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Using both numerical and analytical techniques, we investigate various ways to enhance the cubic
nonlinear susceptibility y, of a composite material. We start from the exact relation

y, =g,p;y; ((E.E) );„„/Eo,where y; and p; are the cubic nonlinear susceptibility and volume fraction

of the ith component, Eo is the applied electric field, and (E ),
„„

is the expectation value of the electric
field in the ith component, calculated in the linear limit where y;=0. In our numerical work, we

represent the composite by a random resistor or impedance network, calculating the electric-field distri-

butions by a generalized transfer-matrix algorithm. Under certain conditions, we find that y, is greatly
enhanced near the percolation threshold. We also find a large enhancement for a linear fractal in a non-

linear host. In a random Drude metal-insulator composite g, is hugely enhanced especially near fre-

quencies which correspond to the surface-plasmon resonance spectrum of the composite. At zero fre-

quency, the random composite results are reasonably well described by a nonlinear effective-medium ap-

proximation. The finite-frequency enhancement shows very strong reproducible structure which is near-

ly undetectable in the linear response of the composite, and which may possibly be described by a gen-

eralized nonlinear effective-medium approximation. The fractal results agree qualitatively with a non-

linear differential effective-medium approximation. Finally, we consider a suspension of coated spheres
embedded in a host. If the coating is nonlinear, we show that g, /g„„»1near the surface-plasmon res-

onance frequency of the core particle.

I. INTRODUCTION

The electrical and optical properties of composite
media can differ dramatically from those of their constit-
uents. ' In a simple picture, these differences arise from
local electric-field fluctuations. The constitutive proper-
ties (i.e., the conductivity or the dielectric function) vary
widely within the composite. This leads to similar varia-
tion in the local electric fields and currents and, hence, to
large enhancements or decreases in averaged quantities,
relative to their values in homogeneous media.

In this paper, we are concerned with the cubic non-
linear properties of various binary composites. Non-
linearities in composites have attracted considerable re-
cent attention, both at zero frequency ' and at finite

frequencies. ' ' In materials with cubic nonlinearities,
the electric displacement 0 and electric field E are relat-
ed by

D =eE+x IEl'E,

where e and y are the (position-dependent) dielectric
function and cubic nonlinear susceptibility. As has been
discussed elsewhere, the effective composite susceptibili-
ty g, can be enormously enhanced, relative to its value in
a homogeneous medium. As in linear media, this
enhancement arises from local field fluctuations, which

play an even larger role in nonlinear than in linear
response functions. '

Enhanced nonlinear response is of both fundamental
and practical interest. Like the linear response functions,
the nonlinear ones diverge near a percolation threshold.
The analytic form of this divergence is of interest as a

critical phenomenon. From a practical viewpoint, ma-
terials with large g, 's may be useful as optical elements,
e.g., as fast intensity-dependent optical filters. '

In this paper, we consider a variety of ways to enhance
the g, 's of composite media. In many calculations, we

model these composites as random impedance or resis-
tance networks. While obviously idealized as descrip-
tions of real materials, these models can be accurately
treated numerically. Using recently developed ap-
proaches, not only the effective impedances of the net-
works, but also the distribution of electric fields or dis-

placements can be calculated. The fourth moments of
these distributions are related, by an exact theorem, to

g, of the networks.
We also compare our numerical result to simple ap-

proximations. For random composites at zero frequency,
a nonlinear effective-medium approximation' qualita-
tively describes our results. When one of the components
is distributed in a nonrandom fashion, e.g. , fractally, the
numerical results appear consistent with a differential
effective-medium approximation which is an extension of
a previous linear approach. This approach correctly
predicts a large enhancement of y, when linear fractals
are embedded in a nonlinear host. Our numerical results
for random networks at finite frequencies may be con-
sistent with a somewhat generalized effective-medium ap-
proximation. More important, y, for such networks ex-

hibits a great deal of structure in frequency which is near-

ly undetectable in the underlying linear response.
Besides network models, we also consider a distribu-

tion of small spheres of linear material with a nonlinear
coating and embedded in a linear host. The nonlinear
response of the coating is hugely increased at certain
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characteristic frequencies close to the surface-plasmon
resonance of the underlying sphere. We present simple
model calculations of this enhancement, assuming Au
core particles, and using the fourth moment formalism of
Ref. 9. Our results are analogous to that predicted for a
metallic coating on a nonlinear spheroidal particle, using
a somewhat different approach, ' and are formally similar
to those of Ref. 22.

%e turn now to the body of the paper. Section II re-
views the forrnal basis of our calculations and our method
of calculation. Section III gives numerical results for
random composites at zero frequency, and compares
these with a nonlinear effective-medium approximation.
Numerical results for fractal clusters in two dimensions
(d =2) are presented in Sec. IV, and compared to the
predictions of a nonlinear differential effective-medium

approximation. Random media at finite frequencies are
treated in See. V. Numerical results for coated spheres
are given in Sec. VI, followed by a brief discussion in Sec.
VII.

