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It is shown- that the interaction between soft atomic potentials in glasses leads to a density of the low-

energy tunneling states, P, which does not depend on the concentration of defects. The dimensionless
parameter Py /pv which characterizes the interaction between two-level systems is estimated. It ap-
pears to be small in accordance with available experimental data. The theory developed allows us to un-

derstand both the insensitivity of low-temperature properties of glasses to the concentration of the de-
fects (e.g., created by neutron irradiation) and the relatively small interaction between two-level systems.
Making use of only three macroscopic material parameters, namely the mass density p, the sound veloci-

ty v, and the average value of the atomic mass M, nearly correct values are obtained for the two-level
systems' density of states P, for the deformation potential y and for other parameters describing the
low-temperature properties of glasses. All of them appeared to be nearly the same for glassy systems.
Thereby, the explanation of universality of the low-temperature properties of glasses is given.

I. INTRODUCTION

Many low-temperature properties of glasses are deter-
mined by two-level systems (TLS's). ' According to the
tunneling model of Anderson, Halperin, Varma, and Phil-
lips ' (AHVP), a TLS consists of an atom or a small

group of atoms moving in a double-well potential. The
lowest excitation of such a system is a pair of levels split
by the tunneling through the barrier. As is well known,
the TLS's are responsible for most of the low-temperature
properties of glasses, such as specific heat, thermal con-
ductivity, sound absorption and variation of sound veloc-
ity with temperature, microwave absorption, phonon
echo, etc. However, despite the enormous success of
the AHVP model, some important questions remain so
far unsolved.

The most intriguing theoretical problem in this field is
a very small sensitivity of the low-temperature properties
of glasses to the density of new defects which can be
created, e.g., by doping ' or, more directly, by neutron
(or electron) irradiation of the glass" (see also a very in-
teresting paper' and references therein). Moreover, the
low-temperature properties of glasses are surprisingly in-
sensitive to most of the internal (e.g., impurities, heat
treatment' ) and external perturbations (see, e.g. , the pa-
per by Bartell and Hunklinger' where the inhuence of an
external pressure was investigated). Several authors'
came to the conclusion that this insensitivity is the conse-
quence of interaction between the TLS's. Roughly speak-
ing, the idea was based on the following (so-called mean-
field approximation).

Each TLS produces deformation e,- at a distance r, ,

Xl
2 3

pU rl

where y, is the deformation potential of the ith TLS, p is
the mass density of the glass, and U is the sound velocity.
Due to the deformation decreases inversely proportional

Taking (1.2) into account we get that the energies E; of
different TLS's are distributed in the interval 5E:

y2N

pU
(1.4)

For small energies, the density of states n(E) appears to
be independent of the energy and of the concentration of
TLS's:

PUn(E)=
5E y2

(1.5)

At first glance this approach is very attractive. Never-
theless, it is most probably not applicable to real glasses
in this simple form. First, as follows from (1.5), the di-
mensionless parameter n(E)y tv appears to be of the
order of unity. Meanwhile, the experimental values of
the parameter Py /pv for different glasses are much
smaller than unity. They are spread within the interval
(0.3—4.9)X 10 (for transverse sound: U =U, ) (Ref. 21),
i.e., though the width is = 10 times greater than the aver-
age value, the value itself is clearly much smaller than
unity.

Second, it is very difficult to imagine that the TLS's are
the only defects in the glass structure which are able to
create deformations. Moreover, it is very natural to sup-
pose that the concentration of other defects (different
from TLS's) X„, is much larger than the concentration of

to r, , the distribution function of deformations in a glass
produced by all the TLS's is a Lorentzian with the width
5e proportional to the total concentration N of the TLS's:

5m=
N (1.2)

pU

In turn, the energy E, (interlevel spacing) of each TLS
changes under the deformation e as

6E, =y, e .

0163-1829/94/49(14)/9400(19)/$06. 00 49 9400 1994 The American Physical Society



49 INTERACTIONS OF SOFT ATOMIC POTENTIALS AND. . . 9401

TLS's X,. In any event it is the total concentration of de-

fects N=N, +N„, that should enter formulas (1.2) and
(1.4). At the same time, to determine the TLS's density
of states one only has to insert into (1.5) the concentra-
tion of TLS's, X,. As a result

(1.6}

In such a case

2

E
pv pc

where

iiiv +pA'u'

r

p
Av

&pXv'

However, as pointed out in an earlier paper by Gure-
vich and Parshin (where the characteristic energy E,
was first introduced in the course of analysis of the
perturbation-theory series), for the symmetric TLS's with
the energy E exceeding E, the conventional definition of
a TLS becomes meaningless, since the energy uncertainty
A/r(E) due to interaction with phonons exceeds the in-
terlevel spacing E:

E &E for E&E, .

Here r(E) is the TLS relaxation time due to one-phonon
processes. This means that the perturbation theory
should no longer be valid for the description of the TLS
phonon interaction for E)E, and the usual concept of
TLS's (Refs. 2 and 3) fails (for the same reason it is true
for the local Einstein oscillators introduced in Ref. 23}.
In connection with this observation one wonders whether
the whole picture presented by Yu and Leggett gives an
adequate description of properties of glasses. Due to the
finite value of the TLS's relaxation time the off'-diagonal
interaction of the two TLS's should decrease exponential-

n(E)}'
pv2

and it is possible to interpret the experiment if we assume
the ratio N, /N to be equal to the observable value (of the
order 10 }. Nevertheless, in this case one comes to the
conclusion that the parameter n(E)y /pv decreases
with the increase of the concentration of defects X. It
also remains unclear why the ratio N, /N for all the
glasses is so small.

To avoid the first contradiction Yu and Leggett' ' put
forward the hypothesis that the smallness of the parame-
ter Py /pu can be conditioned by the strong renormal-
ization of the density of states due to off'-diagonal interac-
tion between the TLS's. The crossover energy E, /k from
their point of view is of the order of 10-40 K and coin-
cides with the interaction energy of two TLS's, y /pu r„
the distance r, between them being of the order of pho-
non wavelength with the same energy:

ly with distance r between them: ~ exp[ —r/r(E)],
where r(E)=vs(E). For E&E„r(E)(r,.

In the present paper we use a simpler approach (on the
level of the mean-field approximation). It is free from
these difhculties and contradictions and answers these
questions within the framework of the soft model (SPM)
(see also the review in Ref. 25}. We show that due to the
softness of the local atomic potentials responsible for the
TLS's in a glass structure, the density of states (and in-

teraction between the TLS's) is always small enough.
The TLS picture is valid only for the tunneling splittings

kp smaller than some characteristic energy 8'&&E,. The
energy 8'characterizes the distance to the third level in a
multilevel system. It is the crossover energy between the
two-level and multilevel description of low-energy excita-
tions in glasses.

The excitations with energies E &)8' mainly are not
the TLS's but soft harmonic oscillators. The density of
states of these oscillators (in contrast to the constant den-
sity of states of the TLS's} sharply increases with the rise
of their energy E: ~(E/W) . Thus, the concentration
of TLS's N, is much smaller than the concentration of all
these harmonic oscillators N„, . As a result of their in-

teraction, the TLS's density of states is independent of
the energy and of the concentration of various defects in
the glass structure. It is determined by the normalized
distribution function of the soft atomic potential parame-
ters in the glass. Roughly, it means that N, ~ X and the
coefficient of proportionality is small enough (of the order
of 10 }. The physical reason for this phenomenon is ba-
sically the smallness of the electron mass as compared to
the effective mass of the tunneling entity. It is nearly the
same reason which provides the smallness of the phonon
damping due to anharmonic processes in the crystalline
solids. It can be considered as an answer to the question
"why do phonons go so far?"'

The paper is organized as follows. In Sec. II, we give a
short introduction to the SPM. In Sec. III, we derive the
distribution function of the SPM parameters. We show
that due to interaction between soft atomic potentials this
function does not depend on the concentration of defects
in the glass structure. In Sec. IV, we consider different
low-temperature properties of glasses which follows from
the SPM. We show that with respect of these properties
the SPM is equivalent to the AHVP model. In Sec. V, we
compare our theory with experiment and extract the nu-
merical values for relevant combinations of the parame-
ters involved in theory for a-Si02. In Sec. VI, we show
that due to the softness of the local atomic potentials re-
sponsible for the low-energy excitations in glasses the di-
mensionless parameter I'y /pv is always small enough.
It does not depend on the concentration of defects in the
glass structure. In Sec. VII, we relate the microscopic
TLS's parameters: density of states I', deformation po-
tential r, etc. with macroscopic parameters of the materi-
als p, v, and M. All of them appeared to be nearly the
same for glassy systems. In Sec. VIII, we discuss the
small difference between the SPM and the AHVP model
for the time-dependent specific heat. Section IX is a con-
clusion where the main results of the paper are summa-
rized.
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II. SOFT POTENTIAL MODEL

where M is the effective mass of the moving entity,
2 3 4

X X X
V(x)=CO ri — +r — +

a a a
(2.1)

