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Possible two-dimensional quasicrystal structures with a six-dimensional embedding space
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A discussion is given of all possible two-dimensional (2D) quasicrystal structures with a six-

dimensional (6D) embedding space. Such quasicrystals have some properties different from the proper-
ties of known 2D quasicrystals. It is predicted that the diffraction pattern of the quasicrystal structures
considered here can be indexed with integers using six rationally independent reciprocal basis vectors.
They have seven-, nine-, fourteen-, and eighteenfold symmetries. The six hydrodynamic degrees of free-
dom in phases can be parametrized by three two-dimensional vector fields, and hence there are two types
of phason fields in each case mentioned above. All quadratic invariants and elastic energy densities are
also derived for such quasicrystals with use of group-representation theory.

I. INTRODUCTION

Since the detection of a quasicrystalline phase in the
system Al-Mn by Shechtman et al. ,

' a number of other
quasicrystals have been discovered. The symmetries
in the quasicrystals observed to date are icosahedral, de-
cagonal (or perhaps pentagonal), octagonal, and dodecag-
onal. All quasicrystals except the icosahedral ones are
quasi-two-dimensional. Many studies have been made on
such quasicrystals both in theory and experiment. These
two-dimensional (2D) quasicrystals have a few essential
properties in common. First, one needs a set of four ra-
tionally independent reciprocal basis vectors to index the
diffraction pattern with integers. Second, these basis vec-
tors can be considered to be a projection from a 4D
embedding space ( V) upon the 2D physical space ( VE).
Third, the space V is the direct sum of VE and VI where

VI is the orthogonal complementary space. Finally, the
four hydrodynamic degrees of freedom in phases can be
parametrized by two two-dimensional vector fields. One
of them is the phonon field (denoted by u), and the other
is the phason field (denoted by w). One will naturally ask
what is the next 2D quasicrystal structure (if it exists}
which can be expected to be observed? From the study of
the symmetry operations for quasiperiodic structures by
Janssen it follows that all the 2D quasicrystal structures
with a 4D embedding space have already been
discovered. The noncrystallographic orientational sym-
metries in such materials are only decagonal (or pentago-
nal), octagonal, and dodecagonal. The next 2D quasi-
crystal structures (if they exist) may have a 6D embed-
ding space. The symmetries should be seven-, nine-,
fourteen-, and eighteenfold. The higher-dimensional
description and group structure of a possible quasicrystal
with sevenfold symmetry have also been discussed by
some authors; but, nevertheless, the authors do not in-
vestigate the elastic and structural properties of quasi-
crystals with all the possible symmetries mentioned
above. Although no physica1 systems with such sym-
metries have been discovered so far, it seems worthwhile
to make theoretica1 predictions about their properties.
This is the purpose of this paper.

In this paper we would like to investigate all 2D quasi-
crystals with a 6D embedding space. We analyze their
structural and symmetry properties. We also derive all
quadratic invariants and the expression for the elastic en-

ergy (density) f. Our results show that such quasicrystals
have some properties different from the properties of
known 2D quasicrystals. According to the phenomeno-
logical Landau theory, ' the ordered phase can be de-
scribed in terms of a Landau free energy F that can be ex-
panded in a power series in the mass density p(r). For
example, the kth power of p(r} gives rise to terms in F of
the form

k

m, m2. . .mk

dr po pG . . .po exp( g G . .r)
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where pG is the Fourier component of p(r) with an ampli-
tude ~pG ~

and a phase 46. The factor h(x) =5„oensures
that only terms where gG;=0 contribute to the sum.
The equilibrium ordered state is given by the (nonzero)
values of ~pG ~