A useful approximation for an average in Eq. (3) is to
make the approximate factorization' '

((E e)'&;„„=((EE)&';„„. (6)

p, (E'&,

Eo

Bl7q —F.
Boi

where 0, and o; are, respectively, the effective conduc-
tivity of the composite and of the ith component, it fo1-
lows that y; can be written approximately as

X, =QXF ~p; (8)

This factorization is sometimes termed the "nonlinear
effective-medium approximation" (EMA) because it ap-
proximates the spatially fluctuating electric field within
one component by a single value. We expect it to be most
accurate when fluctuations in the electric field within one
component are not too large. Since ((E E) &;

„„

is given
exactly by'

II. FORMALISM AND METHOD

The basis of our method is an exact result proved by
several authors, ' which connects g, to the fourth mo-
ment of the electric field in the linear limit. We describe
this result first at zero frequencies. Consider a composite
in which the local current density J(x) and electric field
E(x) are related by

J(x)=o(x)E(x)+X(x)IE(x)I'E(x),

where o'(x) and X(x) are the local conductivities and cu-
bic nonlinear susceptibilities. Then the theorem ' states
that the effective nonlinear susceptibility X, is given by

where ( &, b„denotes a volume average over the
volume of the ith component in the linear limit (i.e, . when

X; =0), p; is the volume fraction of component i, and Eo
is the space-average field within the composite. This
theorem is very useful, because its connects the compos-
ite nonlinear response to the nonlinear response functions
of the constituents, and an average over the linear prop-
erties of the composite.

To separate these dependences more explicitly we in-
troduce enhancement factors

(E E)'&„,
„

4

in terms of which

Xe g PiXiel

Evidently, e,. is the fractional increase of the fourth mo-
ment of the electric field in the ith component relative to
its applied value. It represents the factor by which the
nonlinear susceptibility of the ith component is enhanced,
per unit volume, in the composite.

Oe
' o;+(d —1)o,

=0.

However, one may still make the decoupling approxima-
tion (6) in conjunction with some other approximation
for o, .' Indeed, we find in the calculations below that
the nonlinear EMA works reasonably well at finite fre-
quencies only if the correct form for o, (or, at finite fre-
quencies, e, ) is used in Eq. (8).

Equation (3) is readily generalized to finite frequencies,
provided one makes the "quasistatic approximation, "
where E is expressed as the negative gradient of an elec-
trostatic potential. This is usually reasonable for inho-
mogeneities much smaller than the wavelength of light in
the medium. In the quasistatic limit, the composite is
conveniently described in terms of a displacement field D,
whose imaginary part is related to the usual transport
current density,

D(x) =e(x)e(x)+X(x) I E(x)I'E(x),

and X, is given by expressions similar to (3) and (5):

g,X, ((E.E')(E.E) &,
„„

X, =
' „'=—g;p;e;X;.

0

Here E(x) now denotes a complex quantity, such that the
physical electric field at position x at time t is
Re[E(x)exp( i tot)]. All quantities —in Eqs. (10) and (11)
are frequency dependent, and the averages ( .

&;„„are
still to be carried out in the related linear material.

The decoupling approximation (6) can also be general-
ized to finite frequencies, with the results

or equivalently e; =F; /p; .
The EMA is completed by calculating o, {or

equivalently F, ) from some approximation. One possible
approximation for o, is, of course, the linear effective-
medium approximation, which in d dimensions is given
by
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where now

(12) III. RANDOM BINARY COMPOSITES
IN THREE DIMENSIONS: ZERO FRKQUKNCY

BE
(13)

E;

and e, and e; are the complex, frequency-dependent
dielectric functions of the effective medium and of the ith
component. If one chooses to calculate e, in the linear

EMA, then e, satisfies

E'e

'
e, +(d —1)E,

(14)

In most of our calculations, we will apply Eqs. (3) or
(11) to a binary composite modeled as a cubic mesh of im-
pedances in two or three dimensions (d =2 or 3). The
impedances are of two types, generally denoted A or B,
and are distributed according to various random algo-
rithms as described below. The effective linear conduc-
tances or admittances of the networks are calculated us-

ing the transfer-matrix algorithm. The distribution of
electric fields is obtained using a generalization of this al-
gorithm due to Duering et al. These distributions are
needed to calculate the fourth moments from which g, is
calculated at either zero or finite frequencies. The net-
works are assumed to be L, XL, or L„XL„XL, in two
or three dimensions (with L, ))L, and all the L's in-

teger). With this choice of sample, we effectively average
over (L, /L„) realizations of cubic samples of size L„.
The boundaries at x =0 and x =L, are held at potentials
0 and V, respectively. In three dimensions, we impose
periodic boundary conditions in the y direction (this issue
does not arise in two dimensions). Further details of the
numerical method are given in Refs. 25 and 30.

%'e begin by considering a d =3 network having two
types of bonds, A and B, with conductances g~ and

gs(g„)gs),present in proportions p„and ps —= 1 —p„,
and distributed at random in the composite. Our calcula-
tion is carried out for L =10, L, =2500, equivalent to
averaging over 250 samples of size 10 .

