,-,

S—1 @+1 g —1)
a

(Vc}

(7d)

~+2 (J+)2 (3c) g —2 ' (~+~ ~—
r) (7e)
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Note that the operators S,". (7) differs from those used in
Ref. 16. The Hamiltonian (1) rewritten in terms of S,".

takes the form

s+'
) (10b)

+2
H = —-) ) J,", *;SP~,S;,

pv: —2

(8)

and ( )7 denotes a thermal average. Obviously, the op-
erators Qo, and Q2, commute and satisfy the condition

Qo, , +Q2, , =1

&i= oi T) (9)

where the 25 couplings J,-." are simple linear combina-

tions of p,".' 's (4). We will not write them in an explicit
form and only note that the matrices

ll J,".
"

ll and
ll p,".

are related by the unitary transformation. In addition
the J,". 's are real and J,".

" = J,".
In the local coordinate system only two intrinsic

quadrupolar parameters remain (cf. Ref. 7), i.e. ,

The local quadrupolar parameters 0; (9a) and g; (9b)
measure, respectively, the alignment of the orthomolecule
along the local zi axis and its eccentricity.

The problem now is to calculate the eH'ective Hamilto-
nian containing only the commuting operators Qo; (10a)
and Q2; (10b). Following Ref. 16 we decompose the
Hamiltonian H (8) into two parts: the diagonal part Ho
and the nondiagonal (in the eigenstates of Hp) Hq, de-
Gned as

n' = (Q2, ')T, (9b)
and

H. = -- ) ) J,","z;S,"*S'.
igj p, v=0, 2

where H1 ——0 —00 .

Qp, , ——1 ——(J,') = ——S;, (10a) The partition function Z = exp[—P(Hp + Hq)] can be
written as the following series (cf. Ref. 32)

P Tl &k —1

Z= 1+) (
—1)" d).) d).2

A:=1 0 0 0

oo p Tk —1

= 1+) (
—1)" d~, d).),

k=1 0 0

«),Tr e 'H~()~)H~()2) ' ' ' H$(~y)

m)m1 )''')mac

(14)

@0 @0
e ~ -(mlHglm, ) (mi, )lH)lm)e ' - -~) e"

where E& and lt) denote, respectively, the eigenenergies
and normalized eigenstates of Ho (12).

We expect that the secular terms in the series (14) are
of primary importance. Therefore, taking into account
the matrix elements (tlH) lr) with Et ——E„one can per-
form the integrations over v parameters, obtaining the
following result,

Taking into account that (mlH) lm) = 0, with the help
of Eq. (14) we get the partition function in the form

Z = Trexp( —PH, g) . (17)

If we restrict ourselves to the second cumulant, the H,g
reads

Z ) e ~ (mle ~ 'lm) . H.,= H, ——(H,'),

Now we write the quantum-mechanical average of
exp( —PH) ) with the help of the cumulant expansion

I

(ml exp( —&H) ) I)))) = exp —&(mlH) lm)

where (. )g; s denotes the diagonal part (in the eigeu-
states of Ho).

Taking into account the properties of the angular mo-

mentum operators in the manifold J = 1 we obtain the
following relation, which is helpful to calculate (H) ) &.

p2
mH1 m

—(m/H, /m) )+
(16)

I

(S,"S,".

) . = b„„(a„+t)„Qp; + c„Q2,) + d„„Q2, ,

(19)

where
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3 3
2 2
—++1 = —++2 = +0 = 2

3
2

——b~2 ——3bg1 ——bo ——2)

2
CP = C+2 = 0~ C+1 ~3'

(2O)

+2

V; = —) z, ) (J,".,-")2c„a„
2 PV=

p=+)—2

(26e)

and and

i@pi —2 (4&4'2 + 424'0) . (21) AJ = AJ"
U 2t

We expect that the main contribution to (H&)s; s
comes from the two-body terms. Discarding the
three-body terms one obtains

In Ref. 16 an effective Hamiltonian similar to ours [Eq.
(23)] has been introduced, but the contribution related
to d»i has not been taken into account.