and 4G that minimize F In practi.ce, it is
sufficient to consider a small finite subset IpG) of the
Fourier components pG. Obviously, the subset [pG)
must include Fourier components associated with the N
reciprocal vectors that form a basis of the reciprocal lat-
tice Lit . In addition, IpG I must include the inverse com-
ponents Ip GI plus any vectors that can be obtained
from the minimal set by point-symmetry operations asso-
ciated with the scale of the orientational system. In d-
dimensional quasicrystals, N=n;d where n; is the num-
ber of incommensurate lengths associated with each
lattice-vector direction. From Eq. (1.1) it is clear that for
any set of 6 s that satisfies QG, =0, minimization of F
with respect to ~pG ~

and 4G leads to a minimum-energy
state with constraints on the 4G's. These constraints
leave unspecified N 4G's. Because uniform shifts in
these N phases leave F unchanged, they correspond to
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hydrodynamic variables in the theory. For the pos-
sible 2D quasicrystal structures considered in this ar-
ticle, six independent vectors can be used to construct
the reciprocal lattice L~, and the number of relative-
ly incommensurate lengths is 3. For instance, in the
case of heptagonal symmetry the seven vectors
G;=G[cos(2ni/7), sin(2m/7)], i =0, 1,2, . . . , 6, deter-
mine the sevenfold symmetry and generate the reciprocal
lattice where 6 sets the unique length scale of the system.
These vectors are not, however, independent because
gG; =0, and any six of them can form a basis of L„.
Three collinear vectors Go, G&+G6, and Gz+G5 are in-
commensurate. In the minimum-energy state the phases
4, associated with G; satisfy g4, =constant, leaving six
(n; =3,N=3d=6) independent components of
Thus, we can parametrize these independent components
with three two-component fields u=(u„, u ), v=(U„, U~),

and w =(w„, w~ ). For example, in the heptagonal case

P;=G; u+aG(z, ) v+a'G(3;) w, (1.2)

where (n )z means n modp, and a and a' are scale fac-
tors. The higher-dimensional description of such quasi-
crystals requires a 6D embedding space. The vectors G;
with six components (G;)„, n =1,2, . . . , 6, span a 6D
lattice. Equation (1.2) can be written in the form

II. SEVENFOLD SYMMETRY

1

0
0
0
0

—1 —1

0 0 0 0
0 0 0 0
0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

0
0
0

r(~)=
0

0
0
0
0
1

—1 —1 —1 —1

0 1

1 0
0 0
0 0
0 0
0 0

(2.1)

We use the same method as is used in Ref. 11.
Six rationally independent reciprocal vectors G,=6 [cos(2ni/7), sin(2mi/7)], i =1,2, . . . , 6, form the
basis of the lattice for the 2D quasicrystal with sevenfold
symmetry. The point group C7, has 14 elements, five
conjugacy classes, and five irreducible representations,
two of which are one d;mensional and three two dimen-
sional (see Tables I—IV). Two generators are the seven-
fold rotation a and the mirror operation P. The action of
a and P on the basis vectors is given by

P;=G; 6, (1.3)
This matrix representation I is reducible. The reduction
1S

where ii is the direct sum of u, v and w. Since the dot
product is a scalar, 5 and G must transform under the
same representation of the point group associated with
the quasicrystal considered. Meanwhile u, v, and w can
be identified as hydrodynamic variables. The phonon
variable u transforms according to a vectorlike represen-
tation of the rotational symmetry group, whereas the
phason variables v and w transform according to two
other representations, neither of which is vectorlike. It
should be noted that there are two types of phason field
in this case. This means that there are 2D diffusive
modes in addition to the modes found in conventional
crystals. This characteristic seems to be unique to such
quasicrystals. From the known transformation proper-
ties of u, v, and w under the point-symmetry operations,
it is straightforward, with use of group theory, to con-
struct all quadratic invariants involving gradients of u, v,
and w, and calculate the elastic energy. In this way we
find that the form of the terms that involve only one hy-
drodynamic variable in the elastic energy is the same for
all symmetries, but the form of the terms that couple two
variables is different for different symmetries. Moreover,
there could be coupling terms not only between phonon
and phason fields, but also between two different types of
phason field.