Figures 1(a) and 1(b) show the relative enhancements
e~ and ez, plotted as functions of p~ for g~ = 10, g~ = 1,
and for g~ =10, g&=1. Clearly, ez has sharp maxima
near the percolation threshold (p„=0.2492) where the A

bonds would first form an infinite connected cluster in an
infinite sample. The enhancement is about a factor of 100
for g„/gs=10, and somewhat less for g„/gs=10 . e„
exhibits no peak near p„=0.25. The large values of e~
near percolation can presumably be understood in terms
of large current distortions (and consequent field
enhancements) near the tips of the large clusters that
form near percolation. The greater enhancement for the
larger ratio g„/gs can also be understood in this way:
The larger this ratio, the more radically the fields are dis-
torted, leading to larger field enhancements.

We now compare these results with the predictions of
the nonlinear e8'ective-medium approximation, assuming
both the decoupling approximation [Eq. (6)] and the
linear EMA [Eq. (9)]. Figures 2(a) and 2(b) show the
EMA enhancements e„and ez corresponding to the ex-
amples of Fig. 1. Evidently the EMA predicts, at least
qualitatively, the sharp increase in ez near the percola-
tion threshold. Similar results using a slightly different
method, and comparable agreement with the EMA, have
been obtained by Yang and Hui in d =2.
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FIG. l. Enhancement of y, in a three-dimensional (d =3) random binary composite of two conductors at zero frequency, as cal-
culated numerically. In both (a) and (b), the solid curves correspond to A and 8 bonds having conductances g& =10000, g~ =1,
while the dashed curves represent g„=1000ge = l. In (a) and (b) we plot p„e„andpeee, where e; =—(E );/Eo and p; is the concen-
tration of bonds of type i for these two cases. (E ); represents the average of the fourth power of the electric field in a bond of type
i; E& is the applied electric field.
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FIG. 2. Same as Fig. 1, but
calculated using the effective-
medium approximation.
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We now try to interpret the critical behavior near p,
"

in the light of previous work on network properties near
the percolation threshold. In the limit g~ /gs~ ~, it is
expected that

~
~p p A~+r+2t

A
/

—a —2s

(15)

(16)

Here t and s are the usual percolation critical exponents,
defined by

oA(PA P. ) (P &P )

trB(P PA) (P &P )

(17)

(18)

(20)

where the quoted uncertainties are simply guesses based
on the bounds for ~ and sc' and the postulated very small
error bars on s and t.

Equation (20) implies a strong divergence in es in
d =3, consistent with both our simulations and the
EMA.

It seems somewhat surprising that ez is actually
larger than that obtained numerically. We speculate that
this is an artifact of the finite I. . In the limit of very
large gz/gs, Eq. (16) implies that es ~ g"+ ' ', where

is the percolation correlation length which diverges on
either side of p," according to the power law

g~
~ ~p

—p, ~
. Since g~ is bounded by the finite trans-

verse dimension I.„,the numerically calculated ez cannot
exceed an upper bound proportional to I.„' + ' . In
our system, where I.

„

is only 10, this limits the growth of
e~. If we were able to carry out our calculations on sam-
ples with larger cross sections, we expect that the peak in

while a and a' describe the critical behavior of random
resistance fluctuations near p,". Using estimates based on
a nodes-links-blobs model of the infinite cluster near p„
Wright et a/. ' have proposed the bounds 1.53 ~z~ 1.60,
0.38 ~ v' & 1.02. Combined with the currently accepted
estimates t=2.0 and s=0.77 for lattice percolation in
d =3, these imply

(19)

es would be larger, and perhaps comparable to the EMA
result.

IV. FRACTAL DISTRIBUTIONS
IN TWO DIMENSIONS

Since a fractal bond fractal distribution can greatly
infiuence the linear response of composites, it is plausi-
ble that fractals will have similar influence on the non-
linear response. We now consider this question, restrict-
ing ourselves to d =2, in which relatively large fractals
can be considered.

As in d =3, we assume two types of bonds, with con-
ductivities g„andgs (g„&gs ), present in concentrations

pz and 1 —pz. The A bonds are arranged in an ordered
"cross" fractal of stage k, and embedded in a matrix of B
bonds. The fractal is initiated by embedding a cross of
four A bonds in a B matrix. A stage-k cross fractal is
constructed by adding four stage-(k —1) fractals to the
sides of a central stage-(k —1) fractal (cf. Fig. 2 of Ref.
27). Thus, a stage-k cluster contains 4 X 5 ' bonds,
spans a linear dimension 2 X 3 ', and has fractal dirnen-
sion df =ln5/ln3.

Table I gives our results for ordered fractals in
various-sized lattices, assuming g„=10,gz =1. For
ease of comparison, the network in each case has a linear
dimension four bonds larger than the enclosed fractal.
Evidently, e~ &&1, while e„shows no enhancement. Fur-
thermore, e~ increases strikingly with increasing k. We
have also calculated e~ and e~ in fractal networks for
which the (fractally arranged) type-B bonds have the
larger conductance (g„=10,gs =1.0). The results
(Table II) show that this type of network produces a
smaller enhancement than the reverse situation, but that
the nonlinear enhancement is still substantial.