(22) III. QG ORDER PARAMETER

where

Pv= —2 @v=0,+2

With the help of Eqs. (19), (22), and (23), we have

H, rr = ——) ) JP~"z; Q„;i;Q„,
P v=0~2

+2

H, (i, ') = — ) J,.",."S,". S,". ) J,","S,"S," . (23.).
The orientational free energy of our system is

Il = —k~T[lnZ] „, (27)

where kJBT = P i and [ ] „denotes an averaging over
disorder. The partition function Z in Eq. (27) will be
used in the approximated form (17) with H,g (24). One
of the standard methods to calculate the f'ree energy of
disordered system is the replica approach (see, e.g. , Ref.
33). Applying it, one obtains

where

with

i p, =0,2

JPV JPV + ~JPV

(24)

(25)

with

1
I" = —k~T lim —lnZ„

n-+0 ~ (2S)

(29)

+2
J.o.o = ~ ) (J..") b b„- ) (J

Pv= —2 p,v=0, 2

(26a)

+2
b,J;, = — ) (Jf~") c„c„+8

Pv= 2 @=+1)—2

(26b)

+2
b,J02 = — ) (J,",-")'b„b„+4

Pv= —2
) J" J"'b„

@=+1,—2

(26c)

+2

V; = —) i~ ) (Jf~") b~a„— ) (JP~") b„a„
gLv= —2 @v=0,2

(26d)

where H,& is the ath replica of the effective Hamiltonian
(24).

The problem now is to perform an averaging over dis-
order in Eq. (29). The disorder is introduced to H, rr

(24) by the numbers i, and the couplings JP~" via the
triads of the Euler angles g; and yz which character-
ize the random orientations of the local coordinate sys-
tems. Since in Ref. 22 it was assumed that orienta-
tions of the local axes are isotropically distributed over
all solid angles independently of the configurations of
the o-H2 molecules, 'i ' s is 22 the operation [ .] „was
decomposed there into a sequence of two stages: first
one averages over directions of the local coordinate sys-
tem (the orientational averaging) and then over config-
urations of o-H2 species. In fact, y; is correlated with
the distribution of o-H2 molecules, so that the EQQ
coupling p,".

"
(4) (and consequently J,". .") depends on

the set (ii, . . . , ii„.. .) with i; = iz ——1 which char
acterize the configuration of o-H2 species. If we as-
sume that each of such random configurations gives an
equal (with accuracy to the 6 sign) contribution to
the value of the EQQ coupling p,"-." (J,". .") we obtain a
Gaussian distribution for these variables. In theories of
spin and quadrupolar glasses the Gaussian distribution
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of random couplings is widely exploited; ' therefore
the above idea seems to be acceptable. An additional
advantage of the Gaussian distribution in our problem is
that all moments of the EQQ couplings can be calculated
in a simple way, whereas the orientational averaging gives
complicated formulas for moments higher than the sec-
ond. Guided by the result of the orientational averaging
(cf. Ref. 22) we write

with

V,-"V,", = b,; b„„D,

D2 P2 ) J4"
(625)2

(37)

(38)

and

(30)

Finally, Z„has the form

& 5000

~,",'~,"," = (&*' ~~~ 4,
+h;~ 8;,b„„h„,„)A„A„J;

where
with

Z„= [Tr exp( —P'R)] -,

(32)

and denotes the Gaussian averaging with the fixed
numbers x; and z~. Taking into account that the ma-
trices

~]
JP"

~~
and

]~ p,". ."
~]

are related to each other by
unitary transformation with the help of Eqs. (30) and
(31) one obtains

J,",
" =0

where

D2 ) ) "aa
(41)

(42)

and

J,".
"
JP,.", = (b;, S~, b„„8„„+h;, 8;,b„b„)A„A J;, .

The parameter J entering Eq. (32) is related to the
variance of the introduced Gaussian distribution and
does not necessarily have to be the same as that calcu-
lated with the orientational averaging. Unfortunately,
we have no possibility to calculate it Rom first principles
in the case of the Gaussian averaging. Therefore we will
use here its value calculated in Ref. 22. Thus, taking
into account the result of Ref. 22, we have

Here q",. is the ath replica of the operator q," [cf. Eqs.
(»)].

In Ref. 16 equations similar to (37)—(39) have been ob-

tained, however the term corresponding to (V~2) has not
been taken into account. This is essential because in such
a case the terms diagonal in replica indices contain the
6elds coupled to the molecular quadrupolar momenta,
which in turn lead to the nonvanishing global quadrupo-
lar momentum of the system. Such a situation cannot
appear for the pure QG state. In the present work this
disadvantage is avoided since the contribution due to the
terms diagonal in replica indices is some inessential con-
stant.