The organization of this article is as follows. In Sec. II
group theory is employed to obtain some structural and
elastic properties of the quasicrystal with sevenfold sym-
metry. In Sec. III we investigate the quasicrystals with
nine-, fourteen-, and eighteenfold symmetries in a similar
manner, with an emphasis on new features. Finally, some
remarks are made in Sec. IV.

(2.2)

r, xr, =r, +r,+r, . (2.3)

TABLE I. Character table for point groups C&, . p is the
primitive seventh root of unity (p = 1).

r,
I2
I3
r,
r,

1

1

p+p
p'+p '
p'+ p

1

1

p+p
P+P
p+p

1

1

p'+p '
p+p
p'+p '

1
—1

0
0
0

It can be seen that the rotations in VE correspond to the
irreducible component I 3, which is a vector representa-
tion, so the phonon field u transforms according to this
representation I 3. The rotations in V~ correspond to the
two other irreducible components I 4 and I 5, neither of
which is vectorlike. This means that two types of phason
field transform according to them. One, let us say v,
transforms under I 4, and the other transforms under I &.

Since the displacement gradients BJu;, BJU;, and
8 w; (i,j=1,2) transform according to their respective
direct-product representations, we can construct all
quadratic invariants composed of these gradients and
hence find the expression for the elastic energy to quadra-
tic order with the help of group-representation theory.

By an argument very similar to that given in Ref. 11,
for the phonon field, 8 u,- transform under
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TABLE II. Character table for point group C,4„. p is the primitive seventh root of unity (p =1).

a2 a' a6 aa' a4 P aP

r, 1

r, 1 1

I3 1 —1 1

r,
I 5 2 —(p +p ) p+p
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I 8 2 (p+p ') p +p
r, 2 —(p'+ p-') p'+ p-'
I.

io 2 (p'+p ') p'+p '

1
—1
—1

—(p'+p ')
(P'+P ')

—(p'+p ')
p'+p '
(p+p

(P+P ')

1

1

1

p'+p '
p'+p '
p'+p '
p'+p '
p+p '

p+p '

1
—1
—1

—(p+p ')
(p+p ')
(p2+p 2)

P+P—(p'+p ')
P+P

1

1

1

p'+p '
p+p
p+p '

p+p
p'+p '
p'+p '

1 1 1

1 —1 —1
—1 1 —1
—1 —1 1
—2 0 0

2 0 0
—2 0 0

2 0 0
—2 0 0

2 0 0

We have two quadratic invariants

(E))+Eq2), (E)) —E2q) +(2E)2)

or equivalently,

(E))+E22), (E))E22 —Ef2), (2.4)

(2.9)

Among them the pair (t},w, +t}zw2, t},wz —82w, ) spans
the 2D irreducible representation I 4, and the pair
(B,w, —Bzw2, t},w2+t}2w, ) spans the 2D irreducible rep-
resentation I ~. It follows that there are two quadratic in-
variants:

where the notations E, =(8 u, +t};u")/2 is used. This
field behaves like the usual isotropic solids. There are
two independent elastic constants: A, and p. The part of
the elastic energy due to the phonon field is

(B,w, +t}2wz) +(t},w2
—t}2w, )

(t})w) t}2w2) +(t})w2+B2wt )
(2.10)

f"=,'A(V u) +—pEJEJ . (2.5)
and two independent elastic constants: E& and E2. The
relevant contribution to the elastic energy is

For the phason variable v, four components of c} v;
transform under

I,xI,=I,+I, . (2.6)

(B,u, +82U2) +(B&U2-Bzu, )

(t})u) t}pug) +(B(U2+t}2U) )
(2.7)

and then two independent elastic constants: C, and C2.
The part of the elastic energy arising from this variable is