For comparison, we also list e& and e& in random
two-dimensional networks in which gz and gz have the
same values as in the fractal networks. For analogous
concentrations of A and 8 bonds, e~ is orders of rnagni-
tude smaller than in the fractal networks.

It may appear surprising that ez appears to diverge
with increasing k in Tables I and II, even though the
fraction of bonds in the fractal is decreasing towards zero.
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Stage Size NW' size pw

3 18
4 54
5 162
Random N/A

22
58

166
166

0.103 0.105
0.0743 0.093
0.0454 0.064
0.100 0.175

22.686
178.83

1383.1
1.6447

'Network.

TABLE I. Enhancement of nonlinear susceptibility in two-
dimensional square networks containing cross fractals (fractal
dimension ln5/ln3) at various stages. The linear dimension of a
cross fractal at stage k is 2X3 ', and it contains 4X5'
bonds The columns denote the fractal stage, the linear dimen-
sion of the fractal, the linear dimension of the network, the real
fraction of type-A bonds, and the average value of E on an A
bond and on a B bond (normalized to the applied electric field).
The last row corresponds to a random distribution of A bonds.
In all these networks, g& =10,g& =1.

of length scales. This is certainly a valid concern and
ht erefore, the connection between the two geometries can

only be a loose one. Our point here, however, is only that
numerically similar behavior seems to be occurring in
both types of systems.

As already mentioned, our results for a given stage of
fractal depend sensitively on the size of the embedding
network. To illustrate this, we have calculated the non-
linear response of three samples generated from the same
fractal but with different network sizes, always assuming

4g„=10,gz= 1 (cf. Table III). Evidently, ez falls off
dramatically with increasing network size. To explain
this, we show in Figs. 3(a) and 3(b) the electrostatic po-
tential for a stage-4 fractal embedded in a 58X58 net-
work and a 100X100 network. Obviously, the electric-
field enhancement near the fractal tip is enormous when
the fractal nearly spans the sample, while for the larger

This is probably because the lattice sizes in these tables
are always four bonds longer than the enclosed fractal.
Thus, although the density of A does indeed go to zero as
the stage k goes to infinity, one is still not exactly in the
"dilute limit" in which the influence of the fractal is
confined to a small fraction of the total area. As one can
see from the equipotentials shown in Figs. 3(a) and 3(b)
(and discussed further below), the influence of the fractal
actually extends over a number of bonds comparable to
its area, not just the actual number of A bonds. This
area is not a small fraction of the lattices considered (in
fact, it is a fraction which increases with k). This is why,
we believe, the factor ea seems to diverge as k increases
for these lattices.

Our fractal results are generally consistent with expec-
tations based on calculations for random composites. As
described in the previous section, such systems have a
divergent nonlinear response near the percolation thresh-
old. According to some models, a composite close to the
percolation may have a fractal-like structure, with a
correlation length g which grows as percolation is ap-
proached. In this sense, a larger fractal is like a system
closer to percolation. It should therefore have a larger y e

than a smaller fractal, as we observe. Furthermore, just
as in the random case, the enhancement is larger when
the "noncritical" component, i.e., the material outside
the fractal, has the lower conductivity.

The reader may be concerned that a suspension of frac-
tal clusters is not exactly analogous to a percolation
threshold, because near p, there are, in addition to the
infinite fractal cluster, many finite clusters with a variety

0.75
v(x, z)

0.5

0.75
v(x, z)

0. 5

(b)

TABLE II. Same as Table I, but g„=10,gz =1.
Stage Size

18
54

162

N% size

22
58

166

Pa

0.103
0.0743
0.0454

0.343
0.814
5.856

1.229
4.787

138.0

FIG. 3. (a) Electrostatic potential V(x,z) (arbitrary units) for
a stage-4 cross fractal (size=54 bonds} embedded in a 58X58
square network with periodic transverse boundary conditions,
and subjected to a uniform applied field in the x direction). (b)
Same as (a), but for a stage-4 fractal in a 100X 100 network.
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TABLE III. Same as Table I, but always for a stage-4 fractal
and networks of various linear dimension.

Stage Size NW size (eg —1)/pg (eg
—1)/pg

54
54
54

58
64

100

0.0743
0.061
0.025

—12.2
—15.4
—69.6

2393
363
70.2

networks there is a smaller (but still very substantial) field
enhancement. This is the cause of the large e s in these
networks. By contrast, the field is nearly uniform, not
only within the highly conducting fractal itself, but also
in the nearly enclosed bays outside the fractal. Because
of this screening effect, large fractions of the entire net-
work are nearly an equipotential. This effect is, of
course, absent in a uniformly random two-dimensional
network.