Here x is the generalized coordinate of the soft mode
having units of length, a is the characteristic length of the
order of the interatomic spacing (a =1 A), Bo is of the
order of atomic energy 8„i.e., of the order of Mv~=10
eV (see Appendix A}, M being the average mass of atoms
constituting the glass (for Si02 M =20 a.u., v& =5.8 X 10
cm/s and Mvi =7 eV). The values of the dimensionless

parameters g and t are random due to fluctuations of the
structural parameters of a glass. The soft potentials cor-
respond to (r)[, ~t ~

&&1.
For t/+g L&riL/(g(, negative 7}, and ~ri(&3riL [see

Figs. 1 and 2(a}—2(d)] the two lowest levels in the poten-
tial (2.1) form a TLS with the energy splitting E,

(2.2)

where tunneling splitting 60 and asymmetry 5 are deter-
mined by

50= Wexp
IL

(2.3)

(2.4)

Here gL is an important small parameter of the model,

r/ =(fi /2Ma~a )' 3=10 (2.5}

According to the SPM, ' the quasilocal low-

frequency modes in glasses are described by the soft
anharmonic oscillator Hamiltonian

fi d + V(x),
2M dx2

For example, if we put in (2.5) M=100 a.u. , 40=7 eV,
0

a =1 A, we get gL =1.4X10 . The energy W is deter-
mined by

W=@ogl =k X 10 K, (2.6)

where k is the Boltzmann's constant. This is the scale of
characteristic energies in the potential (2.1) for ri=t=0
[see Fig. 2(e)]. The barrier height V between two minima
in the double-well potential (2.1) for b, « V only depends
on the value of

~ q ~:

'2
YJ

(2 7)
4

Just the existence of the small parameter gL in the
model makes it possible to neglect all the higher-order
terms in expansion (2.1) because typical values of
x /a « 1 (see also Sec. VI). Therefore, all the soft atomic
potentials in glasses can be described by this way. This
remark means that the SPM is, in fact, a theory of quasi-
local soft anharmonic excitations in glasses.

It is clear from Fig. 1 that the TLS picture is lost for
sufficiently small ~g~ =gL (and kT= W) because the dis-

tance to the third level becomes comparable with the
TLS energy E. For example, for g= —

gL the distance
between the first two levels in potential (2.1) equals 2.2 W,
whereas the distance from the second to the third level
equals 3.3W, see Fig. 1. Therefore, the TLS's alone can-
not be responsible for excitations with energies larger
than W (with the exception of strongly asymmetric TLS's
with high barriers: V» W, such TLS's are responsible
for the relaxation absorption in glasses, but give a small
contribution to the resonant absorption and thermal
resistivity). For the excitations with larger energies in

glasses single-well potentials are responsible too.
Besides the TLS's corresponding to double-we11 poten-

tials with ri & 0, (2.1) also describes quasilocal anharmon-
ic oscillators in single-well potentials with positive g and
q&9t /32 [see Fig. 2(f)]. The excitations in the single-
well potentials with g &&gL are nearly harmonic, the in-

terlevel spacing being

&mn (1.o) E=2W+rilriL . (2.8)

-5 o 5

FIG. 1. The interlevel distance in the potential (2.1) (in the
units of 8') as a function of g/qr for t =0. The arrows indicate
the minimal distance between the levels e»'"=3.65, c&z"=3.
These are the points of the absolute minimum of the functions

F31(g, t ) and e32( q, t ) on the plane g, t. The corresponding densi-

ty of state makes a finite jump (from zero) at this energy —a so-
called van Hove singularity (Ref. 26).

The density of states of these excitations (in contrast to
the constant density of states of TLS's) sharply increases
with the increasing energy E. At first, it makes finite
jumps (see also Refs. 27 and 25) at some energies of the
order of W due to the presence of points of the absolute
minimum of the functions s»(r), t) (the energy distance
between the first and the third levels in units of 8') and
E3p( ri, t ) (between the second and the third ones}, etc. , in
the plane r},t at negative g (van Hove singularities ).
For example, E»'"=3.65 and E32"=3 (Fig. 1). Then, for
E» W, it increases proportionally to (E/W) . ' These
excitations determine the properties of glasses at temper-
atures kT » W. We shall not consider them in this pa-
per. It should be stressed however, that both types of ex-
citations (in double-well potentials and single-well ones)
are well-defined excitations with respect to their interac-
tion with propagating phonons (see the end of Sec. IV).
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Both the double-well potentials and the soft single-we11
ones are very important for our consideration because
both are some "elastic defects" in the glass structure pro-
ducing internal strain in the surrounding. Each elastic
defect is characterized by a symmetric second-rank ten-
sor 0, where Tr(Q }is a variation of the glass volume due
to the presence of the defect. The strain from defect as in
the case of TLS's decreases inversely proportionally to
the cube of distance from the defect

(2.9)

In accordance with (1.1) one Snds for TLS
0;=y;/pv =3.5 4 (we put y; = 1.6 eV, p =2.2 g/cm,
and v =vi =5.8X10 cm/s for a-Si02).

HI. DISTRIBUTION FUNCTION OF g AND t

To describe the distribution of the parameters ri and t
of the soft atomic potentials (2.1}in a glass we will use an
idea similar to the one used in Ref. 28. Let us suppose
that without interaction between the defects each of them
is described by an anharmonic oscillator potential (2.1)
with some generalized coordinate x', which we will ca11
in the following "reference mode" and some reference
coef6cients g'"' and t'"'. After the interaction is switched
on, x'=0 is no longer the "equilibrium" position for the
defect and we have to add to the potential (2.1) the linear
term proportional to x'. The coefBcient of proportionali-
ty describes the external force which appears due to de-
formations produced by other defects. In principle, for
the same reason the coefBcients g" and t" should also

(a) (b)

(c)

.2

(e)

2.75 W

r

4. 25W

F&&. 2. The energy levels in the soft potential (2.1) for different values (a) g and p. (a) q= —3g~, t=o. (b) q
———4q~, t=o. (~)

g= —6gL, &=0, c»=0 04 (d) g= —6.gl, t=o 1~gL, . (e) g=r=. o (f) g=3gi. , t =.0
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+
a

4
X

a
(3.1)

be changed. So, in the presence of other defects the po-
tential energy of a defect V'(x') for its reference mode x'
is given by

2

V'(x ') =8c Ii
' +q'

a a

G(h ', rl', r ') =H(h ')P '"'(q', t'), (3.9)

where P'"'(rl, t ) is the distribution function of parameters

g and t when the interaction between defects is switched
ofK

The distribution function %(i) ),

into the distribution functions of the parameters h' and

g, t:

We can transform again (3.1) to (2.1) by shifting the ori-
gin of the reference system

%(q)= f P'"'(~, t)dr,

and 4(t ),

(3.10)

x'=x+a5, 5=
4

(3.2) C(t)= f P'"i(rl, r)dr), (3.11)

The coefficients h', rl', t' are related to the coefficients rl
and t:

(3.3)

r'(t'+t )h'= g ——+
2 4 8

(3.4)

The random quantities h ', g', and t' are characterized
by their distribution function G (h ', rl', t '). We are in-
terested in the distribution function P(q, t ) of the param-
eters g and t. In Ref. 28 it was shown that

is schematically depicted in Figs. 3(a) and 3(b), respec-
tively. The distribution of %(rl) is assumed to be cen-
tered near the value g= 1 corresponding to the normal
(rigid) atomic potentials which are dominating. The dis-
tribution of 4(t ) is assumed to be even because of the ab-
sence of preferred directions in a glass. %e will consider
both of them to be normalized to unity:

"P'"'q, t (3.12)

The central point of our analysis is that both of these

P(rl, r)=-,' ~rl~P, (rl, r),
where

P, (rl, r)= f G[h'(rl, r, t'), rl'(rl, r, r'), r']dr'

(3.5)

(3.6)

(a)

and the functions h'(rl, t, t') and rl'(rl, t, t') are deter-
mined by (3.4) and (3.3), respectively. The factor ~g~ in
(3.5) is very important and reflects the so-called "seagull"
singularity in the distribution of the harmonic force con-
stants g in the glass [i.e., P(0, t ) =0].

The distribution function G(h', rl', t') should be nor-
malized to the concentration N of the elastic defects in
the glass structure

f f f G(h', rl', t')dh'drl'dt'=N . (3.7)

Each of these defects creates a deformation in the sur-
rounding in accordance with (2.9). For simplicity we
suppose 0; to be the same for all of them, and equal to
Qc (where Qc is of the order of atomic volume 1 A, i.e.,
Qc=a ). The resulting distribution function of deforma-
tions in a glass produced by all the defects is a Lorentzian
with the width 5e proportional to their total concentra-
tion N [compare with (1.2)]:

(b)

/
/

/
/

/
/

/

j

5e=QON . (3.8)

Let us now discuss the important question of the form
of the distribution function G(h', g', t') We will assum. e
that changes of the reference values g'"' and t" for the
defect due to the interaction are small in comparison
with the widths of their reference distributions 5'„"' and
5',"' (see below). Thus, it is reasonable to treat the random
quantities h', and g', t' as statistically independent. In
this case the distribution function G(h', r)', t') factorizes

FIG. 3. The normalized distribution functions of parameters

g and t in the absence of interaction between the defects

(gL =10 ). (a) %(q). 5'„' is the width of the distribution. The
shaded region corresponds to TLS s with tunneling splitting ho
from 3X10 '%{left) to &{right). (b} 4{t) [the alternative pos-
sibility for the form of 4{t ) is depicted by the dashed line]. 5',"'

is the width of the distribution. The shaded region corresponds
to double-well potentials with asymmetries
6((W/~2){q/gl )'~' [see (2.4)].
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distributions have no relations with the distribution of
random deformations in the glass structure created by
elastic defects, but that they depend on disorder in the
nearby environment of the soft atomic potential. It is
easily seen when soft atomic potentials for example are
created within the topological defects of the continuous
network of the glass. We define the reference mode x' in
this case in such a way that potential (3.1}has no linear
term at all for an isolated topological defect in the crys-
talline environment.