It can be shown that

J = — —I'.5 35
8 3

(35)

With the help of the procedure discussed above one ob-
tains Z„(29) in the form where

1) ).[(q; )~]=,
aa'

(43)

2 n

Z = exp —) H& H&(a) a

~~I—] x

where [
.]- denotes an averaging over x; numbers. In

Eq. (36) the higher moments of H~gl than second have
been neglected (cf. the discussion in Ref. 22) and it has

been taken into account that H,& ——0.(~)

According to the requirement that the ~ ~ averaging of
a product of couplings J,- - for given sites i, j is performed
at the fixed numbers x, and x~, a dependence on x s in
the exponent on the right-hand side of Eq. (36) is pre-
served, and hence the presence of the operation [. ]- in
(36). To calculate Z„(36) we use the following relations

(. )24 = Tr exp( —PR) . (44)

In Eq. (13), q is equal to the average QG order param-
eter defined as"

[ 2+ 2]

We will calculate q within the mean-field method. Such
an approach gives exact results in the thermodynamic
limit for systems with long-ranged interaction (see, e.g. ,
Ref. 33). This is not the situation for solid hydrogen,
wher«he EQQ interaction is not long ranged (see e.g. ,
Refs. 1 and 12) and effects of correlations should play an
important role. However, taking into account the com-
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F = F(z) (45)

where

F(i;) = ——) J i;q;z, q, + —) f,'z;

k~T )—— dxdye & ~ +" )

~ 2'

«le e'y~""+2ceeh fe;y)
~ ex P~3

ee

(46)

denotes the &ee energy at the fixed values of the x, num-
bers. The field f; which enters Eq. (46) is defined as

plexity of the problem, we treat the mean-field method
as a first step in the calculation of q. Furthermore,
the replica symmetric theory will be used. At present
the replica symmetry-breaking scheme for quadrupolar
glasses is rather an obscure problem.

After a Sherrington-Kirkpatrick type of procedure (cf.
Ref. 33) we obtain the free energy (27) with Z„(40) in
the form

where

(PJ)' - 1/2
P—J q(p) + [33q(p) + 54j

25 5000

and q(p) denote the order parameter assigned to a given
site in whose neighborhood there are p molecules of the
orthohydrogen. For the hcp lattice the coordination num-

ber z = 12; therefore 0 & p & 12. If we assume that the
probabilities to find at a given site an o-H2 and a p-

H2 molecule are X and (1 —X), respectively, where X
is the concentration of the orthohydrogen, the averaged

QG parameter q can be calculated as follows

zt
q = ) '

(1 —X)' ~X~q(p),- p.'(z —p)'p=1
(52)

with z = 12. Note that q(0) = 0 as it is seen from Eq.
(50).

In Ref. 16 a similar equation to (50) has been ob-
tained; however only the contribution due to unrenor-
malized couplings JP~" has been taken into account.

f, =) J, z q~+~D (47) IV. LOW- TEMPERATURE ASYMPTOTIC
BEHAVIOR

aF(*.,)
Bqy

(48)

with x; = 1. The QG parameter q is obtained as

q= [q'I-. (49)

The parameter q; which refers to the fixed distribution
of o-H2 species in the neighborhood of ith site occupied
by the o-H2 molecule is calculated from the extremum
condition of F(x;) (46)

Now we wish to calculate the low-temperature asymp-
tote of the QG order parameter. The form of Eq. (50)
for T/ J « 1 can be conveniently obtained after changing
the integration range in (50) for both variables z and y
from (—oo, oo) to (0, oo). After this it is easy to see that
the most essential contribution in the low-temperature
limit to the integrand in (50) is

8(ag —a2)e ' ' + 8(cx2 —o.g)e

We will take into account only the EQQ interaction for
nearest neighbors. Finally, from the condition (48) one
obtains the following equation

where

C11=GP ' Z)1/2 (54a)

q(p) = 1 —— dxdye2'
1+2e ~ cosh(gp~~2y)

-2 )

e ~'~' +2cosh( —p & y)

(50)

&2= P
3

(54b)

Here 8(x) is the step function, equal to zero and one for
x & 0 and x ) 0, respectively. After the substitution of
(53) together with Eqs. (54) into Eq. (50) and integra-
tion over one of the variables, one obtains

y(y) = ~ — [
OOa2 + &++

e 2 dze y + 1 —erf~ +
0

e' f dee ' ~ 1 —ecf( ) ), (hh)

where erf(z) is the error function. In the low-temperature
limit the parameter a (51) becomes large. Therefore in
Eq. (55) we substitute the asymptotic form of the error
function for a large argument (cf. Ref. 35). A straight-

forward calculation leads to the following result

, , (T'lj' )T&'
q(p) = 1 —28.736p'i — + 0
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Obviously, the concentration-dependent QG parameter q
is calculated with the use of Eq. (52). It can be shown
that the temperature-dependent term in Eq. (56) comes
from the parts AJ,".