Among them the pair (B,u, +82uz, t},v2
—Bzv, ) spans the

2D irreducible representation I 3, and the pair
(B,v, —82vz, t},vz+t}2v, ) spans the 2D irreducible repre-
sentation I 5. We thus have two quadratic invariants: (E» —E22 }(B,w, +Bzw2)+2E, 2(B,wz

—82w, ) (2.12)

coupling the gradients of u and w, and leading to a cross
term between photon and phason fields with the form of

f" =R,[(E„En)(B,w, +8~—w2)+2E, 2(B,w2
—B2w, )]

(2.13)

f =K, [(B,w, +B w22) +(B,w2
—B~w, ) ]

+K2[(t}(w)—t}qw2) +(B,w +t} w, ) ] . (2.11)

Finally, notice that the irreducible representation I 4
occurs in both of the reduction equations (2.3) and (2.9).
This means that there exists an invariant

f"= C&[(B& u& +B'av 2) +(B&U2 —
Bzu& } ]

+C2[(B&u, —Bzu2) +(B&U2+Bzu, ) ] . (2.8)

in the elastic energy. Similarly, since the irreducible rep-
resentation I 5 occurs in both of the reduction equations
(2.6}and (2.9), there exists an invariant

TABLE III. p is the primitive ninth root of unity (p = 1).

a a4

For the phason variable w, four components of B.w;
transform under

(a,u, —a,u, )(a,w, —a,w, )+(a,u, +a,u, )(a,w, +a,w, )

(2.14)

coupling the gradients of v and w, and leading to a cross
term between two different types of phason field as fol-
lows:

r,
12
I3
r,
r,
r,

1

1

p+p
p'+p '
P+P—1

1

1

p'+p
p'+p '
p+p '

—1

1

1
—1
—1
—1

2

1

1

p'+p '
p+p '

p'+p '
—1

1
—1

0
0
0
0

f" =R, [(a,u, —a,u, )(a&w, —B2w )

+(B,vz+B2v, )(B,wz+B2w, )] . (2.15)

The above term results from the fact that there are two
types of phason field in the quasicrystals considered here.
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TABLE IV. Character table for point group C», . p is the primitive ninth root of unity (p =1).
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1
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1
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—1
—(P'+P ')

P'+P '
—(P'+P ')

P +P
—(P+P ')

P+P
1

—1

1

1

1

1

—1

—1
—1
—1
—1

—1

2
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—1
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1
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1

1

1

1
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P +P
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—1
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1

—1
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2

—2
2

—2
2
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2

—1
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1

—1
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1
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Therefore the 2D quasicrystal with sevenfold symmetry
has eight independent elastic constants in all. The total
elastic energy is

f—fV+f V+f W+f WV+f VW (2.16)

III. NINE-, FOURTEEN-, AND EIGHTEENFOLD
SYMMETRIES

It is straightforward to extend the mathematical treat-
ment of sevenfold symmetry given in the preceding sec-
tion to nine-, fourteen, and eighteenfold symmetries.
This allows a very similar calculation to be illustrated in
all the cases mentioned above, which greatly simplifies
the analysis.

Six rationally independent reciprocal vectors
G;=G[cos(2ni/9), sin(2mi/9)], i =+1,+2, +3, form the
basis of the lattice for the 2D quasicrystal with ninefold
symmetry. The point group C9„has 18 elements, six con-
jugacy classes, and six irreducible representations, two
1D and four 2D (see Table III). The action of a ninefold
rotation a and a mirror P on the basis vectors is given by

where f", f', f, f"", and f' are given by Eqs. (2.5),
(2.8), (2.11), (2.13), and (2.15), respectively.

I ~, respectively. For the phonon field, B,u, transform
under

r, xr, =r, +r,+r, . (3.3)

r, xr, =r,+r, ,

whereas 8 m, transform under

I,XI,=I,+I, .