As for the distribution function H(h'} we will consider
it to be determined by definition exclusively by the distri-
bution of strain fields in the glass structure due to elastic
defects. Our choice is stipulated by more pronounced
sensitivity of h' to the strain that those of the parameters
g' and t'.

To understand this, let us transform expression (3.1) to
new dimensionless variables y'= x' /a Q riL, h ' =h '/rlr i,
ri'=ri/rti, and t'=t'/april Tak.ing into account (2.6)
we get

V'(x')V'(y')= =h'y'+ri'y' +t'y' +y'
JY

(3.13)

The parameters h', g', and r' determine the spectrum in
the potential (3.1) in the units of W. Hence, it appears
that the parameters h', g', and t' scale as rILi =10
qr =10, and Qrir =10 ', respectively Thes. e scales
differ from each other by an order of magnitude.

On the other hand, the coefficients h', g', and t' are
modified by the strain e in the following way:

h'~h'+H'e,
g'~g'+:-'e,
t'~t'+ T'e,

(3.14a)

(3.14b)

(3.14c)

52
H(h') =Ho

h' +5I,.
(3.15)

where the width 5I, is proportional to the concentration
of defects N

5» —H'Q(Pl. — '
(3.16)

where the coefficients H', :-', and 1" are of the order of
unity. It follows, e.g., that for strain e= 10 the changes
of h', ri', and t' are of the order of 1, 10 ', and 10, re-
spectively, i.e., the main perturbation of the position of
the quantum levels in the potential (3.1) is due to the
linear term.

It is clear from (3.14b) and (3.14c) that the deforma-
tions from elastic defects ed do not afFect the distribu-
tions of parameters ' and t' if the widths of their refer-
ence distributions 5'„",5", (connected with the nearby en-
vironment} are larger than ed, i.e., the concentration of
defects N is small enough [if 5'„"',5", = 1, see Figs. 3(a) and
3(b), it means that the concentration of defects should be
smaller than the concentration of atoms constituting the
glass].

Since the distribution of the parameter h' in the glass is
determined by the distribution of the deformations only,
it has a Lorentzian shape:

The coeScient Ho in (3.15) is determined by the normal-
izing condition (3.7) and does not depend on the concen-
tration of elastic defects N:

N 1

~5„nH 00
(3.17)

This is the main result of our paper. As we show below,
the value Ho determines the TLS's density of states at
low energies which appears to be independent of the con-
centration of elastic defects N.

In the end of this section we derive the distribution
function Po(rl, t) using expression (3.6) for a particular
case, when the distribution on t' is not very widely spread
around zero. If the width of the distribution 5, =5',"'

satisfies the condition

2 h
5, «min, 2+2ril /3(/ iri/ril. i (3.18)

(iris'/qL is not very large) and the width 51, is not very
small,

(3.19)

then in (3.15) h' «5» and function H(h') =Ho,' i.e., it is
a constant. This takes place, e.g., if 5,.«0.3 (5s, =10
igi/riL =6, and riL =10 ). For the same conditions
(3.18) rl' from (3.3) coincides with rl. Using (3.10) we
derive from (3.6}and (3.9)

P ('g0r ) =HO% (ri) (3.20)

P (r}, ) =P —=H %(0)= %(0) (3.21)

which, in particular, does not depend on the defect con-
centration N.

Because the typical width of the distribution 5, by
definition cannot exceed unity (otherwise we should
change 80) one can consider the treated case as
sufficiently general. It is only important that typical
values h'&5&. For instance, it is sufficient to have
5, & 2(25». )

' and not very big values g/rii . For
5z =0.06 (it corresponds to concentration of defects of
the order of 6%} it should be 5,.&1. Therefore, for
sufficiently large concentration of defects the value Po
does not depend on ¹independently of the width 5, .

So, the function Po(ri, t) does not depend on r and N It.
is determined by the normalized distribution function
%(rl) only.

The soft potentials we are interested in correspond to
the "tail" of %(ri) in the region of small r}. If the scale of
variation of %(rl), 5„=5'„"'»iris' [see Fig. 3(a)] we can
consider the function %(g) (for relevant TLS's) to be a
constant and equal to %(0}. In this case the function
Po(rt, t ) is also constant:
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IV. LOW-TEMPERATURE PROPERTIES
OF GLASSES, T && W/k

In this section we consider the predictions of the SPM
concerning the low-temperature properties of glasses
( T « Wlk ). We show that with respect of these proper-
ties the SPM is equivalent to the AHVP model. Due to
the existence of the absolute minimum distance between
the second and the third levels in the potential (2.1) (see
Fig. 1), all the low-temperature properties of glass for
T« Wlk in the SPM are determined by TLS's only.

To calculate the low-temperature properties of glasses
we will use instead of the variables g and t those of the
AHVP model,

E and p= (4.1)

The parameters rl and t are related to E and p [see (2.3}
and (2.4)] by

2/3

(4.2)

As in the AHVP model p;„depends on the time of ex-
periment texpt

r;„(T)
pmin

=
expt

(4.9)

'1/3 p
C(T)=1r — k Tin'

9 W kT+p .
(4.10)

i.e., the specific heat has an almost linear temperature
dependence and depends only weakly on the time of ex-
periment: C(T)- ln'/ (t,„,) [instead of C(T)-in(t, „~, )

in the AHVP model].

B. Relaxation ultrasonic absorption in glasses:
The deformation potential of a TLS

Relaxation ultrasonic absorption in glasses due to
TLS's is determined as usual:

where wm;„(T) is the relaxation time of the TLS with
5=0 and E=ho=kT [see (4.21)]. Direct integration of
(4.8) with (4.7) leads to the result

where

WL,
(4.3) l,, '=rel

D 2 1 coT2, (4.11)& &Ls pu 4kT cosh (E/2kT) 1+co r

L =ln 8'
E p

The Jacobian of the transformation is equal to
' 2/3 3/2

"d(rI, t ) 2 '9L, 1JEp =
B(E,p) 9 WL, «' pv'I —p

(4.4)

(4.5)

g4 5 2k'
(4.12)

The deformation potentials M and D of the TLS are ex-
pressed through the deformation potential y as

where V is a volume of the glass, co is the ultrasound fre-
quency, and v. is the TLS relaxation time:

As we have shown in Sec. III, the distribution function
(3.5) for sufficiently general case is given by

~o
D =2—y =2&1—p y, M = y =v'p y, (4.13)

P(g, t)= Po, (4.6) where y describes variation of the asymmetry 5 under
strain e:

where Po is constant to be determined by (3.21}. Now,
taking into account that P(rl, t ) is an even function of t,
we obtain from (4.2), (4.5), and (4.6) the following expres-
sion for the distribution function F(E,p) in variables E
and p:

' &/3 p 5/2

F(E )
2 o'Qc 1 1

9 W p~l p Lz/3 (4.7)

which is practically independent of the energy E of TLS.
Now, we can calculate various low-temperature prop-

erties of glasses. Let us begin with the specific heat.

A. SpeciSc heat

The contribution of TLS's to the specific is determined
by

I

1
E/kT

C(T)=k f dE I dp F(E,p)
o ~;. ' kT (e ~/" r+1 }'

(4.8)

(4.14)

2H'
t —+t — E.

'9
(4.15)

Making use of (2.4) and (4.15} one obtains the deforma-
tion potential y as a function of g:

In order to determine l,,&' one needs to know the defor-
mation potential y. We can derive it within the frame-
work of the approach developed above. The derivation
and results are difFerent from the ones in Refs. 27 and 25.
(In these papers the interaction of TLS's with deforma-
tion e of a different nature is considered. It gives a much
smaller value of the deformation potential y, see below. )

The coefficients h', g', and r' in (3.1) are changed under
the deformation e in accordance with (3.14a)—(3.14c).
Due to the reasons mentioned above in Sec. III, the m.ain
contribution to the deformation potential y comes from
the linear term h' (3.14a). The variation of h' causes the
coefficient t in (2.1) to change as well,
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1Ba IBAD Bt
y =— =— sgnt2Be 2 Bt Be

„,Q~v}/v}~) sgnt,
1 H'8'

QL

or in terms of variables E and p [see (4.2)]:
' 1/3

3 H'WL i/3
4 3/2

QL

(4.16)

(4.17}

As it follows from (4.16), y is of the order of H'W/vIL~
and slightly depends on the barrier height V [see (2.7)]:
y-V'~ [or logarithmically depends on the tunneling
splitting b,o, see (2.3)]. Inserting H'=1, W/k=10 K,

I

we obtain

E pFEp
0 0

(4.18)

and gL ——10 we obtain y=1 eV. Thus, in the frame-
work of our approach y has the usual value of the order
of 1 eV. This value is by the factor I/Qvt~ =10 bigger
than the one obtained in Refs. 25 and 27 (where it was of
the order of y = W/vtL ).