When the fractal forms only a very small volume frac-
tion of the network, the most appropriate measure of
nonlinear enhancement is (ez —1)/pz or (e& —1)/pz,
that is, the enhancement per unit volume of fractal ma-
terial. This quantity is tabulated in the last column of
Table III. As the network becomes very large, this quan-
tity should, in principle, saturate at some fixed value

Ek »1, which increase rapidly with k (although we have
not examined fractals and networks large enough to see
this saturation). In short, fractal inclusions efficiently in-
crease the nonlinear susceptibilities of their host media
and, for a given df, become more eScient as they become
larger.

In an attempt to understand our numerical results, we
compare them to a quasianalytical approximation for y,
in d =2 and d =3. The approximation is based on a frac-
tal cluster of A particles (cluster dimension R, fractal di-
mension df) embedded in a 8 host. As discussed in the
Appendix, the approximation proceeds in two stages.
First, the cluster conductivity and nonlinear susceptibiliee

ty are calculated in a differential effective-medium
scheme. Then the composite susceptibility itself is calcu-
lated in the limit of a dilute suspension of clusters.

Figures 4 and 5 show (e; —1)/p in d =2 and d =3 for
a fractal of conductivity 0. embedded in a host of con-
ductivity cr;, as calculated using this approximation. p
represents the composite volume fraction which is made
up of material with conductivity cr . The horizontal axis
denotes the "cluster concentration" p,&„,

=—(R /a) f
where R is the cluster radius measured in units of the
smallest particle dimension a, and df is the fractal dimen-
sion of the cluster. The inset shows the "specific conduc-
tivity enhancement" (o, —o,. )/(p o';) for the same com-
posite, as calculated in the linear differential-eff'ective-
medium approximation.

Up to a certain maximum of cluster size, (e; —1)/p
increases greatly. For very large cluster sizes, the specific
enhancement begins to decrease and eventually may even
become negative, while the enhancement of the linear
conductivity departs from a power law in p . As shown
by Ref. 20, such a power law is expected in the limit
o.„/az—+(x). Deviations from the power law occur
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FIG. 5. Same as Fig. 4, but assuming d =3.

FIG. 4. Specific nonlinear enhancement (e; —1)/p [Eq.
(11)]for a two-dimensional "metal" fractal of dielectric constant
e =10 embedded in a host of dielectric cr;=1, assuming
0 =10000,0;=1. The calculation is carried out using the
differential effective-medium approximation [Eqs. (A6) and

(A7)] in the high-dilution limit. (e; —1)/p measures the
efFective nonlinear enhancement if the host is nonlinear and the
inclusion is distributed fractally. The horizontal axis represents

df —d
the "cluster concentration" p,&„,

——(R/a), where R is the
cluster radius measured in units of the smallest particle dimen-
sion a;d is the dimensionality; and df is the fractal dimension of
the cluster. Inset: specific dielectric enhancement
(E' E';)/(p e;) for the same composite, as calculated in the
linear differential effective-medium approximation (Ref. 20). e,
is the effective linear dielectric constant of the composite medi-
um containing a dilute suspension of fractals in a host of dielecee

tric constant e&,p is the total concentration of fractal material
in the composite.
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V. RANDOM MEDIA IN THE THREE DIMENSIONS:
NONZERO FREQUENCIES

We turn next to calculations for random media in three
dimensions at jinite frequencies. We describe the insulat-
ing bonds by a purely capacitive impedance Z, ,

(21)

and the metallic bond by an RLC circuit. This circuit
consists of an inductor X and a capacitor C' in series, the
whole arrangement in parallel with a resistance R which
damps the LC resonance. The total impedance of the me-
tallic bond is

Z =(R +ice/)/(1+icoRC' cu LC') —. (22)

To allow comparison with previous calculations, we as-
sume the same parameters: C'=C =/= 1 and
r=X/R =10. As has been discussed previously, the

when the effective conductivity of the cluster is no longer
orders of magnitude larger than that of the host.

The central result of our fractal simulations —that the
nonlinear susceptibility of the composite is greatly
enhanced by fractal clusters of impurities —is qualitative-
ly consistent with our difFerential effective-medium ap-
proximation. Our numerical cluster sizes are too small,
however, to see the predicted saturation in the enhance-
ment.

We note, finally, that the usual decoupling or effective-
medium approximation for the nonlinear response of
these fractal systems probably fails, because of the large
Auctuations of electric field associated with them.

metallic bond is designed to have the impedance of a
Drude metal; the LC resonances correspond to the
plasmon peaks of such a metal.

Figure 6 plots the real part of the effective network
conductivity Reo, (co) versus concentration p of metal
bonds. The calculations are carried out within the EMA
(solid curve) and numerically using the transfer-matrix al-
gorithm (circles), as described in Ref. 29. Figs. 7—10
show the effective enhancement factor e; [cf. Eq. (11)]for
metal volume concentrations of 1%, 24.92% (equal to p,
for metallic bonds), 50%, and 90%. In all cases, we have
carried out our calculations for L Ly 10 L 900.
Evidently, in all cases, there is a large enhancement of the
nonlinear susceptibility at appropriate frequencies.