(3.4)

(3.5)

Thus it can be seen that we have two quadratic invariants

(Blu 1 +Bzuz ) +(B,uz
—

Bz V, )

(B,u, —Bzuz) +(B,uz+Bzu, )

coupling v to v, and two quadratic invariants

(Biwi+Bzwz) +(Biwz Bzwi )

(B,w, —Bzwz) +(B&wz+Bzw, )

(3.6)

(3.7)

It follows that there are two quadratic invariants, taking
the same form as those in Eq. (2.4) and leading to f" of
the same form as those in Eq. (2.5). For the two types of
phason field, 8 U; transform under

r(a)=

0 1

0 0
—1 0
0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

~(~)= 0 O 1

0 1 0
1 0 0

0 0
1 0
0 0
0 0
0 0

—1 —1

0 0 1

0 1 0
1 0 0
0 0 0
0 0 0
0 0 0

0 0
0 0

—1 0
1 0
0 1

0 0

+(B,uz+Bzu, )(B,wz —Bzw&)] . (3.9)

coupling w to w. Consequently, the part of the elastic en-

ergy due to the phason fields is the sum of f' and f"',
which are given by Eqs. (2.8) and (2.9), respectively.
Moreover, since the irreducible representation I 6 occurs
in both of the reduction equations (3.4) and (3.5), we thus
have an invariant

(a,u, —a,u, )(a,w, +a,w, )+(a,u, +a,u, )(a,w, —a,w, )

(3.8)

which yields a coupling term of the form

f" =R [(B,u, —8 u )(B,w, +8 w )

The matrix representation I reduces to

r=r, +r,+r, . (3.2)

It should be noted that there are no phonon-phason cou-
pling terms in the elastic energy. Therefore, the total
elastic energy is

This means that u, v, and w transform under I 3, I 4, and f f +fV+Vf W+f VW (3.10)
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TABLE V. Comparison of results for difFerent symmetries. f=f"+f"+f"+f"" (3.13)

No. of
phonon
elastic
constants
No. of
phason
elastic
constants
Phonon-
phason
coupling
P�haso-
nph�as
coupling
Total no.
of elastic
constants

Seven-
fold

Nine-
fold

Fourteen-
fold

Eighteen-
fold

f fV+f V+f—W+f VW+f VW

where

(3.1 1)

f" =R2[(t),v, +8~v~)(t), w, —B~w2)

for a 2D quasicrystal with ninefold symmetry, where f",
f",f, and f" are given by Eqs. (2.5), (2.8), (2.11), and
(3.9), respectively.

Similarly, for fourteenfold symmetry the total elastic
energy is

where f", f",f, and f' are given by Eqs. (2.5), (2.8),
(2.11),and (3.12), respectively.

From the results it can be seen that the terms in the to-
tal elastic energy, f",f ', and f, take the same form for
all symmetries, but the forms of the coupling terms and
the number of independent elastic constants are different
for different symmetries (see Table V).

IV. CONCLUDING REMARKS

We have investigated some structural and elastic prop-
erties of all 2D quasicrystals with a 6D embedding space,
derived their quadratic invariants, and calculated the
elastic energies to quadratic order. Here we conclude
that such quasicrystals have some properties different
from the properties of known 2D quasicrystals. The
diffraction pattern of the quasicrystals considered here
can be indexed with integers using six rationally indepen-
dent reciprocal basis vectors, which can be regarded as a
projection from a 6D embedding space upon the 2D
physical space. The six hydrodynamic degrees of free-
dom in phases can be parametrized by three two-
dimensional vectors, u, v, and w, which are related to
three different representations of the rotational symmetry
group. In this case the orthogonal complementary space
is no longer irreducible because it can be decomposed
into a direct sum of two invariant subspaces. With each
of them is associated one type of phason field. The form
of the terms that involve only one hydrodynamic variable
in the elastic energy is the same for all symmetries, but
the forms of the coupling terms are different for different
symmetries.

+(t)tv2 t)2U t )(t)tw2+t)pwt )], (3.12)
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