Now we can carry out our calculations. Replacing the
summation in (4.11) by the integration with the distribu-
tion function F(E,p },

1 +co 0=f dt f dvIP(vi, t)
TLS

1 PoH' W ri) dE v'I —p
dp

2 pv3+vI& kT o cosh (E/2kT) o p 1+Co T
(4.19)

where the relaxation time is given as
t' '3

1 1 E 2/3 E
r~;„(T ) 2kT 2kT

and

(4.20)

C. TLS's contribution to the sound velocity

As is well known, TLS's also modify the sound velocity
of glasses and determine its temperature dependence.
Relative contribution of TLS's to the sound velocity 5v/v
is given by the usual expression

r;„(T) n pR4v'vs~3
(4.21) 1 1 M E

1. "High" temperatures: "Plateau region"

tow;„(T}«1 . (4.22)

In this case we get from (4.19) the usual result for the ab-
sorption coefficient to be independent of the temperature
("plateau region"}:

—] 7TI,,)
=- N .

2 pv'QviL
(4.23)

In the following (as in the usual AHVP model) we ana-
lyze (4.19) for the limiting cases of "high" and "low"
temperatures.

D2 1

4kT cosh (E/2kT) I+co 2
(4.26)

The first and the second terms in the large parentheses in
(4.26) are the so-called resonant and relaxation contribu-
tions, respectively.

In the temperature region (4.24) the relaxation contri-
bution is small enough. On the contrary, in the plateau
region it is important. Therefore, we will analyze it only
in the limiting case (4.22). Performing the integration in
(4.26) we derive the relaxation contribution to the sound
velocity in the plateau region:

It depends linearly on the ultrasound frequency co.

2. "Low" temperatures: "T region"
rel

PoH' W L
ln

2 pv Q vi &dmin( )
(4.27)

co~;„(T)))1.

In this case we derive from (4.19)

(4.24}

where L0 is determined by

0
L0 =ln

2k Tenor;„( T )
(4.28)

P ' W
l,,i' = ln (kT), (4.25}96 p'g4v sv}7~' 2kT

i.e., the absorption in this region is proportional to
T In (W/2kT} and independent of frequency. That
result differs only slightly from the result of the AHVP
model by the additional weak logarithmical dependence
on temperature due to the factor ln ~ ( W/2kT }.

v(T) v(To) 3 P—oH' W T
ln

v(T ) oi 2 pv2+vi To
(4.29)

i.e., the logarithmical temperature dependence of the

(in fact this is the equation for Lo) Ignoring th. e weak
logarithmical temperature dependence of L0 we obtain
what is usually measured in experiments,
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sound velocity (as in the AHVP model).
In contrast to the relaxation contribution to the sound

velocity, the resonant one [described by the first term in
the large parentheses in (4.26)] is always important for
both temperature regions (4.22) and (4.24). Performing
the integration we derive

v(T) v—(T0 }
(4.30)

V Tp

P0H' W T
ln

res pv V 'gL

which also coincides with the prediction of the AHVP
model.

D. Resonant absorption by TLS's

To complete our comparison with the AHVP model let
us now calculate the resonant contribution of TLS's to
the sound absorption. It is determined by the usual ex-
pression

pv TLS

From (4.31) we obtain the following result:

P0H' W
I,„'=m. co tanh

pV

(4.31)

(4.32)

The frequency and temperature dependencies are identi-
cal with the result of the AHVP model.

E. Interaction of TLS's with an electric Beld

In the AHVP model the interaction of a TLS with an
electric field F is usually described by the Hamiltonian

1 0
(4.33)

The dipole moment I,
l aa
2 BF

(4.34)

characterizes the variation of TLS asymmetry 6 in the
electric field.

The interaction of a soft atomic potential (2.1) with an
electric field F can be described by adding to the poten-
tial V'(x') (3.1) an extra term

—
q 'Fax', (4.35)

where q* is the effective charge of the moving entity and
n is a unit vector in the direction of the motion. The ad-
ditional term (4.35) in (3.1) means that the value of h' is
changed in the electric field F [compare with (3.14a)]

Fdoh'~h'— (4.36)

where

do=q *&a (4.37)

Proceeding as from (4.14) to (4.16) and (4.17), we ob-
tain the following expression for the dipole moment I of
the TLS (4.34):

l—gL dpi' I rtlgL ~ sgnt
2

=(—')' +7}LdpL ' sgnt . (4.38)

The effective dipole moment m of TLS appears to be of
the order of QgLdp, i.e., of the order of 0.1 e a-=0 5D.
(if q =e, where e is an electron charge). This value
agrees well with experimental data.

Proceeding by a analogy with calculations of acoustic
properties of glasses we can derive now [using (4.38}]the
TLS's contribution to dielectric properties. For example,
the temperature dependence of dielectric constant e(T)
(resonant contribution) is described by [compare with
(4.30)]

r

p d2 7/2
8'tr 0 0 1L

1
T

(439)
3 e8' T0

e(T) E(T0—)

e(T0)

Relaxation contribution differs from (4.39) by a factor
—

( —,
'

) [compare with (4.29) and (4.30)].
Dielectric losses are determined by

417 PPd 0 }L %CO
2 7/2

tan(6 )„,= tanhe8' (4.40)

for the resonant contribution [compare with (4.32)], and

277 ~pd 0 9L
2 7/2

tan(5)„, = (4.41)

for the relaxation one in the plateau region (4.22} [com-
pare with (4.23)].

F. The SPM is internally consistent

At the end of this section let us show that the low-

energy excitations described by the SPM are always well-
defined excitations, i.e., for them filr(E)E «1 [where
w(E) is their relaxation time (4.12)]. For TLS's, we
should show that the energy E, (1.8) is larger than W [see
(1.9)] because the TLS's picture in the SPM works up to
the energies of the order of W only. Using for y the
value of the order W/gL~ (4.17) (H'= 1), (2.5), (2.6), and
inserting Mv =pv a = 80 we get

' 3/48' M
E, M

(4.42)

[the effective mass M of the tunneling entity is most likely
to be heavier than the average mass of the atoms consti-
tuting the glass M (Refs. 29 and 37)]. Therefore, in the
SPM the TLS's are always well-defined excitations.

Considering excitations with higher energies, E& 8',
we should take into account higher levels in the potential
(2.1}and use (instead of the TLS's picture} the picture of
the soft quasilocal harmonic oscillators. By the same
procedure it can be shown that they are also well-defined
excitations with respect to their interaction with propa-
gating phonons [due to the same mechanism (3.14a)], but
we omit the; derivation and give here only the result

O'E I E « 1 for E & Atop, (4.43)
~(E )E E2 M Kiri)p
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where E, is determined by (1.8) and too=+@0/Mti is a
characteristic crystal-like frequency coinciding with the
first maximum of the vibrational density of states in the
glass (for amorphous Si02 Icos=130 K). It is very im-

portant that with respect of interactions with phonons
the whole picture of all low-energy excitations in the
SPM appears to be internally consistent (about the limita-
tions due to "nondiagonal" interactions between soft har-
monic oscillators see the end of Sec. VII).

V. COMPARISON %ITH EXPERIMENT

=ln' (0.45X10 )=2.35 .

Equating (4.10) to 0.44 p J/cm K for T=0.2 K we obtain

p 5/2
0 /L

8' =0.82X10 erg
—i c (5.2)

We can derive the numerical value for another com-
bination of parameters from the sound velocity measure-
ments. In accordance with (4.30), the temperature depen-
dence of the sound velocity for sufficiently low tempera-
tures (4.24) is logarithmical one

u(T) —u(T&)

u(TO)
(5.3)

T=Cln
0res

where

C=
pu Q'qL

(5.4)

The value of C is known from experiment. For example,
for Si02, C& =3.1 X 10 (for longitudinal sound). As
a result, we have

p"t +'ql.
=3.1X10 (5.5)

From (5.2) and (5.5) we can obtain for Si02 (p=2. 2
glcm, u&

=5. 8 X 10 cm/s)

HI' W =1.04 eV .
II.

(5.6)

This combination of parameters is very important be-
cause it determines the value of the deformation potential

The results obtained above within the framework of
the SPM almost coincide with predictions of the AHVP
model. A slight difference is present in formulas (4.10),
(4.25), and (4.27) but the accuracy of the available experi-
mental data is not sufficient to resolve it. From compar-
ison of our theory with experiment we can extract the
values of important parameters (or some combination of
them) involved in the SPM. Let us start with the
specific-heat data. For amorphous Si02 (Suprasil W} the
numerical value of the specific heat at T=0.2 K is 0.44
pJ/cm K. The theory gives for it the value (4.10). To
estimate the logarithm we put ~;„(T)=10 /T (K) s

[see (4.21)], t,„,= 10 s and W/k = 10 K. In this case

ln1/3 (5.1)
kT+p, „

y (4.17}. For example, for the frequency co/2m. =0.692
GHz (it should be noted, that in our theory the deforma-
tion potential y logarithmically depends on co) we have
from (5.6), (4.17), and (4.4)

V (5.7)

[we put in (4.4) E=fm, 8'/k=10 K, and p=l]. This
value is in a good agreement with experimental results
where y &

= 1.6 eV (Ref. 33) for this frequency.
Let us now compare with experiment the results of our

calculations for the dielectric properties of glasses. An
important difference that should be pointed out is that
the low-temperature ultrasonic properties of glasses are
only weakly influenced by the impurity content of the ma-
terial. On the contrary, the magnitude of the similar
dielectric properties depends strongly on the presence of
polar impurities [for example, OH groups (Ref. 34)]. So,
the comparison of our results with experimental ones
makes sense for chemically pure glasses only.