We have attempted to calculate e;(co) and e (co) for
the same model within the EMA. In carrying out the
EMA calculations, we use both the decoupling approxi-
mation, Eq. (12), and the linear EMA, Eq. (14). Al-
though the linear version of this EMA describes our
linear results well (cf. Fig. 6), this version of the nonlinear
EMA misses most of the frequency-dependent structure
seen in the numerical e~ and e~. This is illustrated in

Fig. 7, which shows the EMA at a metal concentration of
1%. In this case, the EMA does reproduce the small
peak in e near co=0.57coz, but misses the larger peak at
lower frequencies. The agreement at other concentra-
tions is worse.

We believe that the discrepancy seen in Figs. 7 —10
comes not from the decoupling approximation (12), but
from an inaccurate evaluation of the derivative F; [Eq.
(13)]. y, is far more sensitive to details of the composite
microstructure than is e, itself, as already noted by Ref.
12. Hence, even if e, is accurately given by the EMA, the
products F; ~F; ~

may not be.

p=0.01

C)

3 0
b
8 0&o

CV0
C)

93.0 0.2

CD

3 C)

b

~ C3

0.4 0.6 0.8 1.0
GJ/Cd p

p= p, =0.2492

3 0
b

Q O

C3

0.0 0.2 0.4 0.6 0.8 1.0
6d/Cdp

p=0.90

C)
CO

b
@ 0

FIG. 6. Real part of the
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for the three-dimensional corn-

posite of Drude metal and insu-

lator described in the text, with

co~ ~= 10. Solid curves:
effective-medium approxima-
tion. Circles: numerical simula-
tion using transfer-matrix algo-
rithm. p is the fraction of metal
bonds. p, =0.2492 is the metal
percolation threshold.
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To demonstrate this sensitivity, we have calculated e,
at a volume fraction of 90% metal by adding to the EMA
results [Eq. (14)] an arbitrary unphysical "correction"
be, (co) given by

fg5e(co)
b,e, (co)=e 1+ Q e +gg5e co

(23)

where g~ and f& are the depolarization factors and
weights of some additional hypothetical resonances in the
composite beyond those contained in the EMA, and
5e(co)= e(co) e (co). We assume five additional reso-
nances, each with weight fz =0.005, with depolarization
factors g& =0.2, 0.4, 0.5, 0.7, and 0.9. The corresponding
derivatives F; are easily calculated, and both e, and e

FIG. 7. Metallic nonlinear enhancement factor e, for the
composite of Fig. 6, plotted as a function of frequency, for metal
concentration p = 1%, as calculated numerically for a
10X10X900 network. Inset: enlargement of frequency range
near 0.57co~. Dots and circles denote calculated points. The
solid line in the main part of the plot merely connects the calcu-
lated points, while the solid line in the inset represents the
EMA.

evaluated with and without the new resonances. (The re-
sults for e are shown in Fig. 12 at a concentration of
90% metal. ) We have checked that the resonances pro-
duce an undetectably small change in e„relative to the
usual EMA. Nevertheless, these same resonances clearly
produce a huge change in e, with conspicuous and
sharp structure. Even though we have made no effort to
fit our results to the numerically calculated e, and g„it
is clear that even tiny deviations from the EMA form for
e, can lead to huge changes in y, . We conclude that the
decoupling approximation may be accurate, but that even
if it is, it must be used with the correct form for the F
derivatives, in order to produce the numerically deter-
mined g, .

Certainly the most striking feature of our finite-
frequency results is the remarkable sharp structure in e;
at finite frequencies, in the range 03 &co/co &0.6 for
various metal volume fractions. We do not know the ori-
gin of these striking structures, but speculate that they
are associated with some (possibly localized) surface-
plasmon resonances (LRC resonances in the language of
our random impedance model), which have only a very
weak effect on the linear optical properties, but a much
stronger inhuence on the nonlinear optical properties.
For example, as noted above, at a concentration of 1%
metal, we see indications of a double peak in the linear
optical response (corresponding to two surface plasmon
resonances —possibly one arising from impedances paral-
lel to the field and one from impedances perpendicular to
the field). The corresponding nonlinear response has two
very strong peaks, each of which seems to occur at the
frequency of one of the two much weaker linear peaks.
We have checked that these same structures are present,
at least at 1% concentration, even when the transfer-
matrix calculation is carried out with other realizations
of the disorder, but at present, we are not able to say any-
thing more precise about the sharp structures at this and
other concentrations.

We emphasize that the main features of the structure
shown in Figs. 7—10 are reproducible. To check this, we
have carried out calculations at 1% and 90% filling frac-
tion of metal for several difFerent realizations of the disor-
der. In both cases, similar sharp peaks appear at the
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Solid lines simply connect the
calculated points.
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same frequencies as shown in the figures, although the
heights of these peaks does vary from one realization to
another.