" of the effective couplings J,"" [cf.

(25), (26a), and (26b)j, which take into account the in-

Huence of the nondiagonal terms of the EQQ Hamiltonian
responsible for the quantum eKects. This is in agreement
with the opinion that at low temperatures the quantum
nature of systems is demonstrated.

V. COMPARISON WITH EXPERIMENT AND
CONCLUSIONS

Several groups have studied ex-
perimentally the orientationa1 ordering in the solid
ortho-para hydrogen mixture. The QG order parameter

pt can be observed directly by the NMR technique.
For a powdered sample q, pt is given by the relation

5~intra
2gexpt— (57)

'I .2
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q 0.6
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FIG. 2. Comparison of the temperature dependence of the
calculated QG order parameter q with that measured experi-
mentally (D) by Meyer and Washburn (Ref. 8).

FIG. 1. Calculated temperature dependence of the QG or-
der parameter q for three representative concentrations X
of the orthohydrogen. The triangles refer to the data of
Meyer and Washburn (Ref. 8) for the reduced parameterIintra(T ~))Minter (O
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where M2 t' is the intramolecular component of the sec-
ond moment of the NMR line shape and d = 57.7 kHz
is the intramolecular nuclear dipole coupling parame-
ter (see, e.g. , Ref. 8). The observed second moment
M2 is the sum of M2" ' and M2" ', the latter being
the contribution &om the intermolecular nuclear dipolar
interaction. ' The series of experiments by Meyer and
Washburn and Edwards et al. showed a continuous
evolution of M2 with temperature, which indicate that
the sharp phase transition is suppressed. The results ob-
tained by these two groups are in agreement. Here we

will compare the calculated temperature and concentra-
tion dependence of q with the data tabulated in Ref. 8.
The component M2"" we take in the form

q

oo i

0 1 0.3

FIG. 3. Calculated concentration dependence of the QG
order parameter for T = 0.5 K. The triangles refer to the
data of Meyer and Washburn (Ref. 8).

M'"'" = —M = 40X (kHz')
4

9 2 (58)

where M2+v is the Van Vleck second moment and I de-
notes the concentration of the orthohydrogen.

In Fig. 1 the temperature dependence (T dependence)
of the QG average parameter q is shown for three rep-
resentative concentrations of orthohydrogen (X = 0.25,
0.39, and 0.45). The triangles refer to the reduced param-
eter q„s = M2 ' (T, X)/Mz '

(O, X) calculated f'rom

data given in Ref. 8. It is seen that agreement of our
results with the experiment is quite good for I = 0.45.
For lower concentrations of orthohydrogen the quantita-
tive agreement is worse, but the qualitative form of the
variation of q with temperature is very similar to that
obtained &om experiment.

Note that the T dependence of q calculated in the
present paper is in better agreement with experiment
than that obtained in Ref. 17. The T dependence of
q presented in Ref. 17 shows in the range T 0.3—1.0
K a much slower decrease of q with temperature than
that shown here for q„g. Hence the qualitative form
of the T dependence of the average the QG parameter
calculated there divers signi6cantly &om that measured
experimentally.

In Fig. 2 a comparison of the calculated T dependence
of q with that for q,„zt obtained &om the data of Ref. 8
(the triangles) is presented. We see that at low temper-
atures there are rather large discrepancies between the
theory and experiment. This can be explained by the
presence of strong zero-point motions, ~2 ~s which mean
that the QG order parameter does not tend to l. Our
efFective Hamiltonian (24) takes into account quantum
e6'ects only implicitly, and the inclusion in the theory of
the nondiagonal part of the EQQ interaction in an ex-
plicit form would probably improve the results. Also for
this reason the asymptotic behavior of q at low temper-
atures (56) is only a crude qualitative result.

Finally, in Fig. 3 a comparison of the concentration
dependence of q with the experimental datas (the trian-

gles) is shown for the temperature T = 0.5 K.
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