For example, the variation of the dielectric constant
with temperature in vitreous silica Suprasil W ( ( 5 ppm
OH) between 1 and 5 K at 10 GHz agrees with Eq. (4.39}
and equals 1.24X10 . As a result, we have for the di-
mensionless ratio in (4.39)

p 2 7/2

=0.92X10 5

8' (5.8)

(the same value for A can be extracted from dielectric
loss data). ' From (5.8) and specific-heat data (5.2) we
extract the combination

do+2}L =0.07(le 1 A)=0.33D . (5.9)

According to (4.38) the quantity do+rlL determines
the value of the TLS dipole moment m. For example, for
the frequency c0/2it=720 MHz we have from (5.9),
(4.38), and (4.4)

m =0.55D (5.10}

[we put in (4.4) E =fico, W/k =10 K, and p =1]. From
dielectric rotary echo experiments for Suprasil W, we
find (for the intrinsic TLS) the dipole moment m to be
distributed with a width 0.2D and with a mean value of
m =0.7D. From usual echo experiments we have
m =0.5D for the same frequency.

From the comparison of our theory with low-
temperature experiments in glasses we determine here
only three independent combinations of parameters intro-
duced in the theory [see (5.2), (5.5) or (5.6), (5.8), or (5.9)].
According to the SPM, all the universal low-temperature
properties of glasses are determined only by these three
combinations of parameters. It makes the effective mass
M and other parameters such as @0, a, Po, H', and q' in
some sense unobseruable quantities. It is impossible to
deduce them from the physical experiment. One can give
only order-of-magnitude estimates (see Sec. VII) or take
them from the numerical modeling of the glass.

One of the important parameters of the SPM is charac-
teristic energy W (2.6). It determines the region of appli-
cability of the AHVP model. Unfortunately, it is impos-
sible as was mentioned above to determine it from the
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low-temperature properties of glasses which are deter-
mined by the TLS's alone. Indeed, 8'contributes to the
formulas only under the sign of logarithm which is weak-
ly sensitive to the value of W (we used for estimation in
such cases W/k =10 K}.

Additional possibilities arise from the comparison of
the predictions of the SPM with properties of glasses at
temperatures larger than W/k. Some of these properties
are determined by quasilocal harmonic oscillators. For
example, their contribution to the specific heat appears to
be proportional to T (for kT » W). It produces the
minimum in the temperature dependence C(T)/T .
From the position of this minimum T;„one can deter-
mine the characteristic energy 8'. En Ref. 28 we made an
effort to solve the Schrodinger equation for anharmonic
oscillator (2.1) numerically. We calculated the positions
of about 20 quantum levels in the potential (2.1) for a
large number of relevant points on the plane g, t, and
their contribution to the specific heat with distribution
function (3.5). From numerical calculations s it has been
found that kT;„/W=0. 4 0.5 [dep—ending on the details
of the distribution function 4(ri) ]. For SiOz, T;„=2K,
i.e., W/k =(4—5) K. A somewhat smaller value was ob-
tained in Ref. 29: W/k =3.3 K.

Another possibility comes from the data on relaxation-
al ultrasound absorption. Double-well potentials with
high barriers are responsible for this absorption. The
value of F determines the so-called crossover tempera-
ture T, from tunneling to activation hopping transitions
over the barrier [above this temperature the tunneling
plateau (4.23) is replaced by the absorption increasing
with temperature]

kT =(—') Win' 1
c 8

CO'Tp
(5.11}

where ~p is the prefactor in the exponential temperature
dependence of the thermal activation relaxation time:
r=ro exp( V/kT). Inserting in this formula W/k =5 K,
co/2~=4 kHz, and v.p=10 ' s, we get T, =3.5 K in

agreement with experiment.

VI. WHY DO PHONONS GO SO FARY

In this section let us estimate the value of the dimen-
sionless parameter C (5.4). Inserting (3.21) in (5.4) we ob-
tain

0 (0)H'W

pv + )L pu QOQ /L

(6.1)

where we have used pu Qo-—80, H'=1, and (2.6). Thus,
in our theory, the parameter C appears to be proportional
to the small number gz ——10 . Therefore, to get the
observable value for C of the order of 10 we have to
put into (6.1) %(0)=10 '. This is an acceptable order-
of-magnitude estimate for the normalized distribution
function %(g) at g=0 because this function has a max-
imum at g= 1 [see Fig. 3(a)].

The physical meaning of the srna11 parameter g& can
be understood if we take into account that the scales of
atomic parameters a = 1 A and 60= 10 eV involved in ex-

pression (2.5) for gl come from the parameters of quan-
tum mechanics. Indeed, for these quantities we have the
following order-of-magnitude estimates:

and

m, e

m, e4
Q

(6.2)

where m, is an electron mass. The first quantity in (6.2)
is the Bohr radius and the second one is a binding energy
for electron in a hydrogen atom. Inserting these values in
(2.5) we get

(6.3)

flCOp =+A' /Ma 8 = Xp
'2

(6.4)

where xo= +A'/Mcoo. This ratio can also be thought of
as the ratio of the kinetic and potential energies. The
scale of the kinetic energy is set by phonons while the
scale of the potential energy is set by electronic binding
energies. Nearly the same parameter appears in glasses
when we consider the excitation spectrum in soft atomic
potentials. Thus, the small anharmonicity in crystalline
solids and small concentration of TLS's in glasses have
the same origin.

Thus, we can say that the smallness of the dimension-
less parameter C which appears in a natural way in the
theory follows from the softness of the local atomic po-
tentials responsible for TLS's in the glass structure. On
the other hand, the parameter C is equivalent to the di-
mensionless parameter Py /pu in the AHVP model
which characterizes the interaction of TLS's in a glass.
We come to the conclusion that this parameter should al-
ways be small enough. The reason is the small ratio of
the electron mass to the effective mass of the tunneling
entity. This conclusion can be an answer to the question
"Why do phonons go so far?."' We have also shown
that due to the interaction between soft atomic potentials
C does not depend on the concentration of elastic defects
in the glass structure.

From the theory it follows also that the value (5.2)
Por)r~ /W can be considered as TLS's density of states P
[see (4.7)]. Concentration of TLS's with energies from 0

Thus, the fundamental physical reason for the small
parameter gz in solids is the small ratio of the electron
mass and the effective mass of the tunneling entity. It is

just the same parameter which determines in the crystal-
line solids the smallness of the frequency of short-wave
phonon-phonon collisions (in comparison with their own
frequency) due to anharmonic processes. It can be ex-
pressed through the small ratio of the characteristic pho-
non energy fuuo -—A'+CO/Ma (see Appendix A) to ener-

gy hc (it determines relative high-frequency vibration am-
plitude of the atoms xo/a ):

(rir )„„st,)-—Qm, /M
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to W in such a case is of the order of Po2)~/ . Supposing

21& =10 [see (2.5)], %(0)=0.1 and making use of (3.21)
we obtain

P =10 /a (6.5)

The value 1/a is roughly of the order of the concentra-
tion of atoms constituting the glass. We see that =10
part of them contributes to the speci6c heat at a few K
only. This fact was known from experiments a long time
ago but had no explanation so far. Soft potential theory
comes to this result in a natural way.

To complete our discussion of the problem let us show
that the smallness of the dimensionless parameter A (5.8)
(of the order of 10 } which determines the dielectric
properties of glasses [see (4.39)-(4.41)] also follows natu-
rally from our consideration. Using (2.6), (3.21), (4.37),
e /o =8o [see(6.2)] and a =Qo we have

4

e
(6.6)

L

[because %(0}=10 ' as follows from (6.1)]. To get the
right order of magnitude (10 ) for quantity (5.8) we
should suppose that for intrinsic TLS's in Suprasil W the
effective charge q'=0. 3e. It correlates with the results
of positron annihilation experiments where, for in-
stance, the effective charge of oxygen in difFerent forms of
quartz glass was found to take values between —0.46e
and —0.65e (whereas, it is about —le in crystals). This
decrease in the effective charge implies an increase in the
covalency of the Si-0 bond in the glassy state.