To summarize this section, we have shown numerically
that g, for a random metal-insulator composite can be
hugely enhanced over that of its constituents. The
enhancement is very sensitive to frequency and to com-
posite microstructure. It can possibly be estimated using
a simple effective-medium approximation. However, the
relevant derivative F, —=Be, /Be; is much more difficult to
calculate accurately than is E, itself.

the electric field be calculated within the shell in the
linear regime. This standard electrostatic calculation is
readily accomplished, with the result

28 p +@+1
5 3

+— (3A A" +A )
5 p2

VI. NONLINEAR SUSCEPTIBILITY
OF A SUSPENSION OF COATED SPHERES where

+ (AA'+A )+1
5'

(24)

As a final illustration, we consider y, for a dilute sus-
pension of coated spheres in a linear host. The spheres
have inner radius a, outer radius b; the core medium,
coating, and host have (complex) dielectric constants e„
Ez, and E3, respectively. We will calculate the coating
enhancement factor e2 in several limits. Similar calcula-
tions have been carried out by Ref. 31, using a rather
different formalism.

In the dilute limit, e2 can be obtained exactly for this
composite from Eq. (11). The calculation requires that

3E3r=
e, +2@3+2(e2 e3)AIp—

E) E2A=
E)+2E2

(25)

(26)

(27)

Note that Eq. (24) assumes that all shells have the same

10.0 20.0

0.0
0.0

-10.0
il

C) I

I/—20.0 3

E OI ~
—30.0 3

1 0.0 0.5 1.0
u)/u)p

400
0.0 0.2 0.4 0.6 0.8 1.0 1.2

CJ/Cdp

@ -20.0
CL

-60.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

fd/4Pp

FIG. 10. Same as Fig. 8, but
for p =90%. Inset: e as cal-
culated in a modified nonlinear
e8'ective-medium approxima-
tion, as discussed in the text.
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ratio b/a, although different particles may have different
radii.

We have applied this formula to a composite of small
Au particles coated with an assumed nonlinear substance
and embedded in a linear host. For the Au dielectric
function, we use the approximate analytic fit of Neeves
and Birnboim. ' For the coating, we assume a constant
index of refraction n2=1.7 or @2=2.89. The host is as-
sumed to have a frequency-independent index of refrac-
tion n3, but we have considered several values of n3 and
hence e3 ——n 3.

2

If the volume fraction of spheres p,ph
=—p&+p2 ((1,the

effective linear dielectric constant e, is accurately calcu-
lated in the Maxwell-Garnett approximation (MGA). In
this case, the calculation consists of two simple steps.
First, one computes the effective dielectric constant of the
coated spheres from
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3p, A
1+

11 —p, A
(28} FIG. 12. Same as Fig. 11 but assuming @3=10.

where p, =p, z/(p, +p2) is the volume fraction of sphere
occupied by the core Au particle. Then e, is calculated
from

~sph sph3 t
E'e =6'3 1+

1 Psph tsph
(29)

where p,zh
= 1 —

p3 and tz„,=(6
ph E3)/(e ph+263).

Given e„y,can be calculated using Eqs. (24)—(27) pro-
vided that e3 is replaced by e, in Eq. (25).

Our results are shown in Figs. 11 and 12, assuming

1 000.0
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O /
Q
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FIG. 11. Nonlinear susceptibility y, for a composite consist-
ing of coated spherical Au particles of radius small compared to
a wavelength. The coating is assumed to be nonlinear and to
have dielectric constant e&=2.89 independent of frequency and
nonlinear susceptibility y2. The dielectric constant of the host
is taken as 5.0. The volume ratio of coated sphere to uncoated
sphere is 1.25. Plotted are Re[y, ~y2] (solid curve) and
Im[y, /y2) (dashed curve). Inset: ReE, (co) and Ime, (co) for this
composite, as calculated in the Maxwell-Garnett approxima-
tion. We always assume a concentration of 3% by volume coat-
ed particles.

p3=0.03, and considering two values of e3. Evidently,
we can obtain very large values of the enhancement fac-
tor ez (see graphs}. The values can be of the order of
10 -10 ore more. These enhancement factors are almost
entirely due to the factor I 3I' in Eq. (24). We have also
found that the magnitude of the enhancement factor is
remarkably sensitive to the value of e3. This is because
different values of e3 have a strong effect on I . In general,
the larger e3, the larger the enhancement factor, and the
lower the frequency at which it occurs. We have shown a
single example of this effect in the figures.

We have found that the coating thickness also has a
significant effect on e2, but not so much as the value of e3.
In general, the thinner the coating, the bigger the
enhancement, and the sharper the frequency at which it
occurs. On the other hand, the greatest enhancement per
coated particle is obtained by making the coating thicker,
even at the expense of reducing e2. Numerically, there
appears to be an optimum coating thickness (defined in
this way) which is around 10—20% of the particle radius
at F3=5. In the figures shown, the coating has a volume
equal to 25% of the uncoated particle, which is typically
near the optimum.