As a result, the smallness of the parameter A in (5.8)
has the same ground as the smallness of the parameter C
(6.1},plus an additional smallness of the effective charge
q'. A =C(q'/e) . On the other hand, the parameter A
is equivalent to the dimensionless parameter Pm in the
AHVP model and we have understood now why it is so
small.

o'9i~ +2)c %(0) A'

a'8o a'8o 2Ma'4'o
(7.1)

where we used (3.21), the estimations Qo=a, H' = 1, and
(2.5), (2.6}. The order of magnitude of the deformation
potential y is [see (4.17))

W fi
3/2 0 9L 0=g

9L a 0

1/6

(7.2)

rameters that determine the low-temperature universal
properties of glasses. But, in those sections we either lim-

ited ourselves with the case of a-Si02 or gave the order-
of-magnitude estimates irrespective to any particular
glass. These estimates played mainly an auxiliary role.
However, in this section we want to analyze the problem
of universality in more detail and to understand what are
the macroscopic parameters that govern the universal
properties of glasses. Any why are these properties
slightly different from glass to glass.

If we examine the case closely, we can see that the
same "universality" exists among the values of difFerent
macroscopic parameters of glasses (as well as crystalline
solids), for instance, the sound velocity v and the mass
density p. But how are the microscopic TLS's parameter
related with the macroscopic parameters of a material?

In this section we show that in the framework of the
SPM it is possible to answer this intriguing question. Us-
ing the results obtained in the previous sections we can
estimate the characteristic microscopic parameters of
glasses from the macroscopic material parameters p, v,
and the average mass of the atoms M. Of course, we are
far from the conclusion that these values can be calculat-
ed exactly for any glass (i.e., our purpose is not ajBof the
experimental data}. However, we can give the right order
of magnitude for P, y, and C and demonstrate the visible
correlation of these values with usual macroscopic
characteristics of the glass which are not related with
TLS s. This correlation is seen, for instance, if the values

p and v are changed under pressure. Or, the chemical
composition of the glass is changed.

The TLS's density of states P is determined by (4.7):

VII. WHY ARE THE MAGNITUDES
OF THE VARIOUS LO%-TEMPERATURE PROPERTIES

SO NEARLY THE SAME FOR GLASSY SYSTEMSY

Since one has understood that the TLS's are responsi-
ble for the low-temperature properties of glasses one
question is perpetually up in the air. Why are the magni-
tudes of the various low-temperature properties nearly
the same for the overwhelming majority of glassy sys-
tems'? For almost au the glasses the TLS's density of
states P is of the order of 10 J ' m, the deformation
potential y = 1 eV, and the parameter C=Py /pv
=10 . Where do these particular values come from'?
Does this universality arise due to numerical "accidents"
in the TLS's parameters? Or is there some fundamental
physical reason which underlies it?

Partly, the answer to this question was already given in
the previous sections. We gave there the order-of-
magnitude estimates for various microscopic TLS s pa-

where we used (2.5) and (2.6).
The estimation of the dimensionless parameter

C =Py /pv characterizing the interaction among
TLS's, the variation of the sound velocity with tempera-
ture, and the relaxation ultrasonic absorption in glasses
follows from (7.1) and (7.2) if we take into account that
pv a =Co [see also (6.1)],

C =%(0)g =%(0)QA' /2Ma ~C (7.3)

The minimum value of the TLS's relaxation time
„(T) is determ. ined by the following combination of

the parameters [see (4.21)]:

8' k

pri4v'g'

g2 k3 @2k3 '
~2

' 1/3
0+L 0

pA' v, phv, 2Ma Co
(7.4)

and 1/r;„(T)=K3T .
The main idea is to express all these quantities via the
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macroscopic parameters of the glass p, v, M, and addi-
tionally M/M and 'Pl0). In order to do this, we will use
the following estimations of the characteristic length a
and the energy Co (see Appendix A):

' 1/3

0— vo -—Mv
P

(7.5)

Whereas the estimates based on Eqs. (7.5) play in the pre
vious sections only an auxiliary role all the results of this
section are based on these equations (as well as on the
analytical calculations of the previous sections}. To em-
phasize this, Eq. (7.5} is given here as a separate num-
bered equation, whereas the corresponding part of the pa-
per is put into Sec. VII.

Admittedly, these are very crude approximations be-
cause we have neglected all the details in the geometry of
the particular tunneling objects which can be different for
different glasses. Nevertheless, these crude approxima-
tions lead to a striking correlation with the experimental
data. As a result we obtain

gi/3 10/9 M
' 1/6

23/9 7/3 (7.6)

for the TLS's density of states,
' 1/6

g1/3V 5/3 1/9M 5/9

M
(7.7)

for the deformation potential of TLS,
1/3

C=q(0) '
vM'"

for the dimensionless parameter C, and

k 3V 10/3M 10/9
' 1/3

glo/3 7/9v5 M

(7.8)

(7.9)

for the parameter E3. As to the estimations of the
characteristic energy W and of the parameter of anhar-
monicity 7iL we derive from (2.6), (2.5), and (7.5):

g4/3 4/9 2/3
2/3

(7.10)
M

and

g2/3 2/9
1/3

9L
M 8/9V 2/3

(7.11)

Thus, in the framework of the SPM we have related
the microscopic TLS's parameters with the macroscopic
parameters of the material P, v, and M. This is especially
important for TLS's density of states P and for the defor-
mation potential y which are the phenomenological pa-
rameters in the AHVP model. They depend additionally
on the ratio of the average mass to the effective mass of
the tunneling entity M/M and on the value of the nor-
malized distribution function %(7)) at ri=0. Both of
these values are not known a priori and can be different
for different glasses. Therefore, to check whether the
correlation exists we have to assume these unknown con-

stants to be the same for all the glasses. This is the idea.
We put, for example, %(D)=0. I (see Sec. VI) and M =M.
For the sound velocity v we will use the value of the lon-
gitudinal sound velocity vI. The only exception is (7.9)
[see also (7.4)] where we will use the transverse sound ve-

locity v, . Due to U, &&vl the relaxation rate of TLS,
1/~;„ is determined predominantly by emission and ab-
sorption of transverse phonons.

In Table I, we present the measured values of various
tunneling parameters from ' ' and calculated from
Eqs. (7.6)—(7.11) for 22 different glasses. First, for most
glasses the theory gives the right order of the value for all
the TLS's parameters. Second, a visible correlation obvi-
ously exists between measured and calculated values.
Moreover, for a large number of glasses a striking coin-
cidence for deformation potential y and for TLS relaxa-
tion rate (characterized by the coefficient E3) between
measured and calculated values occurs. To be quite
frank, we never expected this because our approxima-
tions (7.5) cannot pretend the accuracy which occurs in
reality (maybe the reason is that both values only slightly
depend on the ratio M /M ).

In a number of cases, the above-mentioned coincidence
(especially for the density of states P) does not occur. It
cannot be obtained by using another value of the distribu-
tion function %(0). We guess that the reason is due to
the geometrical factor a and that the approximation (7.5)
for a is very crude. But we will not develop this idea fur-
ther because we do not have the purpose to get an ideal
coincidence. Note only that the deviation from experi-
mental data happens as a rule if the parameter of anhar-
monicity gL is not sma11 enough. It means maybe that
approximation (2.1) is too crude and one needs to keep
higher-order terms ( o-x and x ).

There is a visible regular deviation (by a factor of 5) be-
tween the calculated values of 8' and values taken from
the position of the minimum in the C( T ) /T . According
to our point of view, the probable reason is that the
effective mass of the tunneling entity M is most likely to
be heavier ( = 10 times) than the average mass M. How-
ever, we cannot use M as a fitting parameter in Eq. (7.10)
because it has only order-of-magnitude meaning and we
do not know the numerical factor.

In Table II, we present the estimates of the TLS's pa-
rameters in Si02 aerogels with different mass density us-

ing the data from Ref. 52. For our estimates we have
used the same value for %(0)=0. 1 and M=M. We can
see that the calculated density of states P for the sample
with the smallest value of p is about factor 40 larger than
the value in a-Si02 (see Table I). This correlates with the
specific-heat measurements where specific heat for this
material at T=0.5 K is about factor 50 larger than the
specific heat of a-Si02. The theory also predicts large ul-

trasonic absorption and a small value for the deformation
potential in these substances.

The correlation between the parameters of TLS's and
the macroscopic parameters of the material also exists if
the macroscopic characteristics of the glass are changed
under pressure. If for suSciently small values of the
pressure only the sound velocity u and the mass density p
are changed, there should be a correlation
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p vi v, M
(g/cm) (km/s) (a.u. )

TABLE I. Summary of the data available on the low-temperature (T & 1 K) acoustic properties for 22 selected glasses and calcu-

lated ones from (7.6)-(7.11) for %(0)=0.1 and M =M. The parameters p, vi, v„M, O', Cl, y, P, K3, and gL are defined in the text.
A 1 and A2, lithium borate glasses; A 1=B203—0.5Li20 —0.7 LiCl, A 2=B203—0.5Li20. The experimental value of %was estimat-

ed from the position of the minimum in the specific-heat data [C(T)/T see (Refs. 28 and 29)j.

8'(K) CI (10 ) y (eV) P (10 /Jm') E3 (10 /K' s)

Glass Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theory 10 Ref.

a-SiOz
BK7
LaSF-7
SF-4
SF57
SF59
V52
BALNA
LAT
a-Se
As2S3
Zn glass
Cu60Zr40
Mn glass
LiCl X7H20
PMMA
PC
H20
D20
BzO
A1
A2

2.2
2.51
5.79
4.78
5.51
6.26
4.8
4.28
5.25
4.3
3.2
4.24
7.39
4.05
1.2
1.18
1.2
0.94
1.044
1.8
2.05
2.05

5.8 3.8
6.2 3.8
5.64 3.6
3.78 2.24
3.57 2.1

3.32 1.92
4.15 2.25
4.3 2.3
4.78 2.8
2.00 1.05
2.7 1.46
4.6 2.3
4.3 2.1

4.7 2.5
4.0 2.0
3.15 1.57
2.97
4.12 1.93

3.47 1.91
6.2 3.7
6.92 3.97

20.0
19.8
41.3
44.4
51.6
58.1

41.9
36.1

43.5
79.0
49.2
34.4
74.2
33.4
7.32
6.65
7.66
5.97
6.67

13.9
14.5
13

4-5

1—1.5
1.2-1.9

015

6
9
+40

0.215 8.8
0.2 0.3 4.5
0.73 0.83 5.1
0.78 0.94 5.2

19
29
34

2.4
8.9
8.2

5.3
2.9
3.0

22 3.1 2.1 1.04 0.90 0.8
25 2.7 2.1 0.96 1.01 1.1
19 1.2 1.1 1.46 1.43 0.4
13 2.2 1.4 0.72 0.75 1.1
12 2.1 1.3 0.74 0.75 1.1
11 2.3 1.3 0.77 0.72 1.0
14 4 1.4 0.87 0.85 1.7
15 3.8 1.6 0.75 0.81 2.1

16 3.8 1.2 1.13 1.10 1.4
5 1.2 1.2 0.25 0.35 2
8 1.6 1.5 0.26 0.43 2

17 3.0 1.6 0.7 0.89 2.2
11 0.18 0.73 0.42 1.29
17 1.3 1.6 5.6 0.9 0.
29 7.2 9.4 0.56 0.26 1.3
26 2 14 0.39 0.16 0.
23 1.8 12 0.28 0.16 0.
31 8. 11 0.1 0.24 80 1.42

4.8
1.3
1.3

1.31
0.31
0.28

0.75 0.4 0.3
0.76 0.3 0.33
0.4 0.4 0.37
0.69 1.3 1.33
0.64 1.8 1.61
0.65 2.2 2.0
0.64 1.5 1.66
0.74 1.1 1.55
0.46 0.7 0.87
0.66 5.2 14.5
0.75 1.9 5.6
0.71 0.8 1.85
0.24 3.56
0.7 56 1.32

10.6 8 1.12
23 9 1.54
19 5

12.4

1.6 21
1.6 21
1.1 21
1.3 21
1.2 47
1.2 21
1.3 21
14 21
1.1 21
1.1 21
1.3 21
14 21
0.8 47
1.4 47
45 48
57 21
5.2 21
5.0 47,49

50
51
51
51

and

10/9

7/3
U

(7.12)

y ~ ~5/3 1/9

In Table III, we present the values of different TLS's pa-
rameters for a glassy polymer at different pressures which
were measured by Grace and Anderson and calculated
from (7.12). The predicted correlation between measured
and calculated values really exists.

The same correlation with pressure is also traced a-
SiOz. In the paper of Bartell and Hunklinger' it has
been reported that the ultrasonic absorption in a-SiOz in
the low-temperature region increases under pressure. It
is known, however, that in this material the sound veloci-
ty decreases with pressure and in accordance with (7.8)
and (7.9) the absorption a ~ (CK3/v )T should increase
when pressure is applied.

Let us see now what happens if we change the chemical

composition of a glass. In the paper of Brand and
Lohneysen a systematic study of the low-temperature
specific heat C (0. 1 ~ T ~ 3 K) of As„Se, „glasses over a
wide range of the concentrations x has been presented.
The linear temperature contribution to C(T) ( ~ T)
which is attributed to TLS's shows a pronounced depen-
dence on the concentration x with a minimum in the vi-
cinity of the threshold of rigidity percolation x =0.4 and
a maximum near x =0.7. The vibrational contribution to
C(T) ( ~ T ) shows a similar concentration dependence,
suggesting a strong correlation between TLS's and vibra-
tional excitations predicted in Refs. 26 and 28 in the
framework of the SPM.

The same nonmonotonic behavior occurs for macro-
scopic parameters: inverse sound velocity, compressibili-
ty, and the mole volume of the glass. So let us try to
look at the experimental data from the point of view of
our theory. If only the values p, M, and U change with
the concentration x, one gets the following correlation:

TABLE II. The same data as in Table I calculated for silica gels with different mass density. Parameters p, v&, and v, are taken
from Ref. 52.

Glass
P

g/cm'
vi vr

km/s
M 8' (K) 10 C y (eV) P (10 /Jm ) E (10 /K s)

a.u. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. 10

SiO~ gel
SiOz gel
SiOz gel

0.87 1.85 1.18 20
0.72 1.5 0.96 20
0.27 0.425 0.26 20

7
5
1.5

4.8
5.6

14.1

0.12
0.08
0.009

3.8
5.1

32.4

4.7
7.6

167

2.8
3.1

5.9
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TABLE III. Values of various tunneling model parameters for measurements under pressure on a glassy polymer after Ref. 53 and
calculated from (7.12). All data (except pressures) are normalized to zero-pressure values. The value B describes the cubic contribu-
tion to the specific heat from soft quasilocal harmonic oscillators: B=C» [see (7.14)].

P
(kbar) p

P -p o/9/U /3 B p2/9/U l 1/3
pU /Py~ 1/pl/ PZ~ Up4/3 y2 U

lo/3p~/9
y /pU

5 1/p7/9p 5/3

Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theo r. Expt. Theor.

0
0.8
1.4
1.9
3.9

1 1

1.03 1.021 0.94
1.041 1.04 0.89
1.047 1.048 0.87
1.081 1.086 0.78

1

0.98
0.95
0.94
0.9

1

0.94
0.89
0.87
0.78

1

0.93
0.87
0.85
0.75

1

0.99
0.99
0.99
0.93

1

0.99
0.99
0.99
0.97

1 1 1

1.06 1.06 1.13
1.09 1.1 1.22
1.11 1.11 1.27
1.26 1.21 1.62

1

1.08
1.15
1.18
1.34

1

0.99
0.98
0.96
0.99

1

0.94
0.91
0.89
0.82

P 1/9
oc —a:

p M 22/9 7/3 (7.13)
Using the estimates (7.8) and (7.10) we obtain from (7.16)

for the linear contribution to the specific heat due to
TLS's, and

3/2
%(0)M M 4

res, vib 4 CO

pv M
(7.17)

C a: oc
P 1

~2 7/9M 8/9 (7.14)

1 4—~v
Z (7.15)

An explanation of such a correlation has not been given
yet.

In the framework of the SPM we have shown in Ref.
60 that the physica1 reason for such scattering mecha-
nism is the resonant scattering of phonons on the soft
harmonic oscillators, whose density of states is propor-
tional to co (see Appendix 8)

3
1 +AC %co

res, vib (7.16)

for the cubic contribution to the specific heat (see Ref. 29)
due to soft quasilocal harmonic oscillators.

Unfortunately, there are no experimental data avail-
able concerning the concentration dependence of the
values p and v in As, Se& „at low temperatures. There-
fore, we used room-temperature data which were given
only in the concentration range 0 (x (0.45 (Ref. 57) and
data for pure As. The results are present in Figs. 4(a)
and 4(b) together with experimental data. An obvious
correlation is seen in this case too. This means that the
value of the distribution function 4'(0) and the ratio
M/M are nearly independent of x and the main concen-
tration dependence of the specific heat comes from the
concentration dependence of the quantities v, p, and M.

At the end of this section we mention a few words
about properties of glasses at higher temperatures when
tunneling model is no longer applicable. In the paper of
Freeman and Anderson a fit of the thermal conductivity
data for difFerent glasses was presented. To fit the pla-
teau region in the thermal conductivity of glasses they
used together with usual scattering mechanism of pho-
nons by TLS's, scattering of unknown nature which is
proportional to co, where co is the phonon frequency.
The coefficient of proportionality (1/Z in their notations)
appeared to be strongly correlated with the sound veloci-
ty of the glass (see Fig. 5):

i.e., coefficient of proportionality in (7.17) depends on the
sound velocity just as was found in Ref. 59: 1/Z ~ U

Another interesting relation has been established re-
cently. ' If T;„and T,„are the positions of the
minimum and the maximum in the temperature depen-
dence of the specific heat C(T)/T correspondingly and

Tg is the glass transition temperature then the ratio

Tmax
R —=

3/4 ]/4 1.06
min g

(7.18)

is nearly the same for nine examined glasses with max-
iinum deviation of 19%. Let us check this result from
the point of view of our theory.