From the figures, it is obviously beneficial under some
conditions to make the nonlinear material in the form of
a coating on an Au particle, rather than as a homogene-
ous medium. From Fig. 11, for example, if we use
p=1.25, e3 5 F2=2.89, and use for E'& the dielectric
function of Au, then we get a maximum le2l of around
4X10 . Thus a volume concentration of 3% coated par-
ticles still produces y, /y2 = 120. This enhancement
could doubtless be tuned even larger by further manipu-
lation of the parameters ez, e3, and LM.

VII. DISCUSSION

We have calculated the cubic nonlinear susceptibility
of a variety of composite media, modeled as impedance
networks in d =2 and d =3. At zero frequency, we find
large enhancements of the susceptibility in random com-
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posites, at concentrations near a percolation threshold.
We also obtain very large enhancements when one of the
components is present in the form of fractal clusters.
Both results are in qualitative agreement with predictions
based on a simple effective-medium approach. For ran-
dom binary composites at finite frequencies, we also find

huge and highly frequency-dependent enhancements of
the nonlinear susceptibility. The relevant frequencies are
generally close to the surface-plasmon resonances of the
composite, where the electric field is locally much
enhanced. In such composites, even though the linear
resonance can be calculated in an effective-medium ap-
proximation, the nonlinear response is in general much
more difficult to predict in this fashion. This is not due
to an intrinsic failure of the effective-medium approach
itself, but rather because of the great sensitivity of the
relevant derivative F; =Be, /Be; to small changes in the
local microstructure of the composite.

We have also carried out some simple numerical calcu-
lations of the enhancement to be expected when a non-
linear dielectric is coated on a linear core particle and
embedded in a host. For Au core particles, we find a
huge enhancement near the Au surface plasmon reso-
nance. The low concentration results are in agreement
with earlier calculations ' based on a slightly different
formalism.

On the basis of these calculations, we conclude that
binary composites have many ways to produce enormous
enhancements in the nonlinear susceptibility. Even at
large concentrations, the enhancement is highly
frequency-dependent and highly sensitive to composite
microstructure. It should therefore be possible to "tune"
this enhancement to occur at a desired range of frequen-
cies and hence to produce filters with a range of potential
applications.
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APPENDIX: NONLINEAR DIFFERENTIAL
EFFECTIVE-MEDIUM APPROXIMATION

where

o g ( 1+dPB tB ) (A 1)

Oa

os+(d —1)o
„

(A2)

The analogous result for the nonlinear susceptibility g,
was first obtained by Bergman for the case required here,
in which both host and inclusion have a finite susceptibili-
ty. ' It takes the form

XA +PB(XA ~A +XB~B) (A3)

where

2(d —1)(d +6)

4(d —1)(d —2)
8 +2

+ d' ——8+2 t~ (A4)

and

4
Gfo g

crtt+(d —1)o q
(A5)

and

do = opa [crtttd)

This result is a generalization of one previously obtained

by several authors for the case where only the inclusion
is nonlinear.

We will use this result to obtain an approximate ex-

pression for the nonlinear susceptibility of a cluster. The
cluster is constructed by starting with a pure A hyper-
sphere. The concentration of B is incrementally in-

creased by adding B material in the form of hyper-
spheres. Let the cluster at radius R have an effective con-
ductivity cr(R) and effective susceptibility y(R). Now in-

crease the radius by 5R and the volume fraction of type-B
material by 5ps. Then from Eqs (A3)—(A5), we immedi-

ately obtain

dy 5ptt [A, „y+A,tr—y~ j, (A7)

In this appendix, we describe a simple, quasianalytical
model for the nonlinear response of fractal clusters in
d =2 and d =3, generalizing a similar scheme developed
for linear response by Hui and Stroud.

As a preliminary, consider a composite containing a
small volume concentration pz of inclusions of type B
embedded in a host of type A. The inclusions are as-
sumed to be d-dimensional hyperspheres (i.e., circles or
spheres in d =2 or 3). The ith component (i = 3 or B) is
assigned conductivity o.

, and nonlinear susceptibility y;.
The effective conductivity o., of the composite can be cal-
culated exactly, to first order to pz, from the Maxwell-
Garnett approximation

where t~, A,„,and A,~ are given by Eqs. (A2), (A4), and

(A5), but with o z and yz replaced by o and g.
Equations (35) and (36) represent ordinary differential

equations for the cluster conductivity o and nonlinear
susceptibility g as functions of p~. They are readily
solved numerically in d =2 or d =3. The resulting func-
tions cr(ptt ) and y(ptt ) represent effective cluster conduc-
tivities and susceptibilities for a cluster of concentration
p~. Note that this approach does not necessarily assume

that the cluster is a fractal. If, however, the cluster is ac-
tually a fraetal of fractal dimension d&, then one can re-
late p~ to the cluster radius R using
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(A8)

where we are assuming that component A, present in
concentration 1 —pz, is distributed fractally, and that a is

the linear dimension of the smallest A particle.
Once the cluster parameters 0. and y have been calcu-

lated, it remains to calculate 0., and g, for the composite
itself. In the dilute limit (volume concentration of clus-
ters much less than unity), these may be obtained simply
by another application of Eqs. (A 1)—(A5).
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