As it was mentioned before (see end of the Sec. V)
T;„~W. From the Lindemann criterion of melting the
glass transition temperature Tg ~ 80. And origin of the
maximum T,„ from our point of view (which is difFerent

from Ref. 61) related with the following phenomenon.
Strongly rising resonant scattering of phonons due to

harmonic oscillators (7.16) implies that at some energy
Ed the mean free path of phonons becomes equal to their
wavelength. ' The value of this energy is determined by
expression

Z, =(0.6 —0.75)WC-'" . (7.19)

FOr example, for a-Si02, Ed/k =45 K. At higher ener-
gies excitation from one oscillator can jump to other os-
cillators directly on the distance of the wavelength (com-
pare with Einstein model ). The picture of independent
quasilocal harmonic excitations in this case is lost. Pho-
nons and harmonic oscillators with energies E &Ed can-
not be considered independently any longer. They be-
come intermixed with each other. Above this energy the
total density of states should be reconstructed. One can
believe that just this phenomenon responsible for the
bump in the specific heat C(T)/Ts at temperature
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e"c-'"
R [%(0)]

pr 3/4@1/4
0

(7.20)

T,„=Ed /5k, for the rise of thermal conductivity above

the plateau and for the "boson" peak at frequency
fuu=Ed in the Raman scattering in glasses.

Making use of above-mentioned relations, (2.6} and
(7.3), we derive

C1P"

]PL

Silicates
Polymers

5o[-ge[
KE ~XCN.0
PdSiCu

:I
I

I

0.6 ~

p

0.6—

l/l

C
0.4—

JD
4
U

0.2-
i

4

. . !
Q2 QC 09 0.8 1.0

X

I

102
10

v (rn/s)

1P'

FIG. 5. Phonon scattering coefficient Z ', responsible for
producing the plateau in the thermal conductivity vs phonon
velocity for amorphous solids and a crystal exhibiting "glassy"
behavior. The line has a slope of v (from Ref. 59).
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i.e., this ratio does not depend on material parameters at
all.

'

VIII. DISCUSSION
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24—

Vl

16—
CL
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FIG. 4. Concentration dependence of the specific heat
C(T)=C)T+C3T' for amorphous As„Se& „calculated from
(7.13) and (7.14) for 0 (~ (0.45. The concentration dependence
of p and v are taken from Ref. 57 at room temperature. The
open circle is for pure As, after Ref. 58. (a) Coefficient C& of the
T linear specific-heat contribution vs As concentration x. Inset:
The corresponding experimental data from Ref. 55 for different
values of the magnetic field. (b) Coefficient C3 of the T'
specific-heat contribution vs As concentration x. Inset: The
corresponding experimental data from Ref. 55.

From the approach presented above it follows that as
for the frequency and temperature dependencies, there is
practically no difference between the results of AHVP
model and our theory based on the SPM. As for the nu-
merical estimates, we should consider the agreements
(5.7) and (5.10) with experimental values for Suprasil W
as a suSciently good one. We have used here a simple
version of the theory where the values 80, a in (2.1), M in
(2.5), H' in (3.14a), and q' in (4.35}have been considered
to be the same for all TLS's in the glass. But, in princi-
ple, due to fluctuations of the structure parameters in the
glass all of these quantities can fluctuate around their
average values [as found for the intrinsic dipole moment
m in Suprasil W (Ref. 36)]. Thus, the average value of a
certain combination of these parameters need not coin-
cide with the same combination of their average values.

Therefore, in the framework of the SPM there is no
reason to introduce two types of TLS's to explain the
specific heat and ultrasonic data as it was proposed in the
paper of Black and Halperin. The explanation of this
fact is following. The integration over p of the density of
states (4.7} in (4.8) due to the factor L give us an ad-
ditional numerical factor 6 which does not appear in the
AHVP model. From the other side, the logarithmic fac-
tors are canceled in the product F(E,p }y [see (4.7) and
(4.17)] which determines the ultrasonic absorption (4.23),
(4.31}and sound velocity (4.29), (4.30). There are no ad-
ditional numerical factors in this case.

Another important difference between the two models
concerns the time dependence of the specific heat. So, let
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us now discuss this point in more detail. The specific
heat in the AHVP model is proportional to the logarithm
of the time of experiment t,„,: '

4texpt
CAHVP

+min
(8.1)

while the SPM predicts (4.10):

(8.2)

i.e., a much more smooth dependence on I,,„,than in the
AHVP model. To observe this difference one needs to
carry out investigations on a large time scale of the order
of several hours, where the difference will be of the order
of 20—30%. For example, in the AHVP model one ob-
tains the ratio

CAHVP(5~ )
=1e4

CAHvp( ls )

and in the SPM model:

CsPM(5h ) =1.1 .
CspM(1$ )

(8.3)

Usually, one considers the inverse time dependence of
the heat release

~ ~ 1

t ' (8.5)

which has been observed in different experiments as
an evidence of the logarithmical time dependence of the
specific heat (8.1) in the AHVP model. However, the
SPM predicts nearly the same result for the heat release

~ 1

t ln (t)
(8.6)

The only difference is in an additional sxnooth logarithmi-
cal dependence on time: ln ~ (t). The question arises:
is the accuracy of existing experiments sufficient to
discriminate between (8.5) and (8.6) (see Ref. 70}'?

IX. CONCLUSION

Using the concept of soft atomic potentials we have
shown that all low-temperature properties of glasses
which receive explanation in the framework of the
AHVP model are reproduced in the version of the SPM
presented here. A small difference in the time-dependent
specific heat poses a challenge to experixnentalists. The
approach presented above provides quantitative predic-
tions. However, one should be aware of the fact that we
have not take into account fluctuations of the model pa-
rameters (see Ref. 70 where the distribution function of
W has been derived from the heat release data).

In addition to a correct description of the temperature
and frequency dependencies of the various low-
temperature physical properties of glasses, this approach,
starting from the usual atomic values of the parameters
@0, a, M, H', q' introduced in the theory, gives correct
order of magnitude estimates for the following.

(1) Deformation potential constant y=H'W/rtL~ ——1

eV.
(2) Dipole moment of the TLS m =QgL ea =0.5D.
At last, the main result of our paper is that the interac-

tion between soft atomic potentials is responsible for the
universality of the low-temperature properties of glasses
and that these properties are insensitive to the concentra-
tion of defects in the glass structure. As a result we have
obtained a correct order-of-magnitude estimate for the
following.

(3) Concentration of TLS's contributing to the specific
heat at a few K = 10 of atomic concentration.

(4) Parameter

C=Py /pv =Poof'~W/pv Qrtt -—%(0)rtL~ =10

which characterizes the interaction of TLS's in a glass. It
appears to be small in accordance with existing experi-
mental data.

(5) Parameter

& =&m =P d rt /W=tP(0)rt ~(q'/e)2=10

which characterized the TLS's contribution to dielectric
properties of pure glasses.

In the framework of the SPM it is possible to relate the
TLS's density of states I' and the deformation potential y
with the macroscopic parameters of the material: the
sound velocity U, the mass density p, and the average
mass of the atoms M. A striking correlation with
different experimental data occurs. If the macroscopic
parameters are changed under pressure or due to a
change of the chemical composition of the glass, or by
some other ways, the corresponding variation of the
TLS's parameters coincides well with the predictions of
our theory. It can be considered as an evidence that soft
atomic potentials are responsible for the universal prop-
erties of glasses. And that the SPM gives an adequate
description of these properties.
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APPENDIX A

Let us estimate the order of magnitude of the
coefBcient @p. In the case of atomic displacements x of
the order of the interatomic distance a, the potential en-

ergy V(a }=Co should be of the order of characteristic
atomic energy to, (i.e., a few electron volts). It is useful to
express the energy 6, in terms of quantities that directly
characterize a glass. In the harmonic approximation we
have for the elastic energy density the expression
( ,' )A;k, e;km—, , where )i.,k, is the tensor of elastic moduli
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8o-—8, =Mv (Al)

if we use that pa =M.
As for the Debye frequency, or rather the frequency cvp

(that corresponds to the first maximum in the density of
states}, 8o is by no means proportional to A'coo. In order
to make an estimate of fuoo one should use the potential
(2.1) with typical value of i7, i.e., with i7=1. Then, from
the potential energy

T I

V(x }=8
a

and e;k is a strain. This expression could serve as a
reasonable estimate for the potential-energy density even
if the elastic strain tensor e would be of the order of uni-

ty, i.e., if the atomic displacements would be of the order
of interatomic distances a. On the other hand, the poten-
tial energy per atom then should be of the order of 8, .
Since the order of magnitude of the elastic moduli is pU,
we obtain that in order of magnitude pv =8, /a . This
gives us the desired estimate

(where we have used the estimate Co=Mv ), i.e., ficoo ~ v,

but Co ~ v and the ratio irtcoo/Co is just a small parameter
(related to iJL ) which leads us to the condition
(x/a) «1 [see (6.4)].

APPENDIX B

For the convenience of the reader and for the paper to
be self-contained we give here derivation of harmonic-
oscillator density of states. For E && W it is determined
by [see Eq. (2.8)]

nHo(E)= f J drtdt P(rl, t)5(E 2W+—rt/rtL ), (Bl)

where integration over g is taken from zero to infinity
and we integrate over t within the interval—&32il/9 & t & &32i7/9 where one-well potentials exist.
Now let us consider the case when the distribution func-
tion P(rl, t) can be taken in its simplest form Eq. (4.6).
Then carrying out the integration we get

we get the frequency

coo=+2@o/a M =—
a

(A2)

'4
1 &ortt. EnHo(E)= ~E

6~2 (B2